
C
ulkin &

 Za
zon

A
W

S C
ookb

ook
A

W
S C

ookb
ook

 AWS
Cookbook
Recipes for Success on AWS

John Culkin & Mike Zazon
Foreword by Jeff Barr

Compliments of

We are committed to solving both essential and
advanced cloud challenges.

That’s why we provide intelligent technology that
simplifies and automates cloud use, alongside expert
consultancy and unlimited technical support – all at no
extra cost to our customers.

Get cloud expertise “on tap” from a global team of
committed cloud experts with decades of experience
in cloud architecture, Kubernetes, machine learning
and much more – all on call for you.

Learn more at DoiT.com

Meet DoiT

https://doit.com?utm_campaign=Global-Consultancy-Evergreen&utm_source=oreilly&utm_medium=ebook&utm_content=awscookbook

Praise for AWS Cookbook

There’s something sorely missing from official AWS documentation: a sense of reality.
Most of us aren’t attempting to win points for collecting as many AWS services as we can;
we’re trying to complete a task somewhere that isn’t a whiteboard. AWS Cookbook speaks
to real users with a collection of recipes and pragmatic examples we can all benefit from.

—Corey Quinn,
Chief Cloud Economist, The Duckbill Group

Inside you’ll find a great deal of information on typical AWS use cases plus a reference
implementation that’s easy to follow. If you like to learn AWS concepts in a practice-

driven, example-based, hands-on manner, I highly recommend this book.
—Gaurav Raje,

author of Security and Microservice Architecture on AWS

I’ve never read a book packed so densely with ninja level tips and tricks for AWS; it’s the
book I wish I had five years ago. If you use AWS day to day, you need this in your toolkit,

not only for the things it contains but also for the inspiration it provides.
In my view, it’s the best AWS book there is.

—Adrian Cantrill,
AWS Trainer, learn.cantrill.io

Putting AWS into practice with hands-on experience is the difference between cloud
literacy and cloud fluency. AWS Cookbook serves up practical scenarios

for working in the cloud to help individuals level up their career.
—Drew Firment,

AWS Community Hero and Head Enterprise Strategist, Pluralsight

John Culkin and Mike Zazon

AWS Cookbook
Recipes for Success on AWS

978-1-098-15591-9

[LSI]

AWS Cookbook
by John Culkin and Mike Zazon

Copyright © 2022 Culkins Coffee Shop LLC and Mike Zazon. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Virginia Wilson
Production Editor: Christopher Faucher
Copyeditor: nSight, Inc.
Proofreader: Sharon Wilkey

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2021: First Edition

Revision History for the First Edition
2021-12-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492092605 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. AWS Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and DoiT International. See our statement of edito‐
rial independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492092605
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Dedicated to my father, who taught me that a spreadsheet could be used for much more
than totaling up columns.

—John

Dedicated to my aunt, Judy Dunn. Thank you for the Tandy 1000 PC that sparked my
fascination with computer programming and technology.

—Mike

Table of Contents

DoiT International. i

Foreword. xi

Preface. xiii

1. Security. 1
1.0 Introduction 1
1.1 Creating and Assuming an IAM Role for Developer Access 2
1.2 Generating a Least Privilege IAM Policy Based on Access Patterns 6
1.3 Enforcing IAM User Password Policies in Your AWS Account 9
1.4 Testing IAM Policies with the IAM Policy Simulator 13
1.5 Delegating IAM Administrative Capabilities Using Permissions

Boundaries 17
1.6 Connecting to EC2 Instances Using AWS SSM Session Manager 25
1.7 Encrypting EBS Volumes Using KMS Keys 30
1.8 Storing, Encrypting, and Accessing Passwords Using Secrets Manager 33
1.9 Blocking Public Access for an S3 Bucket 36
1.10 Serving Web Content Securely from S3 with CloudFront 39

2. Networking. 43
2.0 Introduction 43
2.1 Defining Your Private Virtual Network in the Cloud by Creating an

Amazon VPC 44
2.2 Creating a Network Tier with Subnets and a Route Table in a VPC 47
2.3 Connecting Your VPC to the Internet Using an Internet Gateway 51
2.4 Using a NAT Gateway for Outbound Internet Access from Private Subnets 55

vii

2.5 Granting Dynamic Access by Referencing Security Groups 59
2.6 Using VPC Reachability Analyzer to Verify and Troubleshoot Network

Paths 63
2.7 Redirecting HTTP Traffic to HTTPS with an Application Load Balancer 67
2.8 Simplifying Management of CIDRs in Security Groups with Prefix Lists 74
2.9 Controlling Network Access to S3 from Your VPC Using VPC Endpoints 78
2.10 Enabling Transitive Cross-VPC Connections Using Transit Gateway 82
2.11 Peering Two VPCs Together for Inter-VPC Network Communication 88

3. Storage. 93
3.0 Introduction 93
3.1 Using S3 Lifecycle Policies to Reduce Storage Costs 94
3.2 Using S3 Intelligent-Tiering Archive Policies to Automatically Archive S3

Objects 97
3.3 Replicating S3 Buckets to Meet Recovery Point Objectives 100
3.4 Observing S3 Storage and Access Metrics Using Storage Lens 105
3.5 Configuring Application-Specific Access to S3 Buckets with S3 Access

Points 110
3.6 Using Amazon S3 Bucket Keys with KMS to Encrypt Objects 114
3.7 Creating and Restoring EC2 Backups to Another Region Using AWS

Backup 117
3.8 Restoring a File from an EBS Snapshot 125
3.9 Replicating Data Between EFS and S3 with DataSync 128

4. Databases. 133
4.0 Introduction 133
4.1 Creating an Amazon Aurora Serverless PostgreSQL Database 134
4.2 Using IAM Authentication with an RDS Database 140
4.3 Leveraging RDS Proxy for Database Connections from Lambda 146
4.4 Encrypting the Storage of an Existing Amazon RDS for MySQL Database 153
4.5 Automating Password Rotation for RDS Databases 157
4.6 Autoscaling DynamoDB Table Provisioned Capacity 163
4.7 Migrating Databases to Amazon RDS Using AWS DMS 167
4.8 Enabling REST Access to Aurora Serverless Using RDS Data API 171

5. Serverless. 177
5.0 Introduction 177
5.1 Configuring an ALB to Invoke a Lambda Function 179
5.2 Packaging Libraries with Lambda Layers 181
5.3 Invoking Lambda Functions on a Schedule 185
5.4 Configuring a Lambda Function to Access an EFS File System 188

viii | Table of Contents

5.5 Running Trusted Code in Lambda Using AWS Signer 191
5.6 Packaging Lambda Code in a Container Image 194
5.7 Automating CSV Import into DynamoDB from S3 with Lambda 198
5.8 Reducing Lambda Startup Times with Provisioned Concurrency 201
5.9 Accessing VPC Resources with Lambda 204

6. Containers. 207
6.0 Introduction 207
6.1 Building, Tagging, and Pushing a Container Image to Amazon ECR 209
6.2 Scanning Images for Security Vulnerabilities on Push to Amazon ECR 214
6.3 Deploying a Container Using Amazon Lightsail 217
6.4 Deploying Containers Using AWS Copilot 220
6.5 Updating Containers with Blue/Green Deployments 223
6.6 Autoscaling Container Workloads on Amazon ECS 227
6.7 Launching a Fargate Container Task in Response to an Event 231
6.8 Capturing Logs from Containers Running on Amazon ECS 235

7. Big Data. 241
7.0 Introduction 241
7.1 Using a Kinesis Stream for Ingestion of Streaming Data 242
7.2 Streaming Data to Amazon S3 Using Amazon Kinesis Data Firehose 244
7.3 Automatically Discovering Metadata with AWS Glue Crawlers 249
7.4 Querying Files on S3 Using Amazon Athena 256
7.5 Transforming Data with AWS Glue DataBrew 261

8. AI/ML. 267
8.0 Introduction 267
8.1 Transcribing a Podcast 268
8.2 Converting Text to Speech 270
8.3 Computer Vision Analysis of Form Data 272
8.4 Redacting PII from Text Using Comprehend 275
8.5 Detecting Text in a Video 278
8.6 Physician Dictation Analysis Using Amazon Transcribe Medical and

Comprehend Medical 281
8.7 Determining Location of Text in an Image 284

9. Account Management. 287
9.0 Introduction 287
9.1 Using EC2 Global View for Account Resource Analysis 288
9.2 Modifying Tags for Many Resources at One Time with Tag Editor 290
9.3 Enabling CloudTrail Logging for Your AWS Account 295

Table of Contents | ix

9.4 Setting Up Email Alerts for Root Login 298
9.5 Setting Up Multi-Factor Authentication for a Root User 300
9.6 Setting Up AWS Organizations and AWS Single Sign-On 305

Appendix. Fast Fixes. 311

Index. 315

x | Table of Contents

Foreword

As part of the Amazon Web Services (AWS) team since the beginning, I have been
able to watch it grow in scale, richness, and complexity from a unique vantage point.
Even after writing thousands of blog posts and millions of words, I learn something
new and useful about AWS just about every day.

With well over two hundred services in production and more launching regularly,
AWS could easily leave you feeling overwhelmed. In addition to tens of thousands of
pages of official AWS documentation, bloggers, AWS Heroes, AWS Partners, and oth‐
ers have created innumerable pieces of content—including blog posts, videos, webi‐
nars, overviews, and code samples.

While there’s no substitute for having a full and complete understanding of a particu‐
lar AWS service, the reality is that you often simply need to solve a “point” problem.
Even after you understand a service, remembering how to use it to solve that problem
can be a challenge—at least it is for me.

And that is where this cookbook comes in. Because of its broad selection of topics
and carefully chosen recipes, I am confident that you will be able to quickly find one
that addresses your immediate need and to put it into practice in short order. You can
solve your problem, refresh your knowledge of that aspect of AWS, and move for‐
ward to create value for your customers!

My favorite aspect of this book is that it does not hand-wave past any of the details.
Each recipe assumes that you start fresh and then helps you to cook up a perfectly
seasoned solution. Nothing is left to chance, and you can use the recipes as is in most
cases. The recipes also cover the all-important cleanup phase and ensure that you
leave your AWS environment as you found it.

xi

Where appropriate, the recipes use the AWS Cloud Development Kit (CDK) and
include all of the necessary “moving parts.” The CDK provides a double benefit; in
addition to helping you to move forward more quickly, these CDK elements can help
you learn more about how to put infrastructure as code (IaC) into practice.

Most cookbooks are designed to be browsed and savored, and this one is no excep‐
tion. Flip through it, read an entire chapter, or use just a recipe or two, as you wish. I
also recommend that you go through all of Chapter 1, just to make sure that your
environment is set up and ready to go. Then, when you are presented with a problem
to solve, find the appropriate recipe, put it into practice, and reap the benefits.

—Jeff Barr

—VP and Chief Evangelist at AWS
Seattle, WA

November 2021

xii | Foreword

Preface

The vast majority of workloads will go to the cloud.
We’re just at the beginning—there’s so much more to happen.

—Andy Jassy

Cloud usage has been gaining traction with enterprises and small businesses over the
last decade and continues to accelerate. Gartner said the worldwide infrastructure as
a service (IaaS) public cloud services market grew 40.7% in 2020. The rapid growth of
the cloud has led to a huge demand for cloud skills by many organizations. Many IT
professionals understand the basic concepts of the cloud but want to become more
comfortable working in the cloud. This gap between the supply and demand of cloud
skills presents a significant opportunity for individuals to level up their career.

Through our combined 20+ years of cloud experience, we have had the benefit of
working on Amazon Web Services (AWS) projects in many different roles. We have
provided guidance to hundreds of developers on how and when to use AWS services.
This has allowed us to understand the common challenges and easy wins of the
cloud. We would like to share these lessons with you and give you a leg up for your
own advancement. We wrote this book to share some of our knowledge and enable
you to quickly acquire useful skills for working in the cloud. We hope that you will
find yourself using this book as reference material for many years to come.

Who This Book Is For
This book is for developers, engineers, and architects of all levels, from beginner to
expert. Beginners will learn cloud concepts and become comfortable working with
cloud services. Experts will be able to examine code used to stand up recipe founda‐
tions, explore new services, and gain additional perspectives. If the plethora of cloud
services and combinations seem overwhelming to you, then this book is for you. The
recipes in this book aim to provide “Hello, World” proofs of concept and components
of enterprise-grade applications. This will be accomplished using common use cases
with guided walk-throughs of scenarios that you can directly apply to your current or

xiii

https://oreil.ly/7Ube0
https://oreil.ly/bJ5Sb
https://oreil.ly/kstre

future work. These curated and experience-building recipes are meant to demystify
services and will immediately deliver value, regardless of your AWS experience level.

What You Will Learn
In addition to opening up new career opportunities, being able to harness the power
of AWS will give you the ability to create powerful systems and applications that solve
many interesting and demanding problems in our world today. Would you like to
handle 60,000 cyber threats per second using AWS machine learning like Siemens
does? Or reduce your organization’s on-premises footprint and expand its use of
microservices like Capital One has? If so, the practical examples in this book will help
expedite your learning by providing tangible examples showing how you can put the
building blocks of AWS together to form practical solutions that address common
scenarios. The on-demand consumption model, vast capacity, advanced capabilities,
and global footprint of the cloud create new possibilities that need to be explored.

The Recipes
We break the book into chapters that focus on general areas of technology (e.g., secu‐
rity, networking, artificial intelligence, etc.). The recipes contained within the chap‐
ters are bite-sized, self-contained, and easily consumable. Recipes vary in length and
complexity. Each recipe has a problem statement, solution (with diagram), and dis‐
cussion. Problem statements are tightly defined to avoid confusion. Solutions contain
required preparation and steps to walk you through the work needed to accomplish
the goal. When appropriate, explicit validation checks will be provided. We’ve also
added extra challenges to the recipes to help you advance your learning if you wish to
do so. Finally, we end each recipe with a short discussion to help you understand the
solution and why it matters, suggestions to extend the solution, and ways to utilize it
for real impact.

To keep your AWS bill low and keep your account tidy, each recipe
has cleanup steps provided in the repositories associated with the
book.

Each chapter has its own repository at https://github.com/awscookbook. The reposi‐
tory contains preparation steps for easy copying and pasting, required files, and infra‐
structure as code. We have also created GitHub templates for reporting bugs and sug‐
gesting new recipes. We encourage you to leverage GitHub to submit issues, create
requests for new recipes, and submit your own pull requests. We will actively
maintain the chapter repositories with updates for recipe steps and code in the
README files of each recipe. Be sure to check these for any new or alternative

xiv | Preface

https://oreil.ly/Qpyvy
https://oreil.ly/vI0ZY
https://github.com/awscookbook

approaches. We look forward to interacting with you on GitHub with new fun chal‐
lenges and hints to assist you.

Some recipes are “built from scratch,” and others include preparation steps to allow
you to interact with common scenarios seen in the real world. We have provided code
to enable you to easily deploy the prerequisites. For example, Recipe 6.5, “Updating
Containers with Blue/Green Deployments”, assumes that you are a container devel‐
oper creating an application deployment that requires an existing network stack.
When prerequisites exist, they can be “pre-baked” with preparation steps using code
provided in the repositories. When substantial preparation for a recipe is needed, you
will use the AWS Cloud Development Kit (CDK), which is a fantastic tool for intelli‐
gently defining and declaring infrastructure. The majority of the recipes are CLI
based; when appropriate, we use console walk-throughs including screenshots or
descriptive text.

There are many ways to achieve similar outcomes on AWS; this
book will not be an exhaustive list. Many factors will dictate the
best overall solution for your use case. We have selected recipe top‐
ics to help you learn about AWS and make the best choices for your
specific needs.

You’ll find recipes for things like the following:

• Redacting personally identifiable information (PII) from text by using Amazon
Comprehend

• Automating password rotation for Amazon Relational Database Service (RDS)
databases

• Using VPC Reachability Analyzer to verify and troubleshoot network paths

Along with the recipes, we also provide short lines of code in the Appendix that will
quickly accomplish valuable and routine tasks. We feel that these are great tidbits to
add to your cloud toolbox.

AWS has a free tier, but implementing recipes in this book could
incur costs. We provide cleanup instructions, but you are responsi‐
ble for any costs in your account. We recommend checking out the
Well-Architected Labs developed by AWS on expenditure aware‐
ness and leveraging AWS Budgets actions to control costs.

Preface | xv

https://aws.amazon.com/free
https://www.wellarchitectedlabs.com
https://oreil.ly/4OVCc

What You Will Need
Here are the requirements to get started and some tips on where to find assistance:

• AWS account
— Setup instructions
— An IAM user with console and programmatic access
— Administrator privileges for your IAM user

• Personal computer/laptop
• Software

— Web browser (e.g., Microsoft Edge, Google Chrome, or Mozilla Firefox)
— Terminal with bash or Z shell (Zsh)
— Git

— Install instructions
— Homebrew (optional but recommended to install other requirements)

— Install instructions
— Code editor (e.g., VSCodium or AWS Cloud9)

— Recommended install: brew install --cask vscodium
— AWS CLI version 2 (2.1.26 or later)

— Install guide

— Recommended install: brew install awscli@2
— Python 3.7.9 (and pip) or later

— Example install: brew install python@3.7
— AWS Cloud Development Kit version 2.0 or later

— Getting started guide

— Recommended install: brew install npm and npm i -g aws-cdk@next
• Recommended: Create a folder in your home directory called AWSCookbook.

This will allow you to clone each chapter’s repository in one place:
AWSCookbook:$ tree -L 1
.
├── AccountManagement
├── ArtificialIntelligence
├── BigData
...

xvi | Preface

https://oreil.ly/opuXX
https://github.com/git-guides/install-git
https://docs.brew.sh/Installation
https://oreil.ly/uYhyX
https://oreil.ly/OmDu1

At the time of publishing, the AWS CDK has two versions: version
1 and version 2 (developer preview). The code we have provided is
written for version 2. You can find out more information about
how to migrate to and install CDK version 2 in this AWS CDK v2
article.

Getting Started
This section provides examples of techniques and approaches we perform throughout
the book to make the recipe steps easier to follow. You can skip over these topics if
you feel comfortable with them. You can always come back and reference this section.

Setups
In addition to the installation of the prerequisites listed previously, you will need the
following access.

AWS account setup
You will need a user with administrative permissions. Some of the recipes require the
ability to create AWS Identity and Access Management (IAM) resources. You can fol‐
low the AWS guide for creating your first IAM admin user and user group.

General workstation setup steps for CLI recipes
We have created a group of code repositories available at https://github.com/awscook
book. Create a folder called AWSCookbook in your home directory (or any place of
your choosing) and cd there:

mkdir ~/AWSCookbook && cd ~/AWSCookbook

This will give you a place to check out chapter repositories (e.g., Security):
git clone https://github.com/AWSCookbook/Security

Set and export your default Region in your terminal:
export AWS_REGION=us-east-1

AWS offers many Regions across the world for cloud deployments.
We’ll be using the us-east-1 Region for simplicity. As long as the
services are available, there is no reason these recipes won’t work in
other Regions. AWS has a list of Regions and services.

Set your AWS ACCOUNT_ID by parsing output from the aws sts get-caller-

identity operation:

Preface | xvii

https://oreil.ly/jNyXH
https://oreil.ly/jNyXH
https://oreil.ly/moVjA
https://github.com/awscookbook
https://github.com/awscookbook
https://oreil.ly/I3eVB

AWS_ACCOUNT_ID=$(aws sts get-caller-identity \
 --query Account --output text)

The aws sts get-caller-identity operation “returns details
about the IAM user or role whose credentials are used to call the
operation.”

Validate AWS Command Line Interface (AWS CLI) setup and access:
aws ec2 describe-instances

If you don’t have any EC2 instances deployed, you should see output similar to the
following:

{
 "Reservations": []
}

AWS CLI version 2 will by default send command output with
multiple lines to less in your terminal. You can type q to exit. If
you want to override this behavior, you can modify your ~/.aws/
config file to remove this default functionality.

AWS CloudShell is a browser-based terminal that you can use to
quickly create a terminal environment in your authenticated AWS
Console session to run AWS CLI commands from. By default, it
uses the identity of your browser session to interact with the AWS
APIs. Many of the recipes can be run using CloudShell. You can use
CloudShell to run recipe steps, clean up commands, and other
AWS CLI commands as your authenticated user, if you do not want
to create a session that you use in your own local terminal environ‐
ment on your workstation.

Techniques and Approaches Used in This Book
The next few sections will explain and give examples of some ways of using the CLI to
help you with recipes.

Querying outputs, environment variables, and command substitution
Sometimes when subsequent commands depend on outputs from the command you
are currently running. The AWS CLI provides the ability for client-side filtering of
output. At times, we will set environment variables that contain these outputs by lev‐
eraging command substitution.

xviii | Preface

https://oreil.ly/XJMDp
https://oreil.ly/XJMDp
https://oreil.ly/SU9gk
https://aws.amazon.com/cloudshell
https://oreil.ly/oV3cx
https://oreil.ly/oV3cx
https://oreil.ly/39qp6
https://oreil.ly/FG9yl

We’ll combine these three techniques to make things easier for you as you proceed
through steps in the book. Here is an example:

Use the AWS Security Token Service (AWS STS) to retrieve your IAM user (or role)
Amazon Resource Name (ARN) with the AWS CLI:

aws sts get-caller-identity

You should see output similar to the following:
{
 "UserId": "EXAMPLE",
 "Account": "111111111111",
 "Arn": "arn:aws:iam::111111111111:user/UserName"
}

An example of querying for the ARN value and outputting it to the terminal follows:
aws sts get-caller-identity --query Arn --output text

You should see output similar to the following:
arn:aws:iam::111111111111:user/UserName

Query for the ARN value and set it as an environment variable using command sub‐
stitution:

PRINCIPAL_ARN=$(aws sts get-caller-identity --query Arn --output text)

To check the value of an environment variable, for example, you can echo it to the
terminal:

echo $PRINCIPAL_ARN

You should see output similar to the following:
arn:aws:iam::111111111111:user/UserName

Using the --dry-run flag is always a good idea when performing an
operation that makes changes—for example, aws ec2 create-vpc
--dry-run --cidr-block 10.10.0.0/16.

Replacing values in provided template files
Where possible, to simplify the learning experience for you, we have provided tem‐
plate files in the chapter code repositories that you can use as a starting point as input
to some of the commands you will run in recipe steps. For example, when you create
an AWS CodeDeploy configuration in Recipe 6.5, “Updating Containers with Blue/
Green Deployments”, we provide codedeploy-template.json with AWS_ACCOUNT_ID,
PROD_LISTENER_ARN, and TEST_LISTENER_ARN placeholders in the JSON file. We
expect you to replace these placeholder values and save the file as codedeploy.json.

Preface | xix

To further simplify your experience, if you follow the steps exactly and save these to
environment variables, you can use the sed command to replace the values. Where
possible, we provide you a command to do this, such as this example from Chapter 6:

Use the sed command to replace the values with the environment variables you
exported with the helper.py script:

sed -e "s/AWS_ACCOUNT_ID/${AWS_ACCOUNT_ID}/g" \
 -e "s|PROD_LISTENER_ARN|${PROD_LISTENER_ARN}|g" \
 -e "s|TEST_LISTENER_ARN|${TEST_LISTENER_ARN}|g" \
 codedeploy-template.json > codedeploy.json

Passwords
During some of the steps in the recipes, you will create passwords and temporarily
save them as environment variables to use in subsequent steps. Make sure you unset
the environment variables by following the cleanup steps when you complete the
recipe. We use this approach for simplicity of understanding. A more secure method
(such as the method in Recipe 1.8) should be used in production environments by
leveraging AWS Secrets Manager.

Generation. You can use AWS Secrets Manager via the AWS CLI to generate pass‐
words with specific requirements. An example from Chapter 4 looks like this:

ADMIN_PASSWORD=$(aws secretsmanager get-random-password \
 --exclude-punctuation \
 --password-length 41 --require-each-included-type \
 --output text \
 --query RandomPassword)

Usage and storage. In production environments, you should use AWS Secrets Man‐
ager or AWS Systems Manager Parameter Store (using secure strings) with IAM poli‐
cies to control who and what can access the secrets. For simplicity, some of the poli‐
cies of passwords and secrets used in the recipes might not be as locked down from a
policy perspective as you would want in a production environment. Be sure to always
write your own IAM policies to control this behavior in practice.

Random suffixes
We generate a lot of random suffixes when we deal with global services like Amazon
S3. These are needed because S3 bucket names need to be globally unique across the
entire AWS customer base. Secrets Manager can be used via the CLI to generate a
string that satisfies the naming convention and adds this random element to ensure
all book readers can create resources and follow along using the same commands:

RANDOM_STRING=$(aws secretsmanager get-random-password \
 --exclude-punctuation --exclude-uppercase \
 --password-length 6 --require-each-included-type \

xx | Preface

https://oreil.ly/7TxP4
https://oreil.ly/7TxP4
https://oreil.ly/PUyzf
https://oreil.ly/PUyzf
https://oreil.ly/HDMgB

 --output text \
 --query RandomPassword)

You can also use any other utilities to generate random strings. Some local tools may
be preferred.

AWS Cloud Development Kit and helper.py
A good place to start is the “Getting started with the AWS CDK” guide. After you
have CDK 2.0 installed, if this is the first time you are using the AWS CDK, you’ll
need to bootstrap with the Region you are working on with the AWS CDK toolkit:

cdk bootstrap aws://$AWS_ACCOUNT_ID/$AWS_REGION

We use the AWS CDK when needed throughout the book to give you the ability to
deploy a consistent scenario that aligns with the problem statement you see in the
recipe. You can also choose to execute the recipe steps in your own existing environ‐
ments, as long as you have the input variables required for the recipe steps. If things
don’t work in your environment, you can stand up the provided environment and
compare.

The CDK code we included in the repositories deploys resources using the AWS
CloudFormation service, and we wrote output variables that you use in recipe steps.
We created a Python script called helper.py which you can run in your terminal to
take the CloudFormation output and set local variables to make the recipe steps eas‐
ier to follow—in most cases, even copy and paste.

An example set of commands for deploying CDK code for a recipe after checking out
the chapter repository for Chapter 4, looks like the following:

cd 401-Creating-an-Aurora-Serverless-DB/cdk-AWS-Cookbook-401/
test -d .venv || python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip setuptools wheel
pip install -r requirements.txt
cdk deploy

You can easily copy and paste the preceding code from the root of the chapter reposi‐
tory (assuming you have Python, pip, and CDK installed as prerequisites) to deploy
the scenario that the solution will address in the solution steps of the recipe.

The helper.py tool we created can then be run in your terminal after the cdk deploy is
complete:

python helper.py

You should see output that you can copy and paste into your terminal to set environ‐
ment variables from the CDK CloudFormation stack outputs:

$ python helper.py
Copy and paste the commands below into your terminal

Preface | xxi

https://oreil.ly/OmDu1

ROLE_NAME='cdk-aws-cookbook-108-InstanceSS1PK7LB631QYEF'
INSTANCE_ID='random string here'

Finally, a reminder that although we work for AWS, the opinions
expressed in this book are our own.

Put on your apron, and let’s get cooking with AWS!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xxii | Preface

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/awscookbook.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “AWS Cookbook by John
Culkin and Mike Zazon (O’Reilly). Copyright 2022 Culkins Coffee Shop LLC and
Mike Zazon, 978-1-492-09260-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

Preface | xxiii

https://github.com/awscookbook
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/AWS-cookbook.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
Thank you to Jeff Armstrong, author of Migrating to AWS, A Manager’s Guide for
introducing us to O’Reilly.

We want to recognize the tech reviewers who helped get this book to where it is today.
Their keen eyes, opinions, and technical prowess are greatly appreciated. Jess Males,
Gaurav Raje, Jeff Barr, Paul Bayer, Neil Stewart, David Kheyman, Justin Domingus,
Justin Garrison, Julian Pittas, Mark Wilkins, and Virginia Chu—thank you.

Thanks to the knowledgeable community at r/aws for always providing great insights
and opinions.

Thank you to our production editor, Christopher Faucher, for getting the book in tip-
top shape for release. Thanks also to our editor, Virginia Wilson, for taking the time
to work with first-time authors during a pandemic. Your patience, suggestions, and
guidance allowed us to complete this book and remain (somewhat) sane :-)

xxiv | Preface

https://oreil.ly/AWS-cookbook
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia
https://www.reddit.com/r/aws

CHAPTER 1

Security

1.0 Introduction
The average cost of a data breach in 2021 reached a new high of USD 4.24 million as
reported by the IBM/Ponemon Institute Report. When you choose to run your appli‐
cations in the cloud, you trust AWS to provide a secure infrastructure that runs cloud
services so that you can focus on your own innovation and value-added activities.

But security in the cloud is a shared responsibility between you and AWS. You are
responsible for the configuration of things like AWS Identity and Access Manage‐
ment (IAM) policies, Amazon EC2 security groups, and host based firewalls. In other
words, the security of the hardware and software platform that make up the AWS
cloud is an AWS responsibility. The security of software and configurations that you
implement in your AWS account(s) are your responsibility.

As you deploy cloud resources in AWS and apply configuration, it is critical to under‐
stand the security settings required to maintain a secure environment. This chapter’s
recipes include best practices and use cases focused on security. As security is a part
of everything, you will use these recipes in conjunction with other recipes and chap‐
ters in this book. For example, you will see usage of AWS Systems Manager Session
Manager used throughout the book when connecting to your EC2 instances. These
foundational security recipes will give you the tools you need to build secure solu‐
tions on AWS.

In addition to the content in this chapter, so many great resources are available for
you to dive deeper into security topics on AWS. “The Fundamentals of AWS Cloud
Security”, presented at the 2019 AWS security conference re:Inforce, gives a great
overview. A more advanced talk, “Encryption: It Was the Best of Controls, It Was the
Worst of Controls”, from AWS re:Invent, explores encryption scenarios explained in
detail.

1

https://oreil.ly/YayAP
https://oreil.ly/4Sv24
https://oreil.ly/7rDIX
https://oreil.ly/7rDIX
https://oreil.ly/qnO16
https://oreil.ly/qnO16

AWS publishes a best practices guide for securing your account,
and all AWS account holders should be familiar with the best prac‐
tices as they continue to evolve.

We cover important security topics in this chapter. It is not possible
to cover every topic as the list of services and configurations (with
respect to security on AWS) continues to grow and evolve. AWS
keeps its Best Practices for Security, Identity, and Compliance web
page up-to-date.

Workstation Configuration
You will need a few things installed to be ready for the recipes in this chapter.

General setup
Follow the “General workstation setup steps for CLI recipes” on page xvii to validate
your configuration and set up the required environment variables. Then, clone the
chapter code repository:

git clone https://github.com/AWSCookbook/Security

1.1 Creating and Assuming an IAM Role for
Developer Access
Problem
To ensure that you are not always using administrative permissions, you need to cre‐
ate an IAM role for development use in your AWS account.

Solution
Create a role using an IAM policy that will allow the role to be assumed later. Attach
the AWS managed PowerUserAccess IAM policy to the role (see Figure 1-1).

2 | Chapter 1: Security

https://oreil.ly/BZQRt
https://oreil.ly/Us5oz
https://oreil.ly/Us5oz

Figure 1-1. Create role, attach policy, and assume role

Steps

1. Create a file named assume-role-policy-template.json with the following content.
This will allow an IAM principal to assume the role you will create next (file pro‐
vided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "PRINCIPAL_ARN"
 },
 "Action": "sts:AssumeRole"
 }
]
}

If you are using an IAM user, and you delete and re-create the
IAM user, this policy will not continue to work because of the
way that the IAM service helps mitigate the risk of privilege
escalation. For more information, see the Note in the IAM
documentation about this.

2. Retrieve the ARN for your user and set it as a variable:
PRINCIPAL_ARN=$(aws sts get-caller-identity --query Arn --output text)

3. Use the sed command to replace PRINCIPAL_ARN in the assume-role-policy-
template.json file and generate the assume-role-policy.json file:

sed -e "s|PRINCIPAL_ARN|${PRINCIPAL_ARN}|g" \
 assume-role-policy-template.json > assume-role-policy.json

1.1 Creating and Assuming an IAM Role for Developer Access | 3

https://oreil.ly/wR02t
https://oreil.ly/wR02t
https://oreil.ly/BDayp

4. Create a role and specify the assume role policy file:
ROLE_ARN=$(aws iam create-role --role-name AWSCookbook101Role \
 --assume-role-policy-document file://assume-role-policy.json \
 --output text --query Role.Arn)

5. Attach the AWS managed PowerUserAccess policy to the role:
aws iam attach-role-policy --role-name AWSCookbook101Role \
 --policy-arn arn:aws:iam::aws:policy/PowerUserAccess

AWS provides access policies for common job functions for
your convenience. These policies may be a good starting point
for you to delegate user access to your account for specific job
functions; however, it is best to define a least-privilege policy
for your own specific requirements for every access need.

Validation checks. Assume the role:
aws sts assume-role --role-arn $ROLE_ARN \
 --role-session-name AWSCookbook101

You should see output similar to the following:
{
 "Credentials": {
 "AccessKeyId": "<snip>",
 "SecretAccessKey": "<snip>",
 "SessionToken": "<snip>",
 "Expiration": "2021-09-12T23:34:56+00:00"
 },
 "AssumedRoleUser": {
 "AssumedRoleId": "EXAMPLE:AWSCookbook101",
 "Arn": "arn:aws:sts::11111111111:assumed-role/AWSCookbook101Role/AWSCookbook101"
 }
}

The AssumeRole API returns a set of temporary credentials for a
role session from the AWS Security Token Service (STS) to the
caller as long as the permissions in the AssumeRole policy for the
role allow. All IAM roles have an AssumeRole policy associated
with them. You can use the output of this to configure the creden‐
tials for the AWS CLI; set the AccessKey, SecretAccessKey, and Ses‐
sionToken as environment variables; and also assume the role in
the AWS Console using the Switch Role feature. When your appli‐
cations need to make AWS API calls, the AWS SDK for your pro‐
gramming language of choice handles this for them.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

4 | Chapter 1: Security

https://oreil.ly/iyKFx
https://oreil.ly/dX1je
https://oreil.ly/AdUrq
https://oreil.ly/F7ril
https://oreil.ly/F7ril
https://oreil.ly/UWNWd
https://oreil.ly/UWNWd
https://oreil.ly/dSfuG
https://github.com/AWSCookbook/Security

Discussion
Using administrative access for routine development tasks is not a security best prac‐
tice. Giving unneeded permissions can result in unauthorized actions being per‐
formed. Using the PowerUserAccess AWS managed policy for development purposes
is a better alternative to start rather than using AdministratorAccess. Later, you
should define your own customer managed policy granting only the specific actions
for your needs. For example, if you need to log in often to check the status of your
EC2 instances, you can create a read-only policy for this purpose and attach it to a
role. Similarly, you can create a role for billing access and use it to access the AWS
Billing console only. The more you practice using the principle of least privilege, the
more security will become a natural part of what you do.

You used an IAM user in this recipe to perform the steps. If you are using an AWS
account that leverages federation for access (e.g., a sandbox or development AWS
account at your employer), you should use temporary credentials from the AWS STS
rather than an IAM user. This type of access uses time-based tokens that expire after
an amount of time, rather than “long-lived” credentials like access keys or passwords.
When you performed the AssumeRole in the validation steps, you called the STS ser‐
vice for temporary credentials. To help with frequent AssumeRole operations, the
AWS CLI supports named profiles that can automatically assume and refresh your
temporary credentials for your role when you specify the role_arn parameter in the
named profile.

You can require multi-factor authentication (MFA) as a condition
within the AssumeRole policies you create. This would allow the
role to be assumed only by an identity that has been authenticated
with MFA. For more information about requiring MFA for Assu
meRole, see the support document.

See Recipe 9.4 to create an alert when a root login occurs.

You can grant cross-account access to your AWS resources. The
resource you define in the policy in this recipe would reference the
AWS account and principal within that account that you would like
to delegate access to. You should always use an ExternalID when
enabling cross-account access. For more information, see the offi‐
cial tutorial for cross-account access.

Challenge
Create additional IAM roles for each of the AWS managed policies for job functions
(e.g., billing, database administrator, networking, etc.)

1.1 Creating and Assuming an IAM Role for Developer Access | 5

https://oreil.ly/hfQ3p
https://oreil.ly/jMW6h
https://oreil.ly/hmUw3
https://oreil.ly/fZSQ9
https://oreil.ly/djRQI
https://oreil.ly/wwlF4
https://oreil.ly/wwlF4

1.2 Generating a Least Privilege IAM Policy Based on
Access Patterns
Problem
You would like to implement least privilege access for your user and scope down the
permissions to allow access to only the services, resources, and actions you need to
use in your AWS account.

Solution
Use the IAM Access Analyzer in the IAM console to generate an IAM policy based on
the CloudTrail activity in your AWS account, as shown in Figure 1-2.

Figure 1-2. IAM Access Analyzer workflow

Prerequisite

• CloudTrail logging enabled for your account to a configured S3 bucket (see
Recipe 9.3)

Steps

1. Navigate to the IAM console and select your IAM role or IAM user that you
would like to generate a policy for.

2. On the Permissions tab (the default active tab when viewing your principal),
scroll to the bottom, expand the “Generate policy based on CloudTrail events”
section, and click the “Generate policy” button.

6 | Chapter 1: Security

https://console.aws.amazon.com/iam

For a quick view of the AWS services accessed from your prin‐
cipal, click the Access Advisor tab and view the service list and
access time. While the IAM Access Advisor is not as powerful
as the Access Analyzer, it can be helpful when auditing or
troubleshooting IAM principals in your AWS account.

3. Select the time period of CloudTrail events you would like to evaluate, select your
CloudTrail trail, choose your Region (or select “All regions”), and choose “Create
and use a new service role.” IAM Access Analyzer will create a role for the service
to use for read access to your trail that you selected. Finally, click “Generate pol‐
icy.” See Figure 1-3 for an example.

Figure 1-3. Generating a policy in the IAM Access Analyzer configuration

The role creation can take up to 30 seconds. Once the role is
created, the policy generation will take an amount of time
depending on how much activity is in your CloudTrail trail.

1.2 Generating a Least Privilege IAM Policy Based on Access Patterns | 7

4. Once the analyzer has completed, scroll to the bottom of the permissions tab and
click “View generated policy,” as shown in Figure 1-4.

Figure 1-4. Viewing the generated policy

5. Click Next, and you will see a generated policy in JSON format that is based on
the activity that your IAM principal has made. You can edit this policy in the
interface if you wish to add additional permissions. Click Next again, choose a
name, and you can deploy this generated policy as an IAM policy.
You should see a generated IAM policy in the IAM console similar to this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "access-analyzer:ListPolicyGenerations",
 "cloudtrail:DescribeTrails",
 "cloudtrail:LookupEvents",
 "iam:GetAccountPasswordPolicy",
 "iam:GetAccountSummary",
 "iam:GetServiceLastAccessedDetails",
 "iam:ListAccountAliases",
 "iam:ListGroups",
 "iam:ListMFADevices",
 "iam:ListUsers",
 "s3:ListAllMyBuckets",
 "sts:GetCallerIdentity"
],
 "Resource": "*"
 }, ...
}

Validation checks. Create a new IAM user or role and attach the newly created IAM
policy to it. Perform an action granted by the policy to verify that the policy allows
your IAM principal to perform the actions that you need it to.

Discussion
You should always seek to implement least privilege IAM policies when you are scop‐
ing them for your users and applications. Oftentimes, you might not know exactly

8 | Chapter 1: Security

what permissions you may need when you start. With IAM Access Analyzer, you can
start by granting your users and applications a larger scope in a development envi‐
ronment, enable CloudTrail logging (Recipe 9.3), and then run IAM Access Analyzer
after you have a window of time that provides a good representation of the usual
activity (choose this time period in the Access Analyzer configuration as you did in
step 3). The generated policy will contain all of the necessary permissions to allow
your application or users to work as they did during that time period that you chose
to analyze, helping you implement the principle of least privilege.

You should also be aware of the list of services that Access Analyzer
supports.

Challenge
Use the IAM Policy Simulator (see Recipe 1.4) on the generated policy to verify that
the policy contains the access you need.

1.3 Enforcing IAM User Password Policies in
Your AWS Account

Special thanks to Gaurav Raje for his contribution to this recipe.

Problem
Your security policy requires that you must enforce a password policy for all the users
within your AWS account. The password policy sets a 90-day expiration, and pass‐
words must be made up of a minimum of 32 characters including lowercase and
uppercase letters, numbers, and symbols.

Solution
Set a password policy for IAM users in your AWS account. Create an IAM group, an
IAM user, and add the user to the group to verify that the policy is being enforced
(see Figure 1-5).

1.3 Enforcing IAM User Password Policies in Your AWS Account | 9

https://oreil.ly/jMW6h
https://oreil.ly/KPEFh

Figure 1-5. Using password policies with IAM users

If your organization has a central user directory, we recommend
using identity federation to access your AWS accounts using AWS
Single Sign-On (SSO) rather than create individual IAM users and
groups. Federation allows you to use an identity provider (IdP)
where you already maintain users and groups. AWS publishes a
guide that explains federated access configurations available. You
can follow Recipe 9.6 to enable AWS SSO for your account even if
you do not have an IdP available (AWS SSO provides a directory
you can use by default).

Steps

1. Set an IAM password policy using the AWS CLI to require lowercase and upper‐
case letters, symbols, and numbers. The policy should indicate a minimum
length of 32 characters, a maximum password age of 90 days, and password reuse
prevented:

aws iam update-account-password-policy \
 --minimum-password-length 32 \
 --require-symbols \
 --require-numbers \
 --require-uppercase-characters \
 --require-lowercase-characters \
 --allow-users-to-change-password \
 --max-password-age 90 \
 --password-reuse-prevention true

2. Create an IAM group:
aws iam create-group --group-name AWSCookbook103Group

You should see output similar to the following:
{
 "Group": {
 "Path": "/",
 "GroupName": "AWSCookbook103Group",
 "GroupId": "<snip>",
 "Arn": "arn:aws:iam::111111111111:group/AWSCookbook103Group",

10 | Chapter 1: Security

https://aws.amazon.com/single-sign-on
https://aws.amazon.com/single-sign-on
https://aws.amazon.com/identity/federation

 "CreateDate": "2021-11-06T19:26:01+00:00"
 }
}

3. Attach the ReadOnlyAccess policy to the group:
aws iam attach-group-policy --group-name AWSCookbook103Group \
 --policy-arn arn:aws:iam::aws:policy/AWSBillingReadOnlyAccess

It is best to attach policies to groups and not directly to users.
As the number of users grows, it is easier to use IAM groups to
delegate permissions for manageability. This also helps to meet
compliance for standards like CIS Level 1.

4. Create an IAM user:
aws iam create-user --user-name awscookbook103user

You should see output similar to the following:
{
 "User": {
 "Path": "/",
 "UserName": "awscookbook103user",
 "UserId": "<snip>",
 "Arn": "arn:aws:iam::111111111111:user/awscookbook103user",
 "CreateDate": "2021-11-06T21:01:47+00:00"
 }
}

5. Use Secrets Manager to generate a password that conforms to your password
policy:

RANDOM_STRING=$(aws secretsmanager get-random-password \
--password-length 32 --require-each-included-type \
--output text \
--query RandomPassword)

6. Create a login profile for the user that specifies a password:
aws iam create-login-profile --user-name awscookbook103user \
 --password $RANDOM_STRING

You should see output similar to the following:
{
 "LoginProfile": {
 "UserName": "awscookbook103user",
 "CreateDate": "2021-11-06T21:11:43+00:00",
 "PasswordResetRequired": false
 }
}

7. Add the user to the group you created for billing view-only access:
aws iam add-user-to-group --group-name AWSCookbook103Group \
 --user-name awscookbook103user

1.3 Enforcing IAM User Password Policies in Your AWS Account | 11

https://oreil.ly/i211Q

Validation checks. Verify that the password policy you set is now active:
aws iam get-account-password-policy

You should see output similar to:
{
 "PasswordPolicy": {
 "MinimumPasswordLength": 32,
 "RequireSymbols": true,
 "RequireNumbers": true,
 "RequireUppercaseCharacters": true,
 "RequireLowercaseCharacters": true,
 "AllowUsersToChangePassword": true,
 "ExpirePasswords": true,
 "MaxPasswordAge": 90,
 "PasswordReusePrevention": 1
 }
}

Try to create a new user by using the AWS CLI with a password that violates the pass‐
word policy. AWS will not allow you to create such a user:

aws iam create-user --user-name awscookbook103user2

Use Secrets Manager to generate a password that does not adhere to your password
policy:

RANDOM_STRING2=$(aws secretsmanager get-random-password \
--password-length 16 --require-each-included-type \
--output text \
--query RandomPassword)

Create a login profile for the user that specifies the password:
aws iam create-login-profile --user-name awscookbook103user2 \
--password $RANDOM_STRING2

This command should fail and you should see output similar to:
An error occurred (PasswordPolicyViolation) when calling the CreateLoginProfile
operation: Password should have a minimum length of 32

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
For users logging in with passwords, AWS allows administrators to enforce password
policies to their accounts that conform to the security requirements of your organiza‐
tion. This way, administrators can ensure that individual users don’t compromise the
security of the organization by choosing weak passwords or by not regularly chang‐
ing their passwords.

12 | Chapter 1: Security

https://github.com/AWSCookbook/Security

Multi-factor authentication is encouraged for IAM users. You can
use a software-based virtual MFA device or a hardware device for a
second factor on IAM users. AWS keeps an updated list of sup‐
ported devices.

Multi-factor authentication is a great way to add another layer of security on top of
existing password-based security. It combines “what you know” and “what you have”;
so, in cases where your password might be exposed to a malicious third-party actor,
they would still need the additional factor to authenticate.

Challenge
Download the credential report to analyze the IAM users and the password ages in
your account.

1.4 Testing IAM Policies with the IAM Policy Simulator
Problem
You have an IAM policy that you would like to put into use but would like to test its
effectiveness first.

Solution
Attach an IAM policy to an IAM role and simulate actions with the IAM Policy Simu‐
lator, as shown in Figure 1-6.

Figure 1-6. Simulating IAM policies attached to an IAM role

Steps

1. Create a file called assume-role-policy.json with the following content (file pro‐
vided in the repository):

1.4 Testing IAM Policies with the IAM Policy Simulator | 13

https://aws.amazon.com/iam/features/mfa
https://oreil.ly/GFTke

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role using the assume-role-policy.json file:
aws iam create-role --assume-role-policy-document \
 file://assume-role-policy.json --role-name AWSCookbook104IamRole

You should see output similar to the following:
{
 "Role": {
 "Path": "/",
 "RoleName": "AWSCookbook104IamRole",
 "RoleId": "<<UniqueID>>",
 "Arn": "arn:aws:iam::111111111111:role/AWSCookbook104IamRole",
 "CreateDate": "2021-09-22T23:37:44+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 ...

3. Attach the IAM managed policy for AmazonEC2ReadOnlyAccess to the IAM role:
aws iam attach-role-policy --role-name AWSCookbook104IamRole \
 --policy-arn arn:aws:iam::aws:policy/AmazonEC2ReadOnlyAccess

You can find a list of all the actions, resources, and condition keys
for EC2 in this AWS article. The IAM global condition context keys
are also useful in authoring fine-grained policies.

Validation checks. Simulate the effect of the IAM policy you are using, testing several
different types of actions on the EC2 service.

Test the ec2:CreateInternetGateway action:
aws iam simulate-principal-policy \
 --policy-source-arn arn:aws:iam::$AWS_ACCOUNT_ARN:role/AWSCookbook104IamRole \
 --action-names ec2:CreateInternetGateway

You should see output similar to the following (note the EvalDecision):
{
 "EvaluationResults": [

14 | Chapter 1: Security

https://oreil.ly/EjuR3
https://oreil.ly/IUVkw

 {
 "EvalActionName": "ec2:CreateInternetGateway",
 "EvalResourceName": "*",
 "EvalDecision": "implicitDeny",
 "MatchedStatements": [],
 "MissingContextValues": []
 }
]
}

Since you attached only the AWS managed AmazonEC2ReadOnlyAc
cess IAM policy to the role in this recipe, you will see an implicit
deny for the CreateInternetGateway action. This is expected
behavior. AmazonEC2ReadOnlyAccess does not grant any “create”
capabilities for the EC2 service.

Test the ec2:DescribeInstances action:
aws iam simulate-principal-policy \
 --policy-source-arn arn:aws:iam::$AWS_ACCOUNT_ARN:role/AWSCookbook104IamRole \
 --action-names ec2:DescribeInstances

You should see output similar to the following:
{
 "EvaluationResults": [
 {
 "EvalActionName": "ec2:DescribeInstances",
 "EvalResourceName": "*",
 "EvalDecision": "allowed",
 "MatchedStatements": [
 {
 "SourcePolicyId": "AmazonEC2ReadOnlyAccess",
 "SourcePolicyType": "IAM Policy",
 "StartPosition": {
 "Line": 3,
 "Column": 17
 },
 "EndPosition": {
 "Line": 8,
 "Column": 6
 }
 }
],
 "MissingContextValues": []
 }
]
}

The AmazonEC2ReadOnlyAccess policy allows read operations on
the EC2 service, so the DescribeInstances operation succeeds
when you simulate this action.

1.4 Testing IAM Policies with the IAM Policy Simulator | 15

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
IAM policies let you define permissions for managing access in AWS. Policies can be
attached to principals that allow you to grant (or deny) permissions to resources,
users, groups and services. It is always best to scope your policies to the minimal set
of permissions required as a security best practice. The IAM Policy Simulator can be
extremely helpful when designing and managing your own IAM policies for least-
privileged access.

The IAM Policy Simulator also exposes a web interface you can use to test and trou‐
bleshoot IAM policies and understand their net effect with the policy you define. You
can test all the policies or a subset of policies that you have attached to users, groups,
and roles.

The IAM Policy Simulator can help you simulate the effect of the
following:

• Identity-based policies

• IAM permissions boundaries

• AWS Organizations service control policies (SCPs)

• Resource-based policies

After you review the Policy Simulator results, you can add additional statements to
your policies that either solve your issue (from a troubleshooting standpoint) or
attach newly created policies to users, groups, and roles with the confidence that the
net effect of the policy was what you intended.

To help you easily build IAM policies from scratch, AWS provides
the AWS Policy Generator.

Challenge
Simulate the effect of a permissions boundary on an IAM principal (see Recipe 1.5).

16 | Chapter 1: Security

https://github.com/AWSCookbook/Security
https://oreil.ly/uy1uB
https://oreil.ly/9qscF
https://oreil.ly/Ny8HI

1.5 Delegating IAM Administrative Capabilities Using
Permissions Boundaries
Problem
You need to grant team members the ability to deploy Lambda functions and create
IAM roles for them. You need to limit the effective permissions of the IAM roles cre‐
ated so that they allow only actions needed by the function.

Solution
Create a permissions boundary policy, create an IAM role for Lambda developers,
create an IAM policy that specifies the boundary policy, and attach the policy to the
role you created. Figure 1-7 illustrates the effective permissions of the identity-based
policy with the permissions boundary.

Figure 1-7. Effective permissions of identity-based policy with permissions boundary

Prerequisite

• An IAM user or federated identity for your AWS account with administrative
privileges (follow the AWS guide for creating your first IAM admin user and user
group).

1.5 Delegating IAM Administrative Capabilities Using Permissions Boundaries | 17

https://oreil.ly/dtZ7X
https://oreil.ly/2MPmL
https://oreil.ly/2MPmL

Steps

1. Create a file named assume-role-policy-template.json with the following content
(file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "PRINCIPAL_ARN"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Retrieve the ARN for your user and set it as a variable:
PRINCIPAL_ARN=$(aws sts get-caller-identity --query Arn --output text)

3. Use the sed command to replace PRINCIPAL_ARN in the assume-role-policy-
template.json file that we provided in the repository and generate the assume-role-
policy.json file:

sed -e "s|PRINCIPAL_ARN|${PRINCIPAL_ARN}|g" \
assume-role-policy-template.json > assume-role-policy.json

For the purposes of this recipe, you set the allowed IAM prin‐
cipal to your own user (User 1). To test delegated access, you
would set the IAM principal to something else.

4. Create a role and specify the assume role policy file:
ROLE_ARN=$(aws iam create-role --role-name AWSCookbook105Role \
 --assume-role-policy-document file://assume-role-policy.json \
 --output text --query Role.Arn)

5. Create a permissions boundary JSON file named boundary-template.json with the
following content. This allows specific DynamoDB, S3, and CloudWatch Logs
actions (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateLogGroup",
 "Effect": "Allow",
 "Action": "logs:CreateLogGroup",
 "Resource": "arn:aws:logs:*:AWS_ACCOUNT_ID:*"
 },
 {
 "Sid": "CreateLogStreamandEvents",
 "Effect": "Allow",

18 | Chapter 1: Security

 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:AWS_ACCOUNT_ID:*"
 },
 {
 "Sid": "DynamoDBPermissions",
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem"
],
 "Resource": "arn:aws:dynamodb:*:AWS_ACCOUNT_ID:table/AWSCookbook*"
 },
 {
 "Sid": "S3Permissions",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::AWSCookbook*/*"
 }
]
}

6. Use the sed command to replace AWS_ACCOUNT_ID in the boundary-policy-
template.json file and generate the boundary-policy.json file:

sed -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 boundary-policy-template.json > boundary-policy.json

7. Create the permissions boundary policy by using the AWS CLI:
aws iam create-policy --policy-name AWSCookbook105PB \
 --policy-document file://boundary-policy.json

You should see output similar to the following:
{
 "Policy": {
 "PolicyName": "AWSCookbook105PB",
 "PolicyId": "EXAMPLE",
 "Arn": "arn:aws:iam::111111111111:policy/AWSCookbook105PB",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-09-24T00:36:53+00:00",
 "UpdateDate": "2021-09-24T00:36:53+00:00"
 }
}

1.5 Delegating IAM Administrative Capabilities Using Permissions Boundaries | 19

8. Create a policy file named policy-template.json for the role (file provided in the
repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {

 "Sid": "DenyPBDelete",
 "Effect": "Deny",
 "Action": "iam:DeleteRolePermissionsBoundary",
 "Resource": "*"
 },
 {

 "Sid": "IAMRead",
 "Effect": "Allow",
 "Action": [
 "iam:Get*",
 "iam:List*"
],
 "Resource": "*"
 },
 {

 "Sid": "IAMPolicies",
 "Effect": "Allow",
 "Action": [
 "iam:CreatePolicy",
 "iam:DeletePolicy",
 "iam:CreatePolicyVersion",
 "iam:DeletePolicyVersion",
 "iam:SetDefaultPolicyVersion"
],
 "Resource": "arn:aws:iam::AWS_ACCOUNT_ID:policy/AWSCookbook*"
 },
 {

 "Sid": "IAMRolesWithBoundary",
 "Effect": "Allow",
 "Action": [
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:PutRolePolicy",
 "iam:DeleteRolePolicy",
 "iam:AttachRolePolicy",
 "iam:DetachRolePolicy"
],
 "Resource": [
 "arn:aws:iam::AWS_ACCOUNT_ID:role/AWSCookbook*"
],
 "Condition": {
 "StringEquals": {
 "iam:PermissionsBoundary": "arn:aws:iam::AWS_ACCOUNT_ID:policy/
AWSCookbook105PB"
 }
 }
 },
 {

 "Sid": "ServerlessFullAccess",

20 | Chapter 1: Security

 "Effect": "Allow",
 "Action": [
 "lambda:*",
 "logs:*",
 "dynamodb:*",
 "s3:*"
],
 "Resource": "*"
 },
 {

 "Sid": "PassRole",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::AWS_ACCOUNT_ID:role/AWSCookbook*",
 "Condition": {
 "StringLikeIfExists": {
 "iam:PassedToService": "lambda.amazonaws.com"
 }
 }
 },
 {

 "Sid": "ProtectPB",
 "Effect": "Deny",
 "Action": [
 "iam:CreatePolicyVersion",
 "iam:DeletePolicy",
 "iam:DeletePolicyVersion",
 "iam:SetDefaultPolicyVersion"
],
 "Resource": [
 "arn:aws:iam::AWS_ACCOUNT_ID:policy/AWSCookbook105PB",
 "arn:aws:iam::AWS_ACCOUNT_ID:policy/AWSCookbook105Policy"
]
 }
]
}

This custom IAM policy has several statements working together, which define
certain permissions for the solution to the problem statement:

DenyPBDelete: Explicitly deny the ability to delete permissions boundaries
from roles.

IAMRead: Allow read-only IAM access to developers to ensure that the IAM
console works.

IAMPolicies: Allow the creation of IAM policies but force a naming conven‐
tion prefix AWSCookbook*.

IAMRolesWithBoundary: Allow the creation and deletion of IAM roles only if
they contain the permissions boundary referenced.

1.5 Delegating IAM Administrative Capabilities Using Permissions Boundaries | 21

ServerlessFullAccess: Allow developers to have full access to the AWS
Lambda, Amazon DynamoDB, Amazon CloudWatch logs, and Amazon S3
services.

PassRole: Allow developers to pass IAM roles to Lambda functions.

ProtectPB: Explicitly deny the ability to modify the permissions boundary
that bound the roles they create.

9. Use the sed command to replace AWS_ACCOUNT_ID in the policy-template.json file
and generate the policy.json file:

sed -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 policy-template.json > policy.json

10. Create the policy for developer access:
aws iam create-policy --policy-name AWSCookbook105Policy \
 --policy-document file://policy.json

You should see output similar to the following:
{
 "Policy": {
 "PolicyName": "AWSCookbook105Policy",
 "PolicyId": "EXAMPLE",
 "Arn": "arn:aws:iam::11111111111:policy/AWSCookbook105Policy",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-09-24T00:37:13+00:00",
 "UpdateDate": "2021-09-24T00:37:13+00:00"
 }
}

11. Attach the policy to the role you created in step 2:
aws iam attach-role-policy --policy-arn \
 arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook105Policy \
 --role-name AWSCookbook105Role

Validation checks. Assume the role you created and set the output to local variables
for the AWS CLI:

creds=$(aws --output text sts assume-role --role-arn $ROLE_ARN \
 --role-session-name "AWSCookbook105" | \
 grep CREDENTIALS | cut -d " " -f2,4,5)
export AWS_ACCESS_KEY_ID=$(echo $creds | cut -d " " -f2)
export AWS_SECRET_ACCESS_KEY=$(echo $creds | cut -d " " -f4)
export AWS_SESSION_TOKEN=$(echo $creds | cut -d " " -f5)

22 | Chapter 1: Security

Try to create an IAM role for a Lambda function, create an assume role policy for the
Lambda service (lambda-assume-role-policy.json):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Create the role, specifying the permissions boundary, which conforms to the role-
naming standard specified in the policy:

TEST_ROLE_1=$(aws iam create-role --role-name AWSCookbook105test1 \
 --assume-role-policy-document \
 file://lambda-assume-role-policy.json \
 --permissions-boundary \
 arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook105PB \
 --output text --query Role.Arn)

Attach the managed AmazonDynamoDBFullAccess policy to the role:
aws iam attach-role-policy --role-name AWSCookbook105test1 \
--policy-arn arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess

Attach the managed CloudWatchFullAccess policy to the role:
aws iam attach-role-policy --role-name AWSCookbook105test1 \
--policy-arn arn:aws:iam::aws:policy/CloudWatchFullAccess

Even though you attached AmazonDynamoDBFullAccess and Cloud
WatchFullAccess to the role, the effective permissions of the role
are limited by the statements in the permissions boundary you cre‐
ated in step 3. Furthermore, even though you have s3:GetObject
and s3:PutObject defined in the boundary, you have not defined
these in the role policy, so the function will not be able to make
these calls until you create a policy that allows these actions. When
you attach this role to a Lambda function, the Lambda function
can perform only the actions allowed in the intersection of the per‐
missions boundary and the role policy (see Figure 1-7).

You can now create a Lambda function specifying this role (AWSCookbook105test1)
as the execution role to validate the DynamoDB and CloudWatch Logs permissions
granted to the function. You can also test the results with the IAM Policy Simulator.

1.5 Delegating IAM Administrative Capabilities Using Permissions Boundaries | 23

You used an AssumeRole and set environment variables to override your local termi‐
nal AWS profile to perform these validation checks. To ensure that you revert back to
your original authenticated session on the command line, perform the perform the
cleanup steps provided at the top of the README file in the repository.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Be sure to delete your environment variables so that you can regain
permissions needed for future recipes:

unset AWS_ACCESS_KEY_ID
unset AWS_SECRET_ACCESS_KEY
unset AWS_SESSION_TOKEN

Discussion
In your quest to implement a least privilege access model for users and applications
within AWS, you need to enable developers to create IAM roles that their applications
can assume when they need to interact with other AWS services. For example, an
AWS Lambda function that needs to access an Amazon DynamoDB table would need
a role created to be able to perform operations against the table. As your team scales,
instead of your team members coming to you every time they need a role created for
a specific purpose, you can enable (but control) them with permissions boundaries,
without giving up too much IAM access. The iam:PermissionsBoundary condition
in the policy that grants the iam:CreateRole ensures that the roles created must
always include the permissions boundary attached.

Permissions boundaries act as a guardrail and limit privilege escalation. In other
words, they limit the maximum effective permissions of an IAM principal created by
a delegated administrator by defining what the roles created can do. As shown in
Figure 1-7, they work in conjunction with the permissions policy (IAM policy) that is
attached to an IAM principal (IAM user or role). This prevents the need to grant wide
access to an administrator role, prevents privilege escalation, and helps you achieve
least privilege access by allowing your team members to quickly iterate and create
their own least-privileged roles for their applications.

In this recipe, you may have noticed that we used a naming convention of AWSCook
book* on the roles and policies referenced in the permissions boundary policy, which
ensures the delegated principals can create roles and policies within this convention.
This means that developers can create resources, pass only these roles to services, and
also keep a standard naming convention. This is an ideal practice when implementing
permissions boundaries. You can develop a naming convention for different teams,

24 | Chapter 1: Security

https://github.com/AWSCookbook/Security

applications, and services so that these can all coexist within the same account, yet
have different boundaries applied to them based on their requirements, if necessary.

At minimum, you need to keep these four things in mind when building roles that
implement permissions boundary guardrails to delegate IAM permissions to nonad‐
ministrators:

1. Allow the creation of IAM customer managed policies: your users can create any
policy they wish; they do not have an effect until they are attached to an IAM
principal.

2. Allow IAM role creation with a condition that a permissions boundary must be
attached: force all roles created by your team members to include the permission
boundary in the role creation.

3. Allow attachment of policies, but only to roles that have a permissions boundary:
do not let users modify existing roles that they may have access to.

4. Allow iam:PassRole to AWS services that your users create roles for: your devel‐
opers may need to create roles for Amazon EC2 and AWS Lambda, so give them
the ability to pass only the roles they create to those services you define.

Permissions boundaries are a powerful, advanced IAM concept
that can be challenging to understand. We recommend checking
out the talk by Brigid Johnson at AWS re:Inforce 2018 to see some
real-world examples of IAM policies, roles, and permissions
boundaries explained in a practical way.

Challenge
Extend the permissions boundary to allow roles created to publish to an SQS queue
and SNS topic and adjust the policy for the role as well.

1.6 Connecting to EC2 Instances Using AWS SSM
Session Manager
Problem
You have an EC2 instance in a private subnet and need to connect to the instance
without using SSH over the internet.

Solution
Create an IAM role, attach the AmazonSSMManagedInstanceCore policy, create an EC2
instance profile, attach the IAM role you created to the instance profile, associate the

1.6 Connecting to EC2 Instances Using AWS SSM Session Manager | 25

https://oreil.ly/0Smmq

EC2 instance profile to an EC2 instance, and finally, run the aws ssm start-session
command to connect to the instance. A logical flow of these steps is shown in
Figure 1-8.

Figure 1-8. Using Session Manager to connect to an EC2 instance

Prerequisites

• Amazon Virtual Private Cloud (VPC) with isolated or private subnets and associ‐
ated route tables

• Required VPC endpoints for AWS Systems Manager
• AWS CLI v2 with the Session Manager plugin installed

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a file named assume-role-policy.json with the following content (file pro‐
vided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

26 | Chapter 1: Security

https://oreil.ly/qyNJR
https://oreil.ly/ejccM
https://github.com/AWSCookbook/Security

2. Create an IAM role with the statement in the provided assume-role-policy.json file
using this command:

ROLE_ARN=$(aws iam create-role --role-name AWSCookbook106SSMRole \
 --assume-role-policy-document file://assume-role-policy.json \
 --output text --query Role.Arn)

3. Attach the AmazonSSMManagedInstanceCore managed policy to the role so that
the role allows access to AWS Systems Manager:

aws iam attach-role-policy --role-name AWSCookbook106SSMRole \
 --policy-arn arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore

4. Create an instance profile:
aws iam create-instance-profile \
 --instance-profile-name AWSCookbook106InstanceProfile

You should see output similar to the following:
{
 "InstanceProfile": {
 "Path": "/",
 "InstanceProfileName": "AWSCookbook106InstanceProfile",
 "InstanceProfileId": "(RandomString",
 "Arn": "arn:aws:iam::111111111111:instance-profile/
AWSCookbook106InstanceProfile",
 "CreateDate": "2021-11-28T20:26:23+00:00",
 "Roles": []
 }
}

5. Add the role that you created to the instance profile:
aws iam add-role-to-instance-profile \
 --role-name AWSCookbook106SSMRole \
 --instance-profile-name AWSCookbook106InstanceProfile

The EC2 instance profile contains a role that you create. The
instance profile association with an instance allows it to define
“who I am,” and the role defines “what I am permitted to do.”
Both are required by IAM to allow an EC2 instance to com‐
municate with other AWS services using the IAM service. You
can get a list of instance profiles in your account by running
the aws iam list-instance-profiles AWS CLI command.

6. Query SSM for the latest Amazon Linux 2 AMI ID available in your Region and
save it as an environment variable:

AMI_ID=$(aws ssm get-parameters --names \
 /aws/service/ami-amazon-linux-latest/amzn2-ami-hvm-x86_64-gp2 \
 --query 'Parameters[0].[Value]' --output text)

1.6 Connecting to EC2 Instances Using AWS SSM Session Manager | 27

7. Launch an instance in one of your subnets that references the instance profile
you created and also uses a Name tag that helps you identify the instance in the
console:

INSTANCE_ID=$(aws ec2 run-instances --image-id $AMI_ID \
 --count 1 \
 --instance-type t3.nano \
 --iam-instance-profile Name=AWSCookbook106InstanceProfile \
 --subnet-id $SUBNET_1 \
 --security-group-ids $INSTANCE_SG \
 --metadata-options \
HttpTokens=required,HttpPutResponseHopLimit=64,HttpEndpoint=enabled \
 --tag-specifications \
 'ResourceType=instance,Tags=[{Key=Name,Value=AWSCookbook106}]' \
 'ResourceType=volume,Tags=[{Key=Name,Value=AWSCookbook106}]' \
 --query Instances[0].InstanceId \
 --output text)

EC2 instance metadata is a feature you can use within your
EC2 instance to access information about your EC2 instance
over an HTTP endpoint from the instance itself. This is help‐
ful for scripting and automation via user data. You should
always use the latest version of instance metadata. In step 7,
you did this by specifying the --metadata-options flag and
providing the HttpTokens=required option that forces
IMDSv2.

Validation checks. Ensure your EC2 instance has registered with SSM. Use the follow‐
ing command to check the status. This command should return the instance ID:

aws ssm describe-instance-information \
 --filters Key=ResourceType,Values=EC2Instance \
 --query "InstanceInformationList[].InstanceId" --output text

Connect to the EC2 instance by using SSM Session Manager:
aws ssm start-session --target $INSTANCE_ID

You should now be connected to your instance and see a bash prompt. From the bash
prompt, run a command to validate you are connected to your EC2 instance by
querying the metadata service for an IMDSv2 token and using the token to query
metadata for the instance profile associated with the instance:

TOKEN=`curl -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-
token-ttl-seconds: 21600"`
curl -H "X-aws-ec2-metadata-token: $TOKEN" http://169.254.169.254/latest/meta-
data/iam/info

You should see output similar to the following:

28 | Chapter 1: Security

https://oreil.ly/DtodI
https://oreil.ly/IMqFC
https://oreil.ly/KGC4n

{
 "Code" : "Success",
 "LastUpdated" : "2021-09-23T16:03:25Z",
 "InstanceProfileArn" : "arn:aws:iam::111111111111:instance-profile/
AWSCookbook106InstanceProfile",
 "InstanceProfileId" : "AIPAZVTINAMEXAMPLE"
}

Exit the Session Manager session:
exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When you use AWS SSM Session Manager to connect to EC2 instances, you elimi‐
nate your dependency on Secure Shell (SSH) over the internet for command-line
access to your instances. Once you configure Session Manager for your instances, you
can instantly connect to a bash shell session on Linux or a PowerShell session for
Windows systems.

SSM can log all commands and their output during a session. You
can set a preference to stop the logging of sensitive data (e.g., pass‐
words) with this command:

stty -echo; read passwd; stty echo;

There is more information in an AWS article about logging session
activity.

Session Manager works by communicating with the AWS Systems Manager (SSM)
API endpoints within the AWS Region you are using over HTTPS (TCP port 443).
The agent on your instance registers with the SSM service at boot time. No inbound
security group rules are needed for Session Manager functionality. We recommend
configuring VPC Endpoints for Session Manager to avoid the need for internet traffic
and the cost of Network Address Translation (NAT) gateways.

Here are some examples of the increased security posture Session Manager provides:

• No internet-facing TCP ports need to be allowed in security groups associated
with instances.

• You can run instances in private (or isolated) subnets without exposing them
directly to the internet and still access them for management duties.

• There is no need to create, associate, and manage SSH keys with instances.

1.6 Connecting to EC2 Instances Using AWS SSM Session Manager | 29

https://github.com/AWSCookbook/Security
https://oreil.ly/QJcHr
https://oreil.ly/vNEZQ

• There is no need to manage user accounts and passwords on instances.
• You can delegate access to manage EC2 instances using IAM roles.

Any tool like SSM that provides such powerful capabilities must be
carefully audited. AWS provides information about locking down
permissions for the SSM user, and more information about audit‐
ing session activity.

Challenge

View the logs for a session and create an alert whenever the rm command is executed.

1.7 Encrypting EBS Volumes Using KMS Keys
Problem
You need an encryption key for encrypting EBS volumes attached to your EC2
instances in a Region, and you need to rotate the key automatically every 365 days.

Solution
Create a customer-managed KMS key (CMK), enable yearly rotation of the key,
enable EC2 default encryption for EBS volumes in a Region, and specify the KMS key
you created (shown in Figure 1-9).

Figure 1-9. Create a customer-managed key, enable rotation, and set default encryption
for EC2 using a customer-managed key

Steps

1. Create a customer-managed KMS key and store the key ARN as a local variable:
KMS_KEY_ID=$(aws kms create-key --description "AWSCookbook107Key" \
 --output text --query KeyMetadata.KeyId)

2. Create a key alias to help you refer to the key in other steps:
aws kms create-alias --alias-name alias/AWSCookbook107Key \
 --target-key-id $KMS_KEY_ID

3. Enable automated rotation of the symmetric key material every 365 days:

30 | Chapter 1: Security

https://oreil.ly/EQyPf
https://oreil.ly/EQyPf
https://oreil.ly/aHzbf
https://oreil.ly/aHzbf

aws kms enable-key-rotation --key-id $KMS_KEY_ID

4. Enable EBS encryption by default for the EC2 service within your current
Region:

aws ec2 enable-ebs-encryption-by-default

You should see output similar to the following:
{
 "EbsEncryptionByDefault": true
}

5. Update the default KMS key used for default EBS encryption to your customer-
managed key that you created in step 1:

aws ec2 modify-ebs-default-kms-key-id \
 --kms-key-id alias/AWSCookbook107Key

You should see output similar to the following:
{
 "KmsKeyId": "arn:aws:kms:us-east-1:111111111111:key/1111111-aaaa-
bbbb-222222222"
}

Validation checks. Use the AWS CLI to retrieve the default EBS encryption status for
the EC2 service:

aws ec2 get-ebs-encryption-by-default

You should see output similar to the following:
{
 "EbsEncryptionByDefault": true
}

Retrieve the KMS key ID used for default encryption:
aws ec2 get-ebs-default-kms-key-id

You should see output similar to the following:
{
 "KmsKeyId": "arn:aws:kms:us-east-1:1111111111:key/1111111-aaaa-3333-222222222c64b"
}

Check the automatic rotation status of the key you created:
aws kms get-key-rotation-status --key-id $KMS_KEY_ID

You should see output similar to the following:
{
 "KeyRotationEnabled": true
}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

1.7 Encrypting EBS Volumes Using KMS Keys | 31

https://github.com/AWSCookbook/Security

Discussion
When you are faced with the challenge of ensuring that all of your newly created EBS
volumes are encrypted, the ebs-encryption-by-default option comes to the rescue.
With this setting enabled, every EC2 instance you launch will by default have its EBS
volumes encrypted with the specified KMS key. If you do not specify a KMS key, a
default AWS-managed aws/ebs KMS key is created and used. If you need to manage
the lifecycle of the key or have a requirement specifying that you or your organization
must manage the key, customer-managed keys should be used.

Automatic key rotation on the KMS service simplifies your approach to key rotation
and key lifecycle management.

KMS is a flexible service you can use to implement a variety of data encryption strate‐
gies. It supports key policies that you can use to control who has access to the key.
These key policies layer on top of your existing IAM policy strategy for added secu‐
rity. You can use KMS keys to encrypt many different types of data at rest within your
AWS account, for example:

• Amazon S3
• Amazon EC2 EBS volumes
• Amazon RDS databases and clusters
• Amazon DynamoDB tables
• Amazon EFS volumes
• Amazon FSx file shares
• And many more

Challenge 1
Change the key policy on the KMS key to allow access to only your IAM principal
and the EC2 service.

Challenge 2

Create an EBS volume and verify that it is encrypted by using the aws ec2

describe-volumes command.

32 | Chapter 1: Security

https://oreil.ly/ofr4y
https://oreil.ly/UyOQA

1.8 Storing, Encrypting, and Accessing Passwords Using
Secrets Manager
Problem
You need to give your EC2 instance the ability to securely store and retrieve a data‐
base password for your application.

Solution
Create a password, store the password in Secrets Manager, create an IAM Policy with
access to the secret, and grant an EC2 instance profile access to the secret, as shown
in Figure 1-10.

Figure 1-10. Create a secret and retrieve it via the EC2 instance

Prerequisites

• VPC with isolated subnets and associated route tables.
• EC2 instance deployed. You will need the ability to connect to this for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a secret using the AWS CLI:
RANDOM_STRING=$(aws secretsmanager get-random-password \
 --password-length 32 --require-each-included-type \
 --output text \
 --query RandomPassword)

2. Store it as a new secret in Secrets Manager:
SECRET_ARN=$(aws secretsmanager \
 create-secret --name AWSCookbook108/Secret1 \
 --description "AWSCookbook108 Secret 1" \
 --secret-string $RANDOM_STRING \

1.8 Storing, Encrypting, and Accessing Passwords Using Secrets Manager | 33

 --output text \
 --query ARN)

3. Create a file called secret-access-policy-template.json that references the secret you
created. (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds"
],
 "Resource": [
 "SECRET_ARN"
]
 },
 {
 "Effect": "Allow",
 "Action": "secretsmanager:ListSecrets",
 "Resource": "*"
 }
]
}

4. Use the sed command to replace SECRET_ARN in the secret-access-policy-
template.json file and generate the secret-access-policy.json file:

sed -e "s|SECRET_ARN|$SECRET_ARN|g" \
 secret-access-policy-template.json > secret-access-policy.json

5. Create the IAM policy for secret access:
aws iam create-policy --policy-name AWSCookbook108SecretAccess \
 --policy-document file://secret-access-policy.json

You should see output similar to the following:
{
 "Policy": {
 "PolicyName": "AWSCookbook108SecretAccess",
 "PolicyId": "(Random String)",
 "Arn": "arn:aws:iam::1111111111:policy/AWSCookbook108SecretAccess",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-11-28T21:25:23+00:00",
 "UpdateDate": "2021-11-28T21:25:23+00:00"
 }
}

34 | Chapter 1: Security

6. Grant an EC2 instance ability to access the secret by adding the IAM policy you
created to the EC2 instance profile’s currently attached IAM role:

aws iam attach-role-policy --policy-arn \
 arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook108SecretAccess \
 --role-name $ROLE_NAME

Validation checks. Connect to the EC2 instance:
aws ssm start-session --target $INSTANCE_ID

Set and export your default region:
export AWS_DEFAULT_REGION=us-east-1

Retrieve the secret from Secrets Manager from the EC2:
aws secretsmanager get-secret-value --secret-id AWSCookbook108/Secret1

You should see output similar to the following:
{
 "Name": "AWSCookbook108/Secret1",
 "VersionId": "<string>",
 "SecretString": "<secret value>",
 "VersionStages": [
 "AWSCURRENT"
],
 "CreatedDate": 1638221015.646,
 "ARN": "arn:aws:secretsmanager:us-east-1:111111111111:secret:AWSCookbook108/
Secret1-<suffix>"
}</suffix>

Exit the Session Manager session:
exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Securely creating, storing, and managing the lifecycle of secrets, like API keys and
database passwords, is a fundamental component to a strong security posture in the
cloud. You can use Secrets Manager to implement a secrets management strategy that
supports your security strategy. You can control who has access to what secrets using
IAM policies to ensure the secrets you manage are accessible by only the necessary
security principals.

Since your EC2 instance uses an instance profile, you do not need to store any hard-
coded credentials on the instance in order for it to access the secret. The access is
granted via the IAM policy attached to the instance profile. Each time you (or your
application) access the secret from the EC2 instance, temporary session credentials

1.8 Storing, Encrypting, and Accessing Passwords Using Secrets Manager | 35

https://github.com/AWSCookbook/Security

are obtained from the STS service to allow the get-secret-value API call to retrieve
the secret. The AWS CLI automates this process of token retrieval when an EC2
instance profile is attached to your instance. You can also use the AWS SDK within
your applications to achieve this functionality.

Some additional benefits to using Secrets Manager include the following:

• Encrypting secrets with KMS keys that you create and manage
• Auditing access to secrets through CloudTrail
• Automating secret rotation using Lambda
• Granting access to other users, roles, and services like EC2 and Lambda
• Replicating secrets to another Region for high availability and disaster recovery

purposes

Challenge
Configure a Lambda function to access the secret securely with an IAM role.

1.9 Blocking Public Access for an S3 Bucket
Problem
You have been alerted by your organization’s security team that an S3 bucket has been
incorrectly configured and you need to block public access to it.

Solution
Apply the Amazon S3 Block Public Access feature to your bucket, and then check the
status with the Access Analyzer (see Figure 1-11).

AWS provides information on what is considered “public” in an
article on S3 storage.

36 | Chapter 1: Security

https://oreil.ly/h6Ozf

Figure 1-11. Blocking public access to an S3 bucket

Prerequisite

• S3 bucket with publicly available object(s)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create an Access Analyzer to use for validation of access:
ANALYZER_ARN=$(aws accessanalyzer create-analyzer \
 --analyzer-name awscookbook109\
 --type ACCOUNT \
 --output text --query arn)

2. Perform a scan of your S3 bucket with the Access Analyzer:
aws accessanalyzer start-resource-scan \
 --analyzer-arn $ANALYZER_ARN \
 --resource-arn arn:aws:s3:::awscookbook109-$RANDOM_STRING

3. Get the results of the Access Analyzer scan (it may take about 30 seconds for the
scan results to become available):

aws accessanalyzer get-analyzed-resource \
 --analyzer-arn $ANALYZER_ARN \
 --resource-arn arn:aws:s3:::awscookbook109-$RANDOM_STRING

You should see output similar to the following (note the isPublic value):
{
 "resource": {
 "actions": [
 "s3:GetObject",

1.9 Blocking Public Access for an S3 Bucket | 37

https://github.com/AWSCookbook/Security

 "s3:GetObjectVersion"
],
 "analyzedAt": "2021-06-26T17:42:00.861000+00:00",
 "createdAt": "2021-06-26T17:42:00.861000+00:00",
 "isPublic": true,
 "resourceArn": "arn:aws:s3:::awscookbook109-<<string>>",
 "resourceOwnerAccount": "111111111111",
 "resourceType": "AWS::S3::Bucket",
 "sharedVia": [
 "POLICY"
],
 "status": "ACTIVE",
 "updatedAt": "2021-06-26T17:42:00.861000+00:00"
 }
}

4. Set the public access block for your bucket:
aws s3api put-public-access-block \
 --bucket awscookbook109-$RANDOM_STRING \
 --public-access-block-configuration \
"BlockPublicAcls=true,IgnorePublicAcls=true,BlockPublicPolicy=true,RestrictPublic
Buckets=true"

See the AWS article on the available PublicAccessBlock con‐
figuration properties.

Validation checks. Perform a scan of your S3 bucket:
aws accessanalyzer start-resource-scan \
 --analyzer-arn $ANALYZER_ARN \
 --resource-arn arn:aws:s3:::awscookbook109-$RANDOM_STRING

Get the results of the Access Analyzer scan:
aws accessanalyzer get-analyzed-resource \
 --analyzer-arn $ANALYZER_ARN \
 --resource-arn arn:aws:s3:::awscookbook109-$RANDOM_STRING

You should see output similar to the following:
{
 "resource": {
 "analyzedAt": "2021-06-26T17:46:24.906000+00:00",
 "isPublic": false,
 "resourceArn": "arn:aws:s3:::awscookbook109-<<string>>",
 "resourceOwnerAccount": "111111111111",
 "resourceType": "AWS::S3::Bucket"
 }
}

38 | Chapter 1: Security

https://oreil.ly/3jRmO

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
One of the best things you can do to ensure data security in your AWS account is to
always make certain that you apply the right security controls to your data. If you
mark an object as public in your S3 bucket, it is accessible to anyone on the internet,
since S3 serves objects using HTTP. One of the most common security misconfigura‐
tions that users make in the cloud is marking object(s) as public when that is not
intended or required. To protect against misconfiguration of S3 objects, enabling
BlockPublicAccess for your buckets is a great thing to do from a security
standpoint.

You can also set public block settings at your account level, which
would include all S3 buckets in your account:

aws s3control put-public-access-block \
 --public-access-block-configuration \

BlockPublicAcls=true,IgnorePublicAcls=true,BlockPublicPolicy
=true,RestrictPublicBuckets=true \
 --account-id $AWS_ACCOUNT_ID

You can serve S3 content to internet users via HTTP and HTTPS while keeping your
bucket private. Content delivery networking (CDN), like Amazon CloudFront, pro‐
vides more secure, efficient, and cost-effective ways to achieve global static website
hosting and still use S3 as your object source. To see an example of a CloudFront con‐
figuration that serves static content from an S3 bucket, see Recipe 1.10.

Challenge
Deploy a VPC endpoint for S3 within your VPC and create a bucket policy to restrict
access to your S3 bucket through this endpoint only.

1.10 Serving Web Content Securely from S3
with CloudFront
Problem
You have nonpublic web content in S3 and want to configure CloudFront to serve the
content.

1.10 Serving Web Content Securely from S3 with CloudFront | 39

https://github.com/AWSCookbook/Security

Solution
Create a CloudFront distribution and set the origin to your S3 bucket. Then config‐
ure an origin access identity (OAI) to require the bucket to be accessible only from
CloudFront (see Figure 1-12).

Figure 1-12. CloudFront and S3

Prerequisite

• S3 bucket with static web content

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a CloudFront OAI to reference in an S3 bucket policy:
OAI=$(aws cloudfront create-cloud-front-origin-access-identity \
 --cloud-front-origin-access-identity-config \
 CallerReference="awscookbook",Comment="AWSCookbook OAI" \
 --query CloudFrontOriginAccessIdentity.Id --output text)

2. Use the sed command to replace the values in the distribution-config-
template.json file with your CloudFront OAI and S3 bucket name:

sed -e "s/CLOUDFRONT_OAI/${OAI}/g" \
 -e "s|S3_BUCKET_NAME|awscookbook110-$RANDOM_STRING|g" \
 distribution-template.json > distribution.json

3. Create a CloudFront distribution that uses the distribution configuration JSON
file you just created:

DISTRIBUTION_ID=$(aws cloudfront create-distribution \
 --distribution-config file://distribution.json \
 --query Distribution.Id --output text)

4. The distribution will take a few minutes to create; use this command to check the
status. Wait until the status reaches “Deployed”:

aws cloudfront get-distribution --id $DISTRIBUTION_ID \
 --output text --query Distribution.Status

40 | Chapter 1: Security

https://github.com/AWSCookbook/Security

5. Configure the S3 bucket policy to allow only requests from CloudFront by using
a bucket policy like this (we have provided bucket-policy-template.json in the
repository):

{
 "Version": "2012-10-17",
 "Id": "PolicyForCloudFrontPrivateContent",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::cloudfront:user/CloudFront Origin Access Identity
CLOUDFRONT_OAI"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::S3_BUCKET_NAME/*"
 }
]
}

6. Use the sed command to replace the values in the bucket-policy-template.json file
with the CloudFront OAI and S3 bucket name:

sed -e "s/CLOUDFRONT_OAI/${OAI}/g" \
 -e "s|S3_BUCKET_NAME|awscookbook110-$RANDOM_STRING|g" \
 bucket-policy-template.json > bucket-policy.json

7. Apply the bucket policy to the S3 bucket with your static web content:
aws s3api put-bucket-policy --bucket awscookbook110-$RANDOM_STRING \
 --policy file://bucket-policy.json

8. Get the DOMAIN_NAME of the distribution you created:
DOMAIN_NAME=$(aws cloudfront get-distribution --id $DISTRIBUTION_ID \
 --query Distribution.DomainName --output text)

Validation checks. Try to access the S3 bucket directly using HTTPS to verify that the
bucket does not serve content directly:

curl https://awscookbook110-$RANDOM_STRING.s3.$AWS_REGION.amazonaws.com/index.html

You should see output similar to the following:
$ curl https://awscookbook110-$RANDOM_STRING.s3.$AWS_REGION.amazonaws.com/index.html
<?xml version="1.0" encoding="UTF-8"?>
<Error><Code>AccessDenied</Code><Message>Access
Denied</Message><RequestId>0AKQD0EFJC9ZHPCC</
RequestId><HostId>gfld4qKp9A93G8ee7VPBFrXBZV1HE3jiOb3bNB54fP
EPTihit/OyFh7hF2Nu4+Muv6JEc0ebLL4=</HostId></Error>
110-Optimizing-S3-with-CloudFront:$

Use curl to observe that your index.html file is served from the private S3 bucket
through CloudFront:

curl $DOMAIN_NAME

1.10 Serving Web Content Securely from S3 with CloudFront | 41

You should see output similar to the following:
$ curl $DOMAIN_NAME
AWSCookbook
$

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
This configuration allows you to keep the S3 bucket private and allows only the
CloudFront distribution to be able to access objects in the bucket. You created an
origin access identity and defined a bucket policy to allow only CloudFront access to
your S3 content. This gives you a solid foundation to keep your S3 buckets secure
with the additional protection of the CloudFront global CDN.

The protection that a CDN gives from a distributed-denial-of-service (DDoS) attack
is worth noting, as the end user requests to your content are directed to a point of
presence on the CloudFront network with the lowest latency. This also protects you
from the costs of having a DDoS attack against static content hosted in an S3 bucket,
as it is generally less expensive to serve requests out of CloudFront rather than S3
directly.

By default, CloudFront comes with an HTTPS certificate on the default hostname for
your distribution that you use to secure traffic. With CloudFront, you can associate
your own custom domain name, attach a custom certificate from Amazon Certificate
Manager (ACM), redirect to HTTPS from HTTP, force HTTPS, customize cache
behavior, invoke Lambda functions (Lambda @Edge), and more.

Challenge
Add a geo restriction to your CloudFront distribution.

42 | Chapter 1: Security

https://github.com/AWSCookbook/Security
https://oreil.ly/aABzJ
https://oreil.ly/mtHSB
https://oreil.ly/FMGj0

CHAPTER 2

Networking

2.0 Introduction
Many exciting topics, like computer vision, Internet of Things (IoT), and AI-enabled
chat bots, dominate headlines. This causes traditional core technologies to be forgot‐
ten. While it’s great to have many new capabilities at your fingertips, it is important to
realize that these technologies would not be possible without a strong foundation of
reliable and secure connectivity. Data processing is useful only if the results are relia‐
bly delivered and accessible over a network. Containers are a fantastic application
deployment method, but they provide the best experience for users when they are
networked together.

Networking services and features within AWS are the backbone to almost all of the
big services we cover in this book. AWS has many great features for you to connect
what you want, where you want, and how you want. Gaining a better understanding
of networking will allow you to have a better grasp of the cloud and therefore to be
more comfortable using it.

Keeping up with new networking innovations at AWS requires
continuous learning. Each year at AWS re:Invent, many network
services, features, and approaches are discussed.
Two suggested viewings of great networking talks from AWS
re:Invent are Eric Brandwine’s “Another Day, Another Billion Pack‐
ets” from 2015 and the annual “From One to Many: Evolving VPC
Design” from 2019.

43

https://reinvent.awsevents.com
https://oreil.ly/oB1BN
https://oreil.ly/oB1BN
https://oreil.ly/leKi9
https://oreil.ly/leKi9

In this chapter, you will learn about essential cloud networking services and features.
We will focus only on recipes that are realistic for you to accomplish in your personal
account. Some advanced operations (e.g., AWS Direct Connect setup) are too depen‐
dent on external factors, so we left them out in order to focus on more easily accessi‐
ble recipes and outcomes. While some recipes in this chapter may seem simple or
short, they allow us to discuss important topics and concepts that are crucial to get
right.

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” on page xvii to validate
your configuration and set up the required environment variables. Then, clone the
chapter code repository:

git clone https://github.com/AWSCookbook/Networking

2.1 Defining Your Private Virtual Network in the Cloud by
Creating an Amazon VPC
Problem
You need a network foundation to host cloud resources.

Solution
You will create an Amazon Virtual Private Cloud (VPC) and configure a Classless
Inter-Domain Routing (CIDR) block for it, as shown in Figure 2-1.

Figure 2-1. VPC deployed in a Region

44 | Chapter 2: Networking

https://oreil.ly/2GrP7
https://oreil.ly/2GrP7

Steps

1. Create a VPC with an IPv4 CIDR block. We will use 10.10.0.0/16 as the address
range, but you can modify it based on your needs:

VPC_ID=$(aws ec2 create-vpc --cidr-block 10.10.0.0/16 \
 --tag-specifications
'ResourceType=vpc,Tags=[{Key=Name,Value=AWSCookbook201}]' \
 --output text --query Vpc.VpcId)

When you are creating a VPC, the documentation states that
the largest block size for VPC IPv4 CIDRs is a /16 netmask
(65,536 IP addresses). The smallest is a /28 netmask (16 IP
addresses).

Validation checks. Use this command to verify that the VPC’s state is available:
aws ec2 describe-vpcs --vpc-ids $VPC_ID

You should see output similar to the following:
{
 "Vpcs": [
 {
 "CidrBlock": "10.10.0.0/16",
 "DhcpOptionsId": "dopt-<<snip>>",
 "State": "available",
 "VpcId": "vpc-<<snip>>",
 "OwnerId": "111111111111",
 "InstanceTenancy": "default",
 "CidrBlockAssociationSet": [
 {
 "AssociationId": "vpc-cidr-assoc-<<snip>>",
 "CidrBlock": "10.10.0.0/16",
 "CidrBlockState": {
 "State": "associated"
 }
 }
],
 "IsDefault": false,
<<snip>>
...

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

2.1 Defining Your Private Virtual Network in the Cloud by Creating an Amazon VPC | 45

https://oreil.ly/uIfsH
https://oreil.ly/M0D9Y
https://github.com/AWSCookbook/Networking

Discussion

Here are two important reasons for carefully selecting CIDR
block(s) for your VPC:

• Once a CIDR block is associated with a VPC, it can’t be modi‐
fied (although it can be extended). If you wish to modify a
CIDR block, it (and all resources within it) will need to be
deleted and re-created.

• If a VPC is connected to other networks by peering (see
Recipe 2.11) or gateways (e.g., Transit and VPN), having over‐
lapping IP ranges will cause unwanted problems.

You can add IPv4 space to the VPC by using the aws ec2 associate-vpc-cidr-
block command to specify the additional IPv4 space. When IP space becomes scarce
from usage and under-provisioning, it’s good to know that you don’t need to dedicate
a large block to a VPC, especially if you aren’t sure if all of it will be utilized.

Here is an example of associating an additional IPv4 CIDR block to your VPC:
aws ec2 associate-vpc-cidr-block \
 --cidr-block 10.11.0.0/16 \
 --vpc-id $VPC_ID

In addition to IPv4, VPC also supports IPv6. You can configure an
Amazon-provided IPv6 CIDR block by specifying the --amazon-
provided-ipv6-cidr-block option. Here is an example of creating
a VPC with an IPv6 CIDR block:

aws ec2 create-vpc --cidr-block 10.10.0.0/16 \
 --amazon-provided-ipv6-cidr-block \
 --tag-specifications
'ResourceType=vpc,Tags=[{Key=Name,Value=AWSCookbook201-IPv6}]'

A VPC is a Regional construct in AWS. A Region is a geographical area, and Availa‐
bility Zones are physical data centers that reside within a Region. Regions span all
Availability Zones (AZs), which are groups of isolated physical data centers. The
number of AZs per Region varies, but all Regions have at least three. For the most up-
to-date information about AWS Regions and AZs, see this article on “Regions and
Availability Zones”.

Per the VPC user guide, the initial quota of IPv4 CIDR blocks per
VPC is 5. This can be raised to 50. The allowable number of IPv6
CIDR blocks per VPC is 1.

46 | Chapter 2: Networking

https://oreil.ly/xUB24
https://oreil.ly/xUB24
https://oreil.ly/sBL99
https://oreil.ly/tJuIg
https://oreil.ly/tJuIg
https://oreil.ly/Z4MTP
https://oreil.ly/wcJPH

Challenge
Create another VPC with a different CIDR range.

2.2 Creating a Network Tier with Subnets and a Route
Table in a VPC
Problem
You have a VPC and need to create a network layout consisting of individual IP
spaces for segmentation and redundancy.

Solution
Create a route table within your VPC. Create two subnets in separate Availability
Zones in a VPC. Associate the route table with the subnets (see Figure 2-2).

Figure 2-2. Isolated subnet tier and route table

Prerequisite

• A VPC

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a route table. This will allow you to create customized traffic routes for
subnets associated with it:

2.2 Creating a Network Tier with Subnets and a Route Table in a VPC | 47

https://github.com/AWSCookbook/Networking

ROUTE_TABLE_ID=$(aws ec2 create-route-table --vpc-id $VPC_ID \
 --tag-specifications \
'ResourceType=route-table,Tags=[{Key=Name,Value=AWSCookbook202}]' \
 --output text --query RouteTable.RouteTableId)

2. Create two subnets, one in each AZ. This will define the address spaces for you to
create resources for your VPC:

SUBNET_ID_1=$(aws ec2 create-subnet --vpc-id $VPC_ID \
 --cidr-block 10.10.0.0/24 --availability-zone ${AWS_REGION}a \
 --tag-specifications \
 'ResourceType=subnet,Tags=[{Key=Name,Value=AWSCookbook202a}]' \
 --output text --query Subnet.SubnetId)

SUBNET_ID_2=$(aws ec2 create-subnet --vpc-id $VPC_ID \
 --cidr-block 10.10.1.0/24 --availability-zone ${AWS_REGION}b \
 --tag-specifications \
 'ResourceType=subnet,Tags=[{Key=Name,Value=AWSCookbook202b}]' \
 --output text --query Subnet.SubnetId)

In the previous commands, the --availability-zone param‐
eter uses an environment variable for your Region appended
with lowercase a or b characters to indicate which logical AZ
(e.g., us-east-1a) to provision each subnet. AWS states that
these names are randomized per account to balance resources
across AZs.
If you are using multiple AWS accounts and want to find
Availability Zone IDs for a Region that are consistent, run this
command:

aws ec2 describe-availability-zones --region $AWS_REGION

3. Associate the route table with the two subnets:
aws ec2 associate-route-table \
 --route-table-id $ROUTE_TABLE_ID --subnet-id $SUBNET_ID_1

aws ec2 associate-route-table \
 --route-table-id $ROUTE_TABLE_ID --subnet-id $SUBNET_ID_2

4. For each command in step 3, you should see output similar to the following:
{
 "AssociationId": "rtbassoc-<<snip>>",
 "AssociationState": {
 "State": "associated"
 }
}

Validation checks. Retrieve the configuration of the subnets you created and verify
that they are in the same VPC but different AZs:

aws ec2 describe-subnets --subnet-ids $SUBNET_ID_1
aws ec2 describe-subnets --subnet-ids $SUBNET_ID_2

48 | Chapter 2: Networking

For each describe-subnets command, you should see output similar to this:
{
 "Subnets": [
 {
 "AvailabilityZone": "us-east-1a",
 "AvailabilityZoneId": "use1-az6",
 "AvailableIpAddressCount": 251,
 "CidrBlock": "10.10.0.0/24",
 "DefaultForAz": false,
 "MapPublicIpOnLaunch": false,
 "MapCustomerOwnedIpOnLaunch": false,
 "State": "available",
 "SubnetId": "subnet-<<snip>>",
 "VpcId": "vpc-<<snip>>",
 "OwnerId": "111111111111",
 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": [],
<<snip>>
...

Validate that the route table you created is associated with the two subnets:
aws ec2 describe-route-tables --route-table-ids $ROUTE_TABLE_ID

You should see output similar to the following:
{
 "RouteTables": [
 {
 "Associations": [
 {
 "Main": false,
 "RouteTableAssociationId": "rtbassoc-<<snip>>",
 "RouteTableId": "rtb-<<snip>>",
 "SubnetId": "subnet-<<snip>>",
 "AssociationState": {
 "State": "associated"
 }
 },
 {
 "Main": false,
 "RouteTableAssociationId": "rtbassoc-<<snip>>",
 "RouteTableId": "rtb-<<snip>>",
 "SubnetId": "subnet-<<snip>>",
 "AssociationState": {
 "State": "associated"
 }
 }
<<snip>>
...

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

2.2 Creating a Network Tier with Subnets and a Route Table in a VPC | 49

https://github.com/AWSCookbook/Networking

Discussion
When designing a subnet strategy, you should choose subnet sizes that fit your cur‐
rent needs and account for your application’s future growth. Subnets are used for
elastic network interface (ENI) placement for AWS resources. This means that a par‐
ticular ENI lives within a single AZ.

You may run into a case where routes overlap. AWS provides infor‐
mation on how priority is determined.

AWS reserves the first four and last IP addresses of every subnet’s CIDR block for fea‐
tures and functionality when you create a subnet. These are not available for your use.
Per the documentation, these are the reserved addresses in the case of your example:

.0 Network address.

.1 Reserved by AWS for the VPC router.

.2 Reserved by AWS for the IP address of the DNS server. This is always set to the VPC network range plus two.

.3 Reserved by AWS for future use.

.255 Network broadcast address. Broadcast in a VPC is not supported.

A subnet has one route table associated with it. Route tables can be associated with
one or more subnets and direct traffic to a destination of your choosing (more on this
with the NAT gateway, internet gateway, and transit gateway recipes later). Entries
within route tables are called routes and are defined as pairs of Destinations and Tar‐
gets. When you created the route table, a default local route that handles intra-VPC
traffic was automatically added for you. You have the ability to create custom routes
that fit your needs. For a complete list of targets available to use within route tables,
see this support document.

ENIs receive an IP address from an AWS managed DHCP server
within your VPC. The DHCP options set is automatically config‐
ured with defaults for assigning addresses within the subnets you
define. For more information about DHCP option sets, and how to
create your own DHCP option sets see this support document.

When creating a VPC in a Region, it is a best practice to spread subnets across AZs in
that network tier. The number of AZs differs per Region, but most have at least three.
An example of this in practice would be that if you had a public tier and an isolated
tier spread over two AZs, you would have a total of four subnets: 2 tiers × 2 subnets
per tier (one per AZ); see Figure 2-3.

50 | Chapter 2: Networking

https://oreil.ly/KULJn
https://oreil.ly/j1RWe
https://oreil.ly/qbkcf
https://oreil.ly/oKVq1
https://oreil.ly/OsebX

Figure 2-3. Isolated and public subnet tiers and route tables

Challenge

Create a second route table and associate it with $SUBNET_ID_2. Configuring route
tables for each AZ is a common pattern.

2.3 Connecting Your VPC to the Internet Using
an Internet Gateway
Problem
You have an existing EC2 instance in a subnet of a VPC. You need to provide the abil‐
ity for this instance to directly reach clients on the internet.

Solution
You will create an internet gateway and attach it to your VPC. Next you will modify
the route table associated with the subnet where the EC2 instance lives. You will add a
route that sends traffic from the subnets to the internet gateway. Finally, create an
Elastic IP (EIP) and associate it with the instance, as shown in Figure 2-4.

2.3 Connecting Your VPC to the Internet Using an Internet Gateway | 51

Figure 2-4. Public subnet tier, internet gateway, and route table

Prerequisites

• VPC and subnets created in two AZs and associated route tables.
• EC2 instance deployed. You will need the ability to connect to this for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create an internet gateway (IGW):
INET_GATEWAY_ID=$(aws ec2 create-internet-gateway \
 --tag-specifications \
'ResourceType=internet-gateway,Tags=[{Key=Name,Value=AWSCookbook202}]' \
 --output text --query InternetGateway.InternetGatewayId)

2. Attach the internet gateway to the existing VPC:
aws ec2 attach-internet-gateway \
 --internet-gateway-id $INET_GATEWAY_ID --vpc-id $VPC_ID

52 | Chapter 2: Networking

https://github.com/AWSCookbook/Networking

3. In each route table of your VPC, create a route that sets the default route destina‐
tion to the internet gateway:

aws ec2 create-route --route-table-id $ROUTE_TABLE_ID_1 \
 --destination-cidr-block 0.0.0.0/0 --gateway-id $INET_GATEWAY_ID

aws ec2 create-route --route-table-id $ROUTE_TABLE_ID_2 \
 --destination-cidr-block 0.0.0.0/0 --gateway-id $INET_GATEWAY_ID

For each command in step 3, you should see output similar to the following:
{
 "Return": true
}

4. Create an EIP:
ALLOCATION_ID=$(aws ec2 allocate-address --domain vpc \
 --output text --query AllocationId)

AWS defines an Elastic IP address (EIP) as “a static IPv4
address designed for dynamic cloud computing. An EIP
address is allocated to your AWS account and is yours until
you release it.”

5. Associate the EIP with the existing EC2 instance:
aws ec2 associate-address \
 --instance-id $INSTANCE_ID --allocation-id $ALLOCATION_ID

You should see output similar to the following:
{
 "AssociationId": "eipassoc-<<snip>>"
}

Validation checks. Connect to the EC2 instance using SSM Session Manager (see
Recipe 1.6):

aws ssm start-session --target $INSTANCE_ID

Ping a host on the internet to test internet connectivity:
ping -c 4 homestarrunner.com

You should see output similar to the following:
sh-4.2$ ping -c 4 homestarrunner.com
PING homestarrunner.com (72.10.33.178) 56(84) bytes of data.
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=1 ttl=49 time=2.12 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=2 ttl=49 time=2.04 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=3 ttl=49 time=2.05 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=4 ttl=49 time=2.08 ms
--- homestarrunner.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3002ms
rtt min/avg/max/mdev = 2.045/2.078/2.127/0.045 ms
sh-4.2$

2.3 Connecting Your VPC to the Internet Using an Internet Gateway | 53

https://oreil.ly/FCrvT

The public IP is not part of the OS configuration. If you want to
retrieve the public IP from the instance’s metadata, you can use this
command:

curl http://169.254.169.254/latest/meta-data/public-ipv4

Exit the Session Manager session:
exit

Clean up
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
The route that you created in your route table entry sends all nonlocal traffic to the
IGW that provides your VPC internet connectivity. Because you were working with
an existing running EC2 instance, you needed to create an Elastic IP and associated it
with the instance. These steps enabled internet communication to the instance
without having to interact with it. There is an option to enable auto-assignment of
public IPv4 addresses for newly launched instances in a subnet. However, if you uti‐
lize auto-assignment, the public IPs will change after each instance reboot. EIPs asso‐
ciated with an instance will not change after reboots.

Route tables give priority to the most specific route. AWS also
allows you to create routes that are more specific than the default
local route. This allows you to create very controlled network
flows. More information about route priority can be found in an
AWS discussion.

The security group associated with your instance does not allow inbound access. If
you would like to allow inbound internet access to an instance in a public subnet, you
will have to configure a security group ingress rule for this.

A subnet that has a route of 0.0.0.0/0 associated with an IGW is considered a public
subnet. It is considered a security best practice to place instances only in this type of
tier that require inbound access from the public internet. End-user-facing load bal‐
ancers are commonly placed in public subnets. A public subnet would not be an ideal
choice for an application server or a database. In these cases, you can create a private
tier or an isolated tier to fit your needs with the appropriate routing and use a NAT
gateway to direct that subnet traffic to the internet gateway only when outbound
internet access is required.

54 | Chapter 2: Networking

https://oreil.ly/lmZ1U
https://github.com/AWSCookbook/Networking
https://oreil.ly/disUG
https://oreil.ly/DKpNO

Challenge
Install a web server on the EC2 instance, modify the security group, and connect to
the instance from your workstation. See Recipe 2.7 for an example of how to config‐
ure internet access for instances in private subnets using a load balancer.

2.4 Using a NAT Gateway for Outbound Internet Access
from Private Subnets
Problem
You have public subnets in your VPC that have a route to an internet gateway. You
want to leverage this setup to provide outbound-only internet access for an instance
in private subnets.

Solution
Create a NAT gateway in one of the public subnets. Then create an Elastic IP and
associate it with the NAT gateway. In the route table associated with the private sub‐
nets, add a route for internet-bound traffic that targets the NAT gateway (see
Figure 2-5).

Prerequisites

• VPC with public subnets in two AZs and associated route tables.
• Isolated subnets created in two AZs (we will turn these into the private subnets)

and associated route tables.
• Two EC2 instances deployed in the isolated subnets. You will need the ability to

connect to these for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

2.4 Using a NAT Gateway for Outbound Internet Access from Private Subnets | 55

https://github.com/AWSCookbook/Networking

Figure 2-5. Internet access for private subnets provided by NAT gateways

Steps

1. Create an Elastic IP to be used with the NAT gateway:
ALLOCATION_ID=$(aws ec2 allocate-address --domain vpc \
 --output text --query AllocationId)

2. Create a NAT gateway within the public subnet of AZ1:
NAT_GATEWAY_ID=$(aws ec2 create-nat-gateway \
 --subnet-id $VPC_PUBLIC_SUBNET_1 \
 --allocation-id $ALLOCATION_ID \
 --output text --query NatGateway.NatGatewayId)

3. This will take a few moments for the state to become available; check the status:
aws ec2 describe-nat-gateways \
 --nat-gateway-ids $NAT_GATEWAY_ID \
 --output text --query NatGateways[0].State

56 | Chapter 2: Networking

4. Add a default route for 0.0.0.0/0 with a destination of the NAT gateway to both of
the private tier’s route tables. This default route sends all traffic not matching a
more specific route to the destination specified:

aws ec2 create-route --route-table-id $PRIVATE_RT_ID_1 \
 --destination-cidr-block 0.0.0.0/0 \
 --nat-gateway-id $NAT_GATEWAY_ID

aws ec2 create-route --route-table-id $PRIVATE_RT_ID_2 \
 --destination-cidr-block 0.0.0.0/0 \
 --nat-gateway-id $NAT_GATEWAY_ID

For each command in step 4, you should see output similar to the following:
{
 "Return": true
}

Validation checks. Connect to EC2 instance 1 by using SSM Session Manager (see
Recipe 1.6):

aws ssm start-session --target $INSTANCE_ID_1

Test internet access with a ping:
ping -c 4 homestarrunner.com

You should see output similar to the following:
sh-4.2$ ping -c 4 homestarrunner.com

PING homestarrunner.com (72.10.33.178) 56(84) bytes of data.
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=1 ttl=47 time=2.95 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=2 ttl=47 time=2.16 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=3 ttl=47 time=2.13 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=4 ttl=47 time=2.13 ms

--- homestarrunner.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 2.134/2.348/2.958/0.356 ms
sh-4.2$

Exit the Session Manager session:
exit

(Optional) Repeat the validation steps for EC2 instance 2.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

2.4 Using a NAT Gateway for Outbound Internet Access from Private Subnets | 57

https://github.com/AWSCookbook/Networking

Discussion
This architecture gives you a subnet tier that allows outbound access but does not
permit direct inbound internet access to resources within it. One way to allow inter‐
net resources inbound access to services running on resources in private subnets is to
use a load balancer in the public subnets. We’ll look more at that type of configura‐
tion in Recipe 2.7.

The EIP associated with your NAT gateway becomes the external IP address for all
communication that goes through it. For example, if a vendor needed to add your IP
to an allow list, the NAT gateway EIP would be the “source” IP address provided to
the vendor. Your EIP will remain the same as long as you keep it provisioned within
your account.

If you created a VPC with IPv6 capability, you can also create an
egress-only internet gateway to allow outbound internet access for
private subnets, as discussed in an AWS article.

This NAT gateway was provisioned within one AZ in your VPC. While this is a cost-
effective way to achieve outbound internet access for your private subnets, for pro‐
duction and mission-critical applications, you should consider provisioning NAT
gateways in each AZ to provide resiliency and reduce the amount of cross-AZ traffic.
This would also require creating route tables for each of your private subnets so that
you can direct the 0.0.0.0/0 traffic to the NAT gateway in that particular subnet’s AZ.
See the challenge for this recipe.

If you have custom requirements or would like more granular con‐
trol of your outbound routing for your NAT implementation, you
can create a NAT instance. For a comparison of NAT gateways and
NAT instances, see this support document.

Challenge
Create a second NAT gateway in the public subnet in AZ2. Then modify the default
route in the route table associated with the private subnet in AZ2. Change the desti‐
nation to the newly created NAT gateway.

58 | Chapter 2: Networking

https://oreil.ly/RxlYN
https://oreil.ly/roLbq

2.5 Granting Dynamic Access by Referencing
Security Groups
Problem
You have an application group that currently consists of two instances and need to
allow Secure Shell (SSH) between them. This needs to be configured in a way to allow
for future growth of the number of instances securely and easily.

Solution

A common misconception is that by merely associating the same
security group to ENIs for multiple EC2 instances, it will allow
communication between them (see Figure 2-6).

Figure 2-6. Incorrect representation of two instances using the same security group

In this recipe, we will create a security group and an associate each to the ENIs of two
EC2 instances. Finally, we will create an ingress rule that authorizes the security
group to reach itself on TCP port 22 (see Figure 2-7).

2.5 Granting Dynamic Access by Referencing Security Groups | 59

Figure 2-7. Correct visualization of the ENIs of two instances using the same security
group

Prerequisites

• VPC with a subnet and associated route table.
• Two EC2 instances deployed in the subnet. You will need the ability to connect to

these for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a new security group for the EC2 instances:
SG_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook205Sg \
 --description "Instance Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

2. Attach the security group to instances 1 and 2:
aws ec2 modify-instance-attribute --instance-id $INSTANCE_ID_1 \
 --groups $SG_ID

aws ec2 modify-instance-attribute --instance-id $INSTANCE_ID_2 \
 --groups $SG_ID

60 | Chapter 2: Networking

https://github.com/AWSCookbook/Networking

You used the modify-instance-attribute command to attach a
new security group to the ENIs of your EC2 instances. To list
the security groups associated with the ENI of an EC2
instance, you can view them in the EC2 console under the
Security tab of the instance details or use this command
(replacing $INSTANCE_ID_1 with your own instance ID):

aws ec2 describe-security-groups --group-ids \
 $(aws ec2 describe-instances --instance-id
$INSTANCE_ID_1 \
 --query
"Reservations[].Instances[].SecurityGroups[].GroupId[]"
\
 --output text) --output text

3. Add an ingress rule to the security group that allows access on TCP port 22 from
itself:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 22 \
 --source-group $SG_ID \
 --group-id $SG_ID \

You can and should create descriptions for all your security
group rules to indicate the intended functionality of the
authorization.

You should see output similar to the following:
{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<snip>>",
 "GroupId": "sg-<<snip>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 22,
 "ToPort": 22,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<snip>>"
 }
 }
]
}

2.5 Granting Dynamic Access by Referencing Security Groups | 61

https://oreil.ly/GT2KH

This type of security group rule is called a self-referencing rule.
It allows access to the specific port from traffic originating
from ENIs (not a static range of IPs) that have this same secu‐
rity group attached to them.

Validation checks. List the IP address for instance 2:
aws ec2 describe-instances --instance-ids $INSTANCE_ID_2 \
 --output text \
 --query Reservations[0].Instances[0].PrivateIpAddress

Connect to your instance 1 by using SSM Session Manager (see Recipe 1.6):
aws ssm start-session --target $INSTANCE_ID_1

Install the Ncat utility:
sudo yum -y install nc

Test SSH connectivity to instance 2 (use instance 2’s IP that you listed previously):
nc -vz $INSTANCE_IP_2 22

You should see output similar to the following:
Ncat: Version 7.50 (https://nmap.org/ncat)
Ncat: Connected to 10.10.0.48:22.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds.
sh-4.2$

Exit the Session Manager session:
exit

(Optional) Repeat the validation steps from instance 2 to instance 1.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
The on-demand nature of the cloud (e.g., autoscaling) presents an opportunity for
elasticity. Network security mechanisms, like security group references, are suitable
for that. Traditionally, network architects might authorize CIDR ranges within fire‐
wall configurations. This type of authorization is generally referred to as static refer‐
ences. This legacy practice doesn’t scale dynamically, as you may add or remove
instances from your workloads.

62 | Chapter 2: Networking

https://github.com/AWSCookbook/Networking

A security group acts as a stateful virtual firewall for ENIs. The default behavior for
security groups is to implicitly block all ingress while allowing all egress. You can
associate multiple security groups with an ENI. There is an initial quota of 5 security
groups per ENI and 60 rules (inbound or outbound) per security group.

You can also specify CIDR notation for authorizations. For example, for an authoriza‐
tion intended to allow RDP access from your New York branch office, you would use
the following:

aws ec2 authorize-security-group-ingress \
 --group-id sg-1234567890abcdef0 \
 --ip-permissions
 IpProtocol=tcp,FromPort=3389,ToPort=3389,IpRanges='[{CidrIp=XXX.XXX.XXX.XXX/
24,Description="RDP access from NY office"}]'

Remember that security groups cannot be deleted if the following
conditions are present:

• They are currently attached to an ENI.

• They are referenced by other security groups (including them‐
selves).

Challenge
Create a third EC2 instance; use the same security group. Test access to and from it.
(Hint: in the repository.)

2.6 Using VPC Reachability Analyzer to Verify and
Troubleshoot Network Paths
Problem
You have two EC2 instances deployed in isolated subnets. You need to troubleshoot
SSH connectivity between them.

Solution
You will create, analyze, and describe network insights by using the VPC Reachability
Analyzer. Based on the results, you will add a rule to the security group of instance 2
that allows the SSH port (TCP port 22) from instance 1’s security group. Finally, you
will rerun the VPC Reachability Analyzer and view the updated results (see
Figure 2-8).

2.6 Using VPC Reachability Analyzer to Verify and Troubleshoot Network Paths | 63

https://oreil.ly/rYohM
https://oreil.ly/FR5J1

Figure 2-8. VPC Reachability Analyzer

Prerequisites

• VPC with isolated subnets in two AZs and associated route tables.
• Two EC2 instances deployed in the isolated subnets. You will need the ability to

connect to these for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a network insights path specifying both of the EC2 instances you deployed
and TCP port 22:

INSIGHTS_PATH_ID=$(aws ec2 create-network-insights-path \
 --source $INSTANCE_ID_1 --destination-port 22 \
 --destination $INSTANCE_ID_2 --protocol tcp \
 --output text --query NetworkInsightsPath.NetworkInsightsPathId)

2. Start the network insights analysis between the two instances using the
INSIGHTS_PATH_ID created in the previous step:

ANALYSIS_ID_1=$(aws ec2 start-network-insights-analysis \
 --network-insights-path-id $INSIGHTS_PATH_ID --output text \
 --query NetworkInsightsAnalysis.NetworkInsightsAnalysisId)

3. Wait a few seconds until the analysis is done running and then view the results:
aws ec2 describe-network-insights-analyses \
 --network-insights-analysis-ids $ANALYSIS_ID_1

You should see output similar to the following (note the NetworkPathFound and
ExplanationCode fields):

64 | Chapter 2: Networking

https://github.com/AWSCookbook/Networking

{
 "NetworkInsightsAnalyses": [
 {
 "NetworkInsightsAnalysisId": "nia-<<snip>",
 "NetworkInsightsAnalysisArn": "arn:aws:ec2:us-east-1:111111111111:network-
insights-analysis/nia-<<snip>",
 "NetworkInsightsPathId": "nip-<<snip>",
 "StartDate": "2020-12-22T02:12:36.836000+00:00",
 "Status": "succeeded",
 "NetworkPathFound": false,
 "Explanations": [
 {
 "Direction": "ingress",
 "ExplanationCode": "ENI_SG_RULES_MISMATCH",
 "NetworkInterface": {
 "Id": "eni-<<snip>",
 "Arn": "arn:aws:ec2:us-east-1:11111111111:network-interface/eni-
<<snip>"
 },

4. Update the security group attached to instance 2. Add a rule to allow access from
instance 1’s security group to TCP port 22 (SSH):

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 22 \
 --source-group $INSTANCE_SG_ID_1 \
 --group-id $INSTANCE_SG_ID_2

You should see output similar to the following:
{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<snip>>",
 "GroupId": "sg-<<snip>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 22,
 "ToPort": 22,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<snip>>"
 }
 }
]
}

5. Rerun the network insights analysis. Use the same INSIGHTS_PATH_ID as you did
previously:

ANALYSIS_ID_2=$(aws ec2 start-network-insights-analysis \
 --network-insights-path-id $INSIGHTS_PATH_ID --output text \
 --query NetworkInsightsAnalysis.NetworkInsightsAnalysisId)

6. Show the results of the new analysis:
aws ec2 describe-network-insights-analyses \
 --network-insights-analysis-ids $ANALYSIS_ID_2

2.6 Using VPC Reachability Analyzer to Verify and Troubleshoot Network Paths | 65

You should see output similar to the following (note the NetworkPathFound
field):

{
 "NetworkInsightsAnalyses": [
 {
 "NetworkInsightsAnalysisId": "nia-<<snip>>",
 "NetworkInsightsAnalysisArn": "arn:aws:ec2:us-east-1:111111111111:network-
insights-analysis/nia-<<snip>>",
 "NetworkInsightsPathId": "nip-<<snip>>",
 "StartDate": "2021-02-21T23:52:15.565000+00:00",
 "Status": "succeeded",
 "NetworkPathFound": true,
 "ForwardPathComponents": [
 {
 "SequenceNumber": 1,
 "Component": {
 "Id": "i-<<snip>>",
...

Validation checks. List the IP address for instance 2:
aws ec2 describe-instances --instance-ids $INSTANCE_ID_2 \
 --output text \
 --query Reservations[0].Instances[0].PrivateIpAddress

Connect to your EC2 instance by using SSM Session Manager (see Recipe 1.6):
aws ssm start-session --target $INSTANCE_ID_1

Install the Ncat utility:
sudo yum -y install nc

Test SSH connectivity to instance 2 (use instance 2’s IP that you listed previously):
nc -vz $INSTANCE_IP_2 22

You should see output similar to the following:
Ncat: Version 7.50 (https://nmap.org/ncat)
Ncat: Connected to 10.10.0.48:22.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds.
sh-4.2$

Exit the Session Manager session:
exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

66 | Chapter 2: Networking

https://github.com/AWSCookbook/Networking

Discussion
A network insights path is a definition of the connectivity you want to test. Initially,
there wasn’t SSH connectivity between the instances because the security group on
the destination (instance 2) did not allow access. After you updated the security
group associated with instance 2 and reran an analysis, you were able to verify suc‐
cessful connectivity. Using the VPC Reachability Analyzer is an efficient capability for
network troubleshooting and validating configuration in a “serverless” manner. It
does not require you to provision infrastructure to analyze, verify, and troubleshoot
network connectivity.

VPC reachability has broad support of sources and destinations for
resources within your VPCs. For a complete list of supported sour‐
ces and destinations, see this support document.

VPC Reachability Analyzer provides explanation codes that describe the result of a
network path analysis. In this recipe, you observed the code ENI_SG_RULES_MISMATCH
that indicates that the security groups are not allowing traffic between the source and
destination. The complete list of explanation codes is available in this documentation.

Challenge
Add an internet gateway to your VPC and test access to that from an instance.

2.7 Redirecting HTTP Traffic to HTTPS with an
Application Load Balancer
Problem
You have a containerized application running in a private subnet. Users on the inter‐
net need to access this application. To help secure the application, you would like to
redirect all requests from HTTP to HTTPS.

Solution
Create an Application Load Balancer (ALB). Next, create listeners on the ALB for
ports 80 and 443, target groups for your containerized application, and listener rules.
Configure the listener rules to send traffic to your target group, as shown in
Figure 2-9. Finally, configure an action to redirect with an HTTP 301 response code,
port 80 (HTTP) to port 443 (HTTPS) while preserving the URL in the request (see
Figure 2-10).

2.7 Redirecting HTTP Traffic to HTTPS with an Application Load Balancer | 67

https://oreil.ly/szPNC
https://oreil.ly/boPoh
https://oreil.ly/v6o18

Figure 2-9. VPC with ALB serving internet traffic to containers in private subnets

Figure 2-10. Redirecting HTTP to HTTPs with an ALB

Prerequisites

• VPC with public subnets in two AZs and associated route tables.
• Private subnets created in two AZs and associated route tables.
• An ECS cluster and container definition exposing a web application on port 80.
• A Fargate service that runs tasks on the ECS cluster.
• OpenSSL. (You can install this using brew install openssl or yum install
openssl.)

68 | Chapter 2: Networking

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a new private key to be used for the certificate:
openssl genrsa 2048 > my-private-key.pem

You should see output similar to the following:
Generating RSA private key, 2048 bit long modulus
..+++
...+++
e is 65537 (0x10001)

2. Generate a self-signed certificate using OpenSSL CLI:
openssl req -new -x509 -nodes -sha256 -days 365 \
 -key my-private-key.pem -outform PEM -out my-certificate.pem

You should see output similar to the following:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:US
State or Province Name (full name) []:Pennsylvania
Locality Name (eg, city) []:Scranton
Organization Name (eg, company) []:AWS Cookbook Inc
Organizational Unit Name (eg, section) []:Cloud Team
Common Name (eg, fully qualified host name) []:mytest.com
Email Address []:you@youremail.com

You are using a self-signed certificate for this recipe, which will
throw a warning when you access the Load Balancer DNS
name in most browsers. You can generate a trusted certificate
for your own DNS record by using AWS Certificate Manager
(ACM).

3. Upload the generated certificate into IAM:
CERT_ARN=$(aws iam upload-server-certificate \
 --server-certificate-name AWSCookbook207 \
 --certificate-body file://my-certificate.pem \
 --private-key file://my-private-key.pem \
 --query ServerCertificateMetadata.Arn --output text)

2.7 Redirecting HTTP Traffic to HTTPS with an Application Load Balancer | 69

https://github.com/AWSCookbook/Networking
https://oreil.ly/Sa88c
https://oreil.ly/Sa88c

4. Create a security group to use with the ALB that you will create later:
ALB_SG_ID=$(aws ec2 create-security-group --group-name Cookbook207SG \
 --description "ALB Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

5. Add rules to the security group to allow HTTP and HTTPS traffic from the
world:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 443 \
 --cidr '0.0.0.0/0' \
 --group-id $ALB_SG_ID

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 80 \
 --cidr '0.0.0.0/0' \
 --group-id $ALB_SG_ID

For each command in step 5, you should see output similar to the following:
{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<snip>>",
 "GroupId": "sg-<<snip>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 80,
 "ToPort": 80,
 "CidrIpv4": "0.0.0.0/0"
 }
]
}

6. Authorize the container’s security group to allow ingress traffic from the ALB:
aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 80 \
 --source-group $ALB_SG_ID \
 --group-id $APP_SG_ID

7. Create an ALB across the public subnets and assign it the previously created
security group:

LOAD_BALANCER_ARN=$(aws elbv2 create-load-balancer \
 --name aws-cookbook207-alb \
 --subnets $VPC_PUBLIC_SUBNETS --security-groups $ALB_SG_ID \
 --scheme internet-facing \
 --output text --query LoadBalancers[0].LoadBalancerArn)

8. Create a target group for the Load Balancer:
TARGET_GROUP=$(aws elbv2 create-target-group \
 --name aws-cookbook207-tg --vpc-id $VPC_ID \
 --protocol HTTP --port 80 --target-type ip \
 --query "TargetGroups[0].TargetGroupArn" \
 --output text)

70 | Chapter 2: Networking

9. Get the IP of the container that is running your application:
TASK_ARN=$(aws ecs list-tasks --cluster $ECS_CLUSTER_NAME \
 --output text --query taskArns)
CONTAINER_IP=$(aws ecs describe-tasks --cluster $ECS_CLUSTER_NAME \
 --task $TASK_ARN --output text \
 --query tasks[0].attachments[0].details[4] | cut -f 2)

10. Register a container with the target group:
aws elbv2 register-targets --targets Id=$CONTAINER_IP \
 --target-group-arn $TARGET_GROUP

For this recipe, you register an IP address of an ECS task
within an ECS service with the load balancer that you created.
You can optionally associate an ECS service directly with an
Application Load Balancer on ECS service creation. For more
information, see this documentation.

11. Create an HTTPS listener on the ALB that uses the certificate you imported and
forwards traffic to your target group:

HTTPS_LISTENER_ARN=$(aws elbv2 create-listener \
 --load-balancer-arn $LOAD_BALANCER_ARN \
 --protocol HTTPS --port 443 \
 --certificates CertificateArn=$CERT_ARN \
 --default-actions Type=forward,TargetGroupArn=$TARGET_GROUP \
 --output text --query Listeners[0].ListenerArn)

12. Add a rule for the listener on port 443 to forward traffic to the target group that
you created:

aws elbv2 create-rule \
 --listener-arn $HTTPS_LISTENER_ARN \
 --priority 10 \
 --conditions '{"Field":"path-pattern","PathPatternConfig":{"Values":["/*"]}}' \
 --actions Type=forward,TargetGroupArn=$TARGET_GROUP

You should see output similar to the following:
{
 "Rules": [
 {
 "RuleArn": "arn:aws:elasticloadbalancing:us-east-1:111111111111:listener-
rule/app/aws-cookbook207-alb/<<snip>>",
 "Priority": "10",
 "Conditions": [
 {
 "Field": "path-pattern",
 "Values": [
 "/*"
],
 "PathPatternConfig": {
 "Values": [
 "/*"
]
 }

2.7 Redirecting HTTP Traffic to HTTPS with an Application Load Balancer | 71

https://oreil.ly/wF1si

 }
],
 "Actions": [
 {
 "Type": "forward",
...

13. Create a redirect response for all HTTP traffic that sends a 301 response to the
browser while preserving the full URL for the HTTPS redirect:

aws elbv2 create-listener --load-balancer-arn $LOAD_BALANCER_ARN \
 --protocol HTTP --port 80 \
 --default-actions \
"Type=redirect,RedirectConfig={Protocol=HTTPS,Port=443,Host='#{host}',Query='#{qu
ery}',Path='/#{path}',
StatusCode=HTTP_301}"

You should see output similar to the following:
{
 "Listeners": [
 {
 "ListenerArn": "arn:aws:elasticloadbalancing:us-
east-1:111111111111:listener/app/aws-cookbook207-alb/<<snip>>",
 "LoadBalancerArn": "arn:aws:elasticloadbalancing:us-
east-1:111111111111:loadbalancer/app/aws-cookbook207-alb/<<snip>>",
 "Port": 80,
 "Protocol": "HTTP",
 "DefaultActions": [
 {
 "Type": "redirect",
 "RedirectConfig": {
 "Protocol": "HTTPS",
 "Port": "443",
 "Host": "#{host}",
 "Path": "/#{path}",
 "Query": "#{query}",
 "StatusCode": "HTTP_301"
 }
 }
...

14. Verify the health of the targets:
aws elbv2 describe-target-health --target-group-arn $TARGET_GROUP \
 --query TargetHealthDescriptions[*].TargetHealth.State

You should see output similar to this:
[
 "healthy"
]

Validation checks. Get the URL of the load balancer so that you can test it:
LOAD_BALANCER_DNS=$(aws elbv2 describe-load-balancers \
 --names aws-cookbook207-alb \
 --output text --query LoadBalancers[0].DNSName)

72 | Chapter 2: Networking

Display the URL and test it in your browser. You should notice that you end up at an
HTTPS URL. You will most likely receive a warning from your browser because of
the self-signed cert:

echo $LOAD_BALANCER_DNS

Or test it from the command line.

cURL the Load Balancer DNS over HTTP and observe the 301 code:
curl -v http://$LOAD_BALANCER_DNS

cURL the Load Balancer DNS and specify to follow the redirect to HTTPS:
curl -vkL http://$LOAD_BALANCER_DNS

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When you added a 301 redirect rule for the port 80 listener, this allowed the ALB to
instruct clients to follow the redirect to port 443 so that users of your application will
be automatically redirected to HTTPS. The redirect rule also preserves the URL path
in the original request.

Application Load Balancers operate on Layer 7 of the OSI model. The ALB documen‐
tation lists the available target types of EC2 instances, IP addresses, and Lambda
functions. You can create internet-facing ALBs (when your VPC has an internet gate‐
way attached) and internal ALBs for usage within your internal network only. The
ALB provisions elastic network interfaces that have IP addresses within your chosen
subnets to communicate with your services. ALBs continuously run health checks for
members of your associated target groups that allow the ALB to detect healthy com‐
ponents of your application to route traffic to. ALBs are also a great layer to add in
front of your applications for increased security since you can allow the targets to be
accessed by only the load balancer—not by clients directly.

AWS offers multiple types of load balancers for specific use cases. You should choose
the load balancer that best fits your needs. For example, for high-performance Layer 4
load balancing with static IP address capability, you might consider Network Load
Balancers, and for network virtual appliances (NVAs) like virtual firewalls and secu‐
rity appliances, you might consider Gateway Load Balancers. For more information
on and a comparison of the types of load balancers available in AWS, see the support
document.

Challenge
Update the SSL certificate with a new one.

2.7 Redirecting HTTP Traffic to HTTPS with an Application Load Balancer | 73

https://github.com/AWSCookbook/Networking
https://oreil.ly/bJZsg
https://oreil.ly/bJZsg
https://oreil.ly/8G9xc
https://oreil.ly/8G9xc

2.8 Simplifying Management of CIDRs in Security Groups
with Prefix Lists
Problem
You have two applications hosted in public subnets. The applications are hosted on
instances with specific access requirements for each application. During normal oper‐
ation, these applications need to be accessed from virtual desktops in another Region.
However, you need to reach them from your home PC for a short period for testing.

Solution
Using the AWS-provided IP address ranges list, create a managed prefix list that con‐
tains a list of CIDR ranges for WorkSpaces gateways in us-west-2 and associate it
with each security group. Update the prefix list with your home IP for testing and
then optionally remove it (see Figure 2-11).

Prerequisites

• VPC with public subnets in two AZs and associated route tables
• Two EC2 instances in each public subnet running a web server on port 80
• Two security groups, one associated with each EC2 instance

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

74 | Chapter 2: Networking

https://github.com/AWSCookbook/Networking

Figure 2-11. Two applications in public subnets protected by security groups

Steps

1. Download the AWS IP address ranges JSON file:
curl -o ip-ranges.json https://ip-ranges.amazonaws.com/ip-ranges.json

You will need to install the jq utility if your workstation doesn’t
already have it; for example, brew install jq.

2. Generate a list of the CIDR ranges for Amazon WorkSpaces gateways in
us-west-2:

jq -r '.prefixes[] | select(.region=="us-west-2") |
select(.service=="WORKSPACES_GATEWAYS") | .ip_prefix' < ip-ranges.json

2.8 Simplifying Management of CIDRs in Security Groups with Prefix Lists | 75

You can find more information on AWS IP address ranges in
their documentation.

3. Use the IP ranges for Amazon WorkSpaces from ip-ranges.json to create a man‐
aged prefix list:

PREFIX_LIST_ID=$(aws ec2 create-managed-prefix-list \
 --address-family IPv4 \
 --max-entries 15 \
 --prefix-list-name allowed-us-east-1-cidrs \
 --output text --query "PrefixList.PrefixListId" \
 --entries
 Cidr=44.234.54.0/23,Description=workspaces-us-west-2-cidr1
Cidr=54.244.46.0/23,Description=workspaces-us-west-2-cidr2)

At this point, your workstation should not be able to reach
either of the instances. If you try one of these commands, you
will receive a “Connection timed out” error:

curl -m 2 $INSTANCE_IP_1
curl -m 2 $INSTANCE_IP_2

4. Get your workstation’s public IPv4 address:
MY_IP_4=$(curl myip4.com | tr -d ' ')

5. Update your managed prefix list and add your workstation’s public IPv4 address
(see Figure 2-12):

aws ec2 modify-managed-prefix-list \
 --prefix-list-id $PREFIX_LIST_ID \
 --current-version 1 \
 --add-entries Cidr=${MY_IP_4}/32,Description=my-workstation-ip

Figure 2-12. Security group rules referencing a prefix list

76 | Chapter 2: Networking

https://oreil.ly/iQrPY

There is an AWS-managed prefix list for S3.

You should see output similar to the following:
{
 "PrefixList": {
 "PrefixListId": "pl-013217b85144872d2",
 "AddressFamily": "IPv4",
 "State": "modify-in-progress",
 "PrefixListArn": "arn:aws:ec2:us-east-1:111111111111:prefix-list/
pl-013217b85144872d2",
 "PrefixListName": "allowed-us-east-1-cidrs",
 "MaxEntries": 10,
 "Version": 1,
 "OwnerId": "111111111111"
 }
}

6. For each application’s security group, add an inbound rule that allows TCP port
80 access from the prefix list:

aws ec2 authorize-security-group-ingress \
 --group-id $INSTANCE_SG_1 --ip-permissions \
IpProtocol=tcp,FromPort=80,ToPort=80,PrefixListIds="[{Description=http-from-
prefix-list,PrefixListId=$PREFIX_LIST_ID}]"

aws ec2 authorize-security-group-ingress \
 --group-id $INSTANCE_SG_2 --ip-permissions \
IpProtocol=tcp,FromPort=80,ToPort=80,PrefixListIds="[{Description=http-from-
prefix-list,PrefixListId=$PREFIX_LIST_ID}]"

Find out where your managed list is used. This command is
helpful for auditing where prefix lists are used throughout
your AWS environments:

aws ec2 get-managed-prefix-list-associations \
 --prefix-list-id $PREFIX_LIST_ID

Validation checks. Test access to both instances from your workstation’s PC:
curl -m 2 $INSTANCE_IP_1

curl -m 2 $INSTANCE_IP_2

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

2.8 Simplifying Management of CIDRs in Security Groups with Prefix Lists | 77

https://oreil.ly/wcdzB
https://github.com/AWSCookbook/Networking

Discussion
If you need to update the list of CIDR blocks allowing ingress communication to your
instances, you can simply update the prefix list instead of the security group. This
helps reduce the amount of maintenance overhead if you need to use this type of
authorization across many security groups; you need to update the prefix list in only a
single location rather than modify every security group authorization that requires
this network security configuration. You can also use prefix lists for egress security
group authorizations.

Prefix lists can be associated with route tables; they are also useful for blackholing
traffic (prohibiting access to a specific list of IP addresses and CIDR blocks) and can
also simplify your route table configuration. For example, you could maintain a pre‐
fix list of branch office CIDR ranges and use them to implement your routing and
security group authorizations, simplifying your management for network flow and
security configuration. An example of associating a prefix list with a route looks like
this:

aws ec2 create-route --route-table-id $Sub1RouteTableID \
 --destination-prefix-list-id $PREFIX_LIST_ID \
 --instance-id $INSTANCE_ID

Prefix lists also provide a powerful versioning mechanism, allowing you to quickly
roll back to previous known working states. If, for example, you updated a prefix list
and found that the change broke some existing functionality, you can roll back to a
previous version of a prefix list to restore previous functionality while you investigate
the root cause of the error. If you decide to roll back to a previous version for some
reason, first describe the prefix list to get the current version number:

aws ec2 describe-prefix-lists --prefix-list-ids $PREFIX_LIST_ID

Challenge
Revert the active version of the prefix list so that your workstation IP is removed and
you can no longer access either application. (Hint: in the repository.)

2.9 Controlling Network Access to S3 from Your VPC Using
VPC Endpoints
Problem
Resources within your VPC should be able to access only a specific S3 bucket. Also,
this S3 traffic should not traverse the internet for security reasons and to keep band‐
width costs low.

78 | Chapter 2: Networking

https://oreil.ly/KgSne

Solution
You will create a gateway VPC endpoint for S3, associate it with a route table, and
customize its policy document (see Figure 2-13).

Figure 2-13. Controlling S3 access with gateway endpoints

Prerequisites

• VPC with isolated subnets in two AZs and associated route tables
• One EC2 instance in a public subnet that you can access for testing
• An existing S3 bucket that you want to limit access to

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

2.9 Controlling Network Access to S3 from Your VPC Using VPC Endpoints | 79

https://github.com/AWSCookbook/Networking

Steps

1. Create a gateway endpoint in your VPC and associate the endpoint with the iso‐
lated route tables:

END_POINT_ID=$(aws ec2 create-vpc-endpoint \
 --vpc-id $VPC_ID \
 --service-name com.amazonaws.$AWS_REGION.s3 \
 --route-table-ids $RT_ID_1 $RT_ID_2 \
 --query VpcEndpoint.VpcEndpointId --output text)

2. Create a template endpoint policy file called policy.json with the following content
(included in the repository). This is used to limit access to only the S3 bucket that
you created in the preparation steps:

{
 "Statement": [
 {
 "Sid": "RestrictToOneBucket",
 "Principal": "*",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::S3BucketName",
 "arn:aws:s3:::S3BucketName/*"]
 }
]
}

3. Insert your S3_BUCKET_NAME in the policy-template.json file:
sed -e "s/S3BucketName/${BUCKET_NAME}/g" \
 policy-template.json > policy.json

4. Modify the endpoint’s policy document. Endpoint policies limit or restrict the
resources that can be accessed through the VPC endpoint:

aws ec2 modify-vpc-endpoint \
 --policy-document file://policy.json \
 --vpc-endpoint-id $END_POINT_ID

Validation checks. Output the name of your S3 Bucket so that you can refer to it when
you are connected to your EC2 Instance:

echo $BUCKET_NAME

Connect to the EC2 instance by using SSM Session Manager (see Recipe 1.6):
aws ssm start-session --target $INSTANCE_ID

Set the Region by grabbing the value from the instance’s metadata:
export AWS_DEFAULT_REGION=$(curl \
--silent http://169.254.169.254/latest/dynamic/instance-identity/document \
| awk -F'"' ' /region/ {print $4}')

80 | Chapter 2: Networking

Retrieve the allowed S3 bucket name:
BUCKET=$(aws ssm get-parameters \
 --names "Cookbook209S3Bucket" \
 --query "Parameters[*].Value" --output text)

Test access by trying to copy a file from your S3 bucket:
aws s3 cp s3://${BUCKET_NAME}/test_file /home/ssm-user/

You should see output similar to the following:
download: s3://cdk-aws-cookbook-209-awscookbookrecipe20979239201-115xoj77fgxoh/
test_file to ./test_file

The following command is attempting to list a public S3 bucket.
However, because of the endpoint policy we have configured, it is
expected that this will fail.

Try to list the contents of a public S3 bucket associated with the OpenStreetMap
Foundation Public Dataset Initiative:

aws s3 ls s3://osm-pds/

You should see output similar to the following:
An error occurred (AccessDenied) when calling the ListObjectsV2 operation: Access
Denied

Exit the Session Manager session:
exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Using an endpoint policy is a useful security implementation to restrict access to S3
buckets. This applies not only to S3 buckets owned by your account but also to all S3
buckets globally on AWS.

Recently, AWS announced support for S3 interface endpoints.
However, it is worth noting that while these are great for some use
cases (e.g., when you want to control traffic with security groups),
they are not ideal for this problem because of the costs associated
with interface endpoints.

2.9 Controlling Network Access to S3 from Your VPC Using VPC Endpoints | 81

https://github.com/AWSCookbook/Networking
https://oreil.ly/mBBsN
https://oreil.ly/1WUGl
https://oreil.ly/1WUGl

Per the VPC User Guide, Gateway VPC endpoints are free and used within your
VPC’s route tables to keep traffic bound for AWS services within the AWS backbone
network without traversing the network. This allows you to create VPCs that do not
need internet gateways for applications that do not require them but need access to
other AWS services like S3 and DynamoDB. All traffic bound for these services will
be directed by the route table to the VPC endpoint rather than the public internet
route, since the VPC endpoint route table entry is more specific than the default
0.0.0.0/0 route.

S3 VPC endpoint policies leverage JSON policy documents that can be as fine-
grained as your needs require. You can use conditionals, source IP addresses, VPC
endpoint IDs, S3 bucket names, and more. For more information on the policy ele‐
ments available, see the support document.

Challenge
Modify the bucket policy for the S3 bucket to allow access only from the VPC end‐
point that you created. For some tips on this, check out the S3 User Guide.

2.10 Enabling Transitive Cross-VPC Connections Using
Transit Gateway
Problem
You need to implement transitive routing across all of your VPCs and share internet
egress from a shared services VPC to your other VPCs to reduce the number of NAT
gateways you have to deploy.

Solution
Deploy an AWS transit gateway (TGW) and configure transit gateway VPC attach‐
ments for all of your VPCs. Update your VPC route tables of each VPC to send all
nonlocal traffic to the transit gateway and enable sharing of the NAT gateway in your
shared services VPC for all of your spoke VPCs (see Figure 2-14).

82 | Chapter 2: Networking

https://oreil.ly/LAWFo
https://oreil.ly/M8q8J
https://oreil.ly/tEajj

Figure 2-14. AWS transit gateway with three VPCs

2.10 Enabling Transitive Cross-VPC Connections Using Transit Gateway | 83

The default initial quota of VPCs per Region per account is five.
This solution will deploy three VPCs. If you already have more
than two VPCs, you can decide among four choices: deploy to a
different Region, delete any existing VPCs that are no longer
needed, use a test account, or request a quota increase.

Prerequisites

• Three VPCs in the same Region with private and isolated subnet tiers
• Internet gateway attached to a VPC (VPC2 in our example)

— NAT gateway deployed in public subnets

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a transit gateway:
TGW_ID=$(aws ec2 create-transit-gateway \
 --description AWSCookbook210 \
 —-
options=AmazonSideAsn=65010,AutoAcceptSharedAttachments=enable,DefaultRouteTableA
ssociation=enable,\
 DefaultRouteTablePropagation=enable,VpnEcmpSupport=enable,DnsSupport=enable \
 --output text --query TransitGateway.TransitGatewayId)

2. Wait until the transit gateway’s state has reached available. This may take several
minutes:

aws ec2 describe-transit-gateways \
 --transit-gateway-ids $TGW_ID \
 --output text --query TransitGateways[0].State

3. Create a transit gateway attachment for VPC1:
TGW_ATTACH_1=$(aws ec2 create-transit-gateway-vpc-attachment \
 --transit-gateway-id $TGW_ID \
 --vpc-id $VPC_ID_1 \
 --subnet-ids $ATTACHMENT_SUBNETS_VPC_1 \
 --query TransitGatewayVpcAttachment.TransitGatewayAttachmentId \
 --output text)

4. Create a transit gateway attachment for VPC2:
TGW_ATTACH_2=$(aws ec2 create-transit-gateway-vpc-attachment \
 --transit-gateway-id $TGW_ID \
 --vpc-id $VPC_ID_2 \
 --subnet-ids $ATTACHMENT_SUBNETS_VPC_2 \
 --query TransitGatewayVpcAttachment.TransitGatewayAttachmentId \
 --output text)

5. Create a transit gateway attachment for VPC3:

84 | Chapter 2: Networking

https://oreil.ly/T4WD8
https://oreil.ly/cFRs5
https://github.com/AWSCookbook/Networking

TGW_ATTACH_3=$(aws ec2 create-transit-gateway-vpc-attachment \
 --transit-gateway-id $TGW_ID \
 --vpc-id $VPC_ID_3 \
 --subnet-ids $ATTACHMENT_SUBNETS_VPC_3 \
 --query TransitGatewayVpcAttachment.TransitGatewayAttachmentId \
 --output text)

6. Add routes for all private subnets in VPCs 1 and 3 to target the TGW for destina‐
tions of 0.0.0.0/0. This enables consolidated internet egress through the NAT
gateway in VPC2 and transitive routing to other VPCs:

aws ec2 create-route --route-table-id $VPC_1_RT_ID_1 \
 --destination-cidr-block 0.0.0.0/0 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_1_RT_ID_2 \
 --destination-cidr-block 0.0.0.0/0 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_3_RT_ID_1 \
 --destination-cidr-block 0.0.0.0/0 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_3_RT_ID_2 \
 --destination-cidr-block 0.0.0.0/0 \
 --transit-gateway-id $TGW_ID

7. Now add a route to your 10.10.0.0/24 supernet in the route tables associated with
the private subnets of VPC2, pointing its destination to the transit gateway. This
is more specific than the 0.0.0.0/0 destination that is already present and there‐
fore takes higher priority in routing decisions. This directs traffic bound for
VPCs 1, 2, and 3 to the TGW:

aws ec2 create-route --route-table-id $VPC_2_RT_ID_1 \
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_2_RT_ID_2 \
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

8. Query for the NAT gateways in use; we’ll need these to add routes to them for
internet traffic:

NAT_GW_ID_1=$(aws ec2 describe-nat-gateways \
 --filter "Name=subnet-id,Values=$VPC_2_PUBLIC_SUBNET_ID_1" \
 --output text --query NatGateways[*].NatGatewayId)

NAT_GW_ID_2=$(aws ec2 describe-nat-gateways \
 --filter "Name=subnet-id,Values=$VPC_2_PUBLIC_SUBNET_ID_2" \
 --output text --query NatGateways[*].NatGatewayId)

9. Add a route for the attachment subnet in VPC2 to direct internet traffic to the
NAT gateway:

aws ec2 create-route --route-table-id $VPC_2_ATTACH_RT_ID_1 \
 --destination-cidr-block 0.0.0.0/0 \

2.10 Enabling Transitive Cross-VPC Connections Using Transit Gateway | 85

https://oreil.ly/AVrM7

 --nat-gateway-id $NAT_GW_ID_1

aws ec2 create-route --route-table-id $VPC_2_ATTACH_RT_ID_2 \
 --destination-cidr-block 0.0.0.0/0 \
 --nat-gateway-id $NAT_GW_ID_2

10. Add a static route to the route tables associated with the public subnet in VPC2.
This enables communication back to the TGW to allow sharing the NAT gateway
with all attached VPCs:

aws ec2 create-route --route-table-id $VPC_2_PUBLIC_RT_ID_1 \
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_2_PUBLIC_RT_ID_2 \
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

11. Add a static route for the private subnets in VPC2 to allow communication back
to the TGW attachments from VPC2 private subnets:

aws ec2 create-route --route-table-id $VPC_2_RT_ID_1 \
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_2_RT_ID_2 \
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

12. Get the transit route table ID:
TRAN_GW_RT=$(aws ec2 describe-transit-gateways \
 --transit-gateway-ids $TGW_ID --output text \
 --query TransitGateways[0].Options.AssociationDefaultRouteTableId)

13. Add a static route in the transit gateway route table for VPC2 (with the NAT
gateways) to send all internet traffic over this path:

aws ec2 create-transit-gateway-route \
 --destination-cidr-block 0.0.0.0/0 \
 --transit-gateway-route-table-id $TRAN_GW_RT \
 --transit-gateway-attachment-id $TGW_ATTACH_2

Validation checks. Ensure your EC2 Instance 1 has registered with SSM. To check the
status use the following command, which should return the instance ID:

aws ssm describe-instance-information \
 --filters Key=ResourceType,Values=EC2Instance \
 --query "InstanceInformationList[].InstanceId" --output text

Connect to your EC2 instance by using SSM Session Manager:
aws ssm start-session --target $INSTANCE_ID_1

Test internet access:
ping -c 4 aws.amazon.com

You should see output similar to the following:

86 | Chapter 2: Networking

PING dr49lng3n1n2s.cloudfront.net (99.86.187.73) 56(84) bytes of data.
64 bytes from server-99-86-187-73.iad79.r.cloudfront.net (99.86.187.73): icmp_seq=1
ttl=238 time=3.44 ms
64 bytes from server-99-86-187-73.iad79.r.cloudfront.net (99.86.187.73): icmp_seq=2
ttl=238 time=1.41 ms
64 bytes from server-99-86-187-73.iad79.r.cloudfront.net (99.86.187.73): icmp_seq=3
ttl=238 time=1.43 ms
64 bytes from server-99-86-187-73.iad79.r.cloudfront.net (99.86.187.73): icmp_seq=4
ttl=238 time=1.44 ms

--- dr49lng3n1n2s.cloudfront.net ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 1.411/1.934/3.449/0.875 ms
sh-4.2$

Exit the Session Manager session:
exit

Challenge 1
You can limit which VPCs can access the internet through the NAT gateway in VPC2
by modifying the route tables. Try adding a more specific route of 10.10.0.0/24
instead of the 0.0.0.0/0 destination for VPC3 to see how you can customize the inter‐
net egress sharing.

Challenge 2
You may not want to allow VPC1 and VPC3 to be able to communicate with each
other. Try adding a new transit gateway route table, updating the attachments to
accomplish this.

Challenge 3
In the solution, you deployed three VPCs each of /26 subnet size within the
10.10.0.0/24 supernet. There is room for an additional /26 subnet. Try adding an
additional VPC with a /26 CIDR with subnets and route tables; then attach it to the
transit gateway.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Transit gateways allow you to quickly implement a multi-VPC hub-and-spoke net‐
work topology for your network in AWS. You may have had to use many peering
connections to achieve similar results or used third-party software on instances in a
transit VPC architecture. Transit gateway also supports cross-region peering of
transit gateways and cross-account sharing via Resource Access Manager (RAM).

2.10 Enabling Transitive Cross-VPC Connections Using Transit Gateway | 87

https://github.com/AWSCookbook/Networking
https://oreil.ly/VKW2V
https://oreil.ly/LUxIm
https://oreil.ly/kD1pI
https://oreil.ly/kD1pI
https://oreil.ly/qovsS

When you attached your VPCs to the transit gateway, you used subnets in each AZ
for resiliency. You also used dedicated “attachment” subnets for the VPC attachments.
You can attach the transit gateway to any subnet(s) within your VPC. Using a dedica‐
ted subnet for these attachments gives you flexibility to granularly define subnets you
choose to route to the TGW. That is, if you attached the private subnet, it would
always have a route to the TGW; this might not be intended based on your use case.
In your case, you configured routes for your private subnets to send all traffic to the
transit gateway which enabled sharing of the NAT gateway and internet gateway; this
results in cost savings over having to deploy multiple NAT gateways (e.g., one for
each VPC).

You can connect your on-premises network or any virtual network directly to a
transit gateway, as it acts as a hub for all of your AWS network traffic. You can con‐
nect IPsec VPNs, Direct Connect (DX), and third-party network appliances to the
transit gateway to extend your AWS network to non-AWS networks. This also allows
you to consolidate VPN connections and/or Direct Connect connections by connect‐
ing one directly to the transit gateway to access all of your VPCs in a Region. Border
Gateway Protocol (BGP) is supported by TGW over these types of network exten‐
sions for dynamic route updates in both directions.

Challenge
Create a fourth VPC and attach your TGW to subnets in it. Allow it to use the exist‐
ing NAT gateway to reach the internet.

2.11 Peering Two VPCs Together for Inter-VPC Network
Communication
Problem
You need to enable two instances in separate VPCs to communicate with each other
in a simple and cost-effective manner.

Solution
Request a peering connection between two VPCs, accept the peering connection,
update the route tables for each VPC subnet, and finally test the connection from one
instance to another (see Figure 2-15).

88 | Chapter 2: Networking

https://oreil.ly/13s7R
https://oreil.ly/pbqwP
https://oreil.ly/pbqwP

Figure 2-15. Communication between instances in peered VPCs

Prerequisites

• Two VPCs, each with isolated subnets in two AZs and associated route tables
• In each VPC, one EC2 instance that you can access for testing

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a VPC peering connection to connect VPC1 to VPC2:
VPC_PEERING_CONNECTION_ID=$(aws ec2 create-vpc-peering-connection \
 --vpc-id $VPC_ID_1 --peer-vpc-id $VPC_ID_2 --output text \
 --query VpcPeeringConnection.VpcPeeringConnectionId)

2. Accept the peering connection:
aws ec2 accept-vpc-peering-connection \
 --vpc-peering-connection-id $VPC_PEERING_CONNECTION_ID

VPC peering connections can be established from one AWS
account to a different AWS account. If you choose to peer
VPCs across AWS accounts, you need to ensure you have the
correct IAM configuration to create and accept the peering
connection within each account.

2.11 Peering Two VPCs Together for Inter-VPC Network Communication | 89

https://github.com/AWSCookbook/Networking
https://oreil.ly/pWmDE

3. In the route tables associated with each subnet, add a route to direct traffic des‐
tined for the peered VPC’s CIDR range to the VPC_PEERING_CONNECTION_ID:

aws ec2 create-route --route-table-id $VPC_SUBNET_RT_ID_1 \
 --destination-cidr-block $VPC_CIDR_2 \
 --vpc-peering-connection-id $VPC_PEERING_CONNECTION_ID

aws ec2 create-route --route-table-id $VPC_SUBNET_RT_ID_2 \
 --destination-cidr-block $VPC_CIDR_1 \
 --vpc-peering-connection-id $VPC_PEERING_CONNECTION_ID

4. Add an ingress rule to instance 2’s security group that allows ICMPv4 access
from instance 1’s security group:

aws ec2 authorize-security-group-ingress \
 --protocol icmp --port -1 \
 --source-group $INSTANCE_SG_1 \
 --group-id $INSTANCE_SG_2

Validation checks. Get instance 2’s IP:
aws ec2 describe-instances --instance-ids $INSTANCE_ID_2\
 --output text \
 --query Reservations[0].Instances[0].PrivateIpAddress

Ensure your EC2 instance 1 has registered with SSM. Use this command to check the
status:

aws ssm describe-instance-information \
 --filters Key=ResourceType,Values=EC2Instance \
 --query "InstanceInformationList[].InstanceId" --output text

Connect to your EC2 instance by using SSM Session Manager:
aws ssm start-session --target $INSTANCE_ID_1

Ping instance 2 from instance 1:
ping -c 4 <<INSTANCE_IP_2>>

Output:
PING 10.20.0.242 (10.20.0.242) 56(84) bytes of data.
64 bytes from 10.20.0.242: icmp_seq=1 ttl=255 time=0.232 ms
64 bytes from 10.20.0.242: icmp_seq=2 ttl=255 time=0.300 ms
64 bytes from 10.20.0.242: icmp_seq=3 ttl=255 time=0.186 ms
64 bytes from 10.20.0.242: icmp_seq=4 ttl=255 time=0.183 ms

--- 10.20.0.242 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3059ms
rtt min/avg/max/mdev = 0.183/0.225/0.300/0.048 ms

Exit the Session Manager session:
exit

90 | Chapter 2: Networking

You can search for a security group ID in the VPC console to show
all security groups that reference others. You can also run the aws
ec2 describe-security-group-references CLI command to accom‐
plish this. This is helpful in gaining insight into which security
groups reference others. You can reference security groups in
peered VPCs owned by other AWS accounts but not located in
other Regions.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
VPC peering connections are nontransitive. Each VPC needs to peer with every other
VPC that they need to communicate with. This type of connection is ideal when you
might have a VPC hosting shared services that other VPCs need to access, while not
having the “spoke” VPCs communicate with one another.

In addition to the peering connections, you need to configure the route tables associ‐
ated with the VPC subnets to send traffic destined for the peered VPC’s CIDR to the
peering connection (PCX). In other words, to enable VPC1 to be able to communi‐
cate with VPC2, the destination route must be present in VPC1 and the return route
also must be present in VPC2.

If you were to add a third VPC to this recipe, and you needed all VPCs to be able to
communicate with one another, you would need to peer that third VPC with the pre‐
vious two and update all of the VPC route tables accordingly to allow for all of the
VPCs to have communication with one another. As you continue to add more VPCs
to a network architecture like this, you may notice that the number of peering con‐
nections and route table updates required begin to increase exponentially. Because of
this, transit gateway is a better choice for transitive VPC communication using transit
gateway route tables.

You can use VPC peering cross-account if needed, and you can also reference security
groups in peered VPCs in a similar way of referencing security groups within a single
VPC. This allows you to use the same type of strategy with how you manage security
groups across your AWS environment when using VPC peering.

Connecting VPCs together requires nonoverlapping CIDR ranges
in order for routing to work normally. The VPC route tables must
include a specific route directing traffic destined for the peered
VPC to the peering connection.

2.11 Peering Two VPCs Together for Inter-VPC Network Communication | 91

https://oreil.ly/BRCsd
https://oreil.ly/BRCsd
https://oreil.ly/BxIDv
https://oreil.ly/BxIDv
https://github.com/AWSCookbook/Networking
https://oreil.ly/0sJeK
https://oreil.ly/53awx
https://oreil.ly/53awx
https://oreil.ly/ce4M8
https://oreil.ly/3j1KN

Challenge
VPC peering connections can be established across AWS Regions. Connect a VPC in
another Region to the VPC you deployed in the Region used for the recipe.

92 | Chapter 2: Networking

https://oreil.ly/PAKmf

CHAPTER 3

Storage

3.0 Introduction
Many industries have put a heavy emphasis on cloud data storage technologies to
help facilitate increasing demands of data. Many options are available for data storage
to suit your needs, with seemingly infinite scale. Even with many new storage options
available in the cloud, Amazon S3 remains a powerful, fundamental building block
for so many use cases. It is amazing to think that it was released more than 15 years
ago. Over time, many features have been added and new storage services launched.
Multiple storage options are available to meet security requirements (e.g., key man‐
agement service [KMS] encryption) while reducing costs (e.g., S3 Intelligent-Tiering).
Ensuring that data is secured and available is a challenge that all developers and
architects face.

The storage services available on AWS allow for integration with other AWS services
to provide ways for developers and application architects who integrate with many
AWS services. These services can also be used to replace legacy storage systems you
run and operate with on-premises environments. For example:

• S3 can be used to automatically invoke Lambda functions on object operations
like upload.

• EFS can be used with EC2 to replace existing shared file systems provided by
Network File System (NFS) servers.

• FSx for Windows can be used to replace Windows-based file servers for your
EC2 workloads.

93

https://oreil.ly/nfIGt
https://oreil.ly/nfIGt
https://oreil.ly/qSEnc
https://aws.amazon.com/fsx/windows

• EBS replaces Fibre Channel and Internet Small Computer Systems Interface
(iSCSI) targets by providing block devices, and it offers many throughput options
to meet performance requirements.

In this chapter, you will use some of these services so that you can start building intel‐
ligent, scalable, and secure systems that have the potential to minimize costs and
operational overhead.

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” on page xvii to validate
your configuration and set up the required environment variables. Then, clone the
chapter code repository:

git clone https://github.com/AWSCookbook/Storage

3.1 Using S3 Lifecycle Policies to Reduce Storage Costs
Problem
You need to transition infrequently accessed objects to a more cost-effective storage
tier without impacting performance or adding operational overhead.

Solution
Create an S3 Lifecycle rule to transition objects to the S3 Infrequent Access (IA) stor‐
age class after a predefined time period of 30 days. Then apply this Lifecycle policy to
your S3 bucket (see Figure 3-1).

Figure 3-1. S3 Lifecycle rule configuration

94 | Chapter 3: Storage

Prerequisite

• An S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a lifecycle-rule.json file (provided in the repository) to use as the Lifecycle
policy that you will apply to your S3 bucket:

{
 "Rules": [
 {
 "ID": "Move all objects to Infrequent Access",
 "Prefix": "",
 "Status": "Enabled",
 "Transitions": [
 {
 "Date": "2015-11-10T00:00:00.000Z",
 "Days": 30,
 "StorageClass": "INFREQUENTLY_ACCESSED"
 }
]
 }
]
}

2. Apply the Lifecycle rule configuration:
aws s3api put-bucket-lifecycle-configuration \
 --bucket awscookbook301-$RANDOM_STRING \
 --lifecycle-configuration file://lifecycle-rule.json

A Lifecycle rule helps automate the transition to a different
storage class for some or all objects within a bucket (prefixes,
tags, and object names can all be used as filters for Lifecycle
rules). For a complete list of Lifecycle rule capabilities, see the
documentation.

Validation checks. Get the Lifecycle configuration for your bucket:
aws s3api get-bucket-lifecycle-configuration \
 --bucket awscookbook301-$RANDOM_STRING

(Optional) Copy an object to the bucket:
aws s3 cp book_cover.png s3://awscookbook301-$RANDOM_STRING

3.1 Using S3 Lifecycle Policies to Reduce Storage Costs | 95

https://github.com/AWSCookbook/Storage
https://oreil.ly/2sUzK

Check the storage class for the object:
aws s3api list-objects-v2 --bucket awscookbook301-$RANDOM_STRING

You should see output similar to the following:
{
 "Contents": [
 {
 "Key": "book_cover.png",
 "LastModified": "2021-06-16T02:30:06+00:00",
 "ETag": "\"d...9\"",
 "Size": 255549,
 "StorageClass": "STANDARD"
 }
]
}

You will see after 30 days that the storage class for the object is STANDARD_IA after
running the same command.

“Days” in the Transition action must be greater than or equal to 30
for StorageClass STANDARD_IA. Other storage tiers allow for
shorter transition times to meet your requirements. For a list of all
of the storage classes available with transition times for Lifecycle
rules, see the support document.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When you upload objects to an S3 bucket, if you do not specify the storage class, the
default Standard storage class is used. Amazon S3 has multiple storage classes avail‐
able that can be more cost-effective for long-term storage while also suiting your per‐
formance and resiliency requirements. If you cannot change your application to spec‐
ify storage tiers for object uploads, Lifecycle rules can help automate the transition to
your desired storage class. Lifecycle rules can be applied to some or all objects within
a bucket with a filter.

As the name may imply, S3 Infrequent Access is a storage class that provides reduced
cost (compared to the S3 Standard storage class) for data stored for objects that you
rarely access. This provides the same level of redundancy for your data within a
Region for a reduced cost, but the cost associated with accessing objects is slightly
higher. If your data access patterns are unpredictable, and you would still like to opti‐
mize your S3 storage for cost, performance, and resiliency, take a look at S3
Intelligent-Tiering in the next recipe.

96 | Chapter 3: Storage

https://oreil.ly/6jPLh
https://github.com/AWSCookbook/Storage
https://oreil.ly/ZDWtF

Challenge 1
Configure the Lifecycle rule to apply only to objects based on object-level tags.

Challenge 2
Configure the Lifecycle rule to transition objects to a Deep Archive.

3.2 Using S3 Intelligent-Tiering Archive Policies to
Automatically Archive S3 Objects
Problem
You need to automatically transition infrequently accessed objects to a different
archive storage class without impacting performance or adding operational overhead.

Solution
Create a policy to automate the archival of S3 objects to the S3 Glacier archive based
on access patterns for objects that are more than 90 days old. Apply it to your S3
bucket, as shown in Figure 3-2.

Figure 3-2. S3 Intelligent-Tiering archive

Prerequisite

• An S3 bucket

3.2 Using S3 Intelligent-Tiering Archive Policies to Automatically Archive S3 Objects | 97

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a file named tiering.json for the configuration (file provided in the
repository):

{
 "Id": "awscookbook302",
 "Status": "Enabled",
 "Tierings": [
 {
 "Days": 90,
 "AccessTier": "ARCHIVE_ACCESS"
 }
]
}

2. Apply the Intelligent-Tiering configuration:
aws s3api put-bucket-intelligent-tiering-configuration \
 --bucket awscookbook302-$RANDOM_STRING \
 --id awscookbook302 \
 --intelligent-tiering-configuration "$(cat tiering.json)"

Ensure that your use case and applications can support the
increased retrieval time associated with the S3 Glacier archive
storage tier. You can configure your application to use an
expedited retrieval mechanism supported by S3 Glacier
archive to decrease the retrieval time but increase cost. For a
complete list of archive times and how to configure expedited
access, please refer to the support document.

Validation checks. Get the configuration of Intelligent-Tiering for your bucket:
aws s3api get-bucket-intelligent-tiering-configuration \
 --bucket awscookbook302-$RANDOM_STRING \
 --id awscookbook302

Copy an object to the bucket:
aws s3 cp ./book_cover.png s3://awscookbook302-$RANDOM_STRING

Check the storage class for the object:
aws s3api list-objects-v2 --bucket awscookbook302-$RANDOM_STRING

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

98 | Chapter 3: Storage

https://github.com/AWSCookbook/Storage
https://oreil.ly/tru0v
https://github.com/AWSCookbook/Networking

Discussion
An S3 Intelligent-Tiering archive provides an automatic mechanism to transition
“cool” (less frequently accessed) objects to an S3 Glacier archive. You can define the
length of time required for an object to transition to the archive (between 90 and 730
days). This feature helps with meeting long-term retention requirements that you
may have for compliance. The storage tiers available within S3 Intelligent-Tiering
map directly to S3 tiers:

Frequent Access
Optimized for frequent access (S3 Standard)

Infrequent Access
Optimized for infrequent access (S3 Standard-IA)

Archive Access
Archive purposes (S3 Glacier)

Deep Archive Access
Long-term retention purposes (S3 Glacier Deep Archive)

This archive configuration is separate from the main S3 Intelligent-Tiering tier con‐
figuration that you place on objects, as this is a bucket-specific configuration. In the
previous recipe, you configured a Lifecycle rule to configure all objects within a
bucket to transition to the S3 Intelligent-Tiering storage tier. This recipe adds addi‐
tional configuration to transition objects to S3 archive tiers based on your configura‐
tion. You can use either of these methods separately or both concurrently to meet
your own requirements.

S3 tiers are object-specific, which differs from the Intelligent-
Tiering archive being bucket-specific. You can filter an archive con‐
figuration to apply only to certain prefixes, object tags, and object
names if you wish to include or exclude objects in a configuration.
For more information, see the support document.

Challenge 1
Configure the Intelligent-Tiering archive to send objects that are older than one year
to the Glacier Deep Archive tier.

Challenge 2
Configure the Intelligent-Tiering archive to use object-level tags and configure an
object with a tag that matches your configuration.

3.2 Using S3 Intelligent-Tiering Archive Policies to Automatically Archive S3 Objects | 99

https://aws.amazon.com/s3/glacier
https://oreil.ly/WIpqW

3.3 Replicating S3 Buckets to Meet Recovery Point
Objectives
Problem
Your company’s data security policy mandates that objects be replicated within the
same Region to meet a recovery point objective of 15 minutes.

Solution
First, create source and destination S3 buckets with versioning enabled. Then create
an IAM role and attach an IAM policy that allows S3 to copy objects from the source
to the destination bucket. Finally, create an S3 replication policy that references the
IAM role, and apply that policy to the source bucket, as shown in Figure 3-3.

Figure 3-3. S3 bucket replication

100 | Chapter 3: Storage

Prerequisite

• An S3 bucket with versioning enabled that you will use as your source

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create the destination S3 bucket:
aws s3api create-bucket --bucket awscookbook303-dst-$RANDOM_STRING

2. Enable versioning for the destination S3 bucket:
aws s3api put-bucket-versioning \
 --bucket awscookbook303-dst-$RANDOM_STRING \
 --versioning-configuration Status=Enabled

3. Create a file named s3-assume-role-policy.json with the following content (file
provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

4. Create an IAM role using the statement in the provided assume-role-policy.json
file using this command:

ROLE_ARN=$(aws iam create-role --role-name AWSCookbook303S3Role \
 --assume-role-policy-document file://s3-assume-role-policy.json \
 --output text --query Role.Arn)

5. Create a file named s3-perms-policy-template.json with the following content (file
provided in the repository) to allow S3 replication access to your source and des‐
tination buckets:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObjectVersionForReplication",
 "s3:GetObjectVersionAcl",
 "s3:GetObjectVersionTagging"
],
 "Resource":[

3.3 Replicating S3 Buckets to Meet Recovery Point Objectives | 101

https://github.com/AWSCookbook/Networking

 "arn:aws:s3:::SRCBUCKET/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListBucket",
 "s3:GetReplicationConfiguration"
],
 "Resource":[
 "arn:aws:s3:::SRCBUCKET"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ReplicateObject",
 "s3:ReplicateDelete",
 "s3:ReplicateTags",
 "s3:GetObjectVersionTagging"
],
 "Resource":"arn:aws:s3:::DSTBUCKET/*"
 }
]
}

6. Replace the values for DSTBUCKET and SRCBUCKET in the file and save it as s3-
perms-policy.json:

sed -e "s/DSTBUCKET/awscookbook303-dst-${RANDOM_STRING}/g" \
 -e "s|SRCBUCKET|awscookbook303-src-${RANDOM_STRING}|g" \
 s3-perms-policy-template.json > s3-perms-policy.json

7. Attach the policy to the role you just created:
aws iam put-role-policy \
 --role-name AWSCookbook303S3Role \
 --policy-document file://s3-perms-policy.json \
 --policy-name S3ReplicationPolicy

8. Create a file named s3-replication-template.json with the following content to
configure a replication time of 15 minutes to your destination bucket:

{
 "Rules": [
 {
 "Status": "Enabled",
 "Filter": {
 "Prefix": ""
 },
 "Destination": {
 "Bucket": "arn:aws:s3:::DSTBUCKET",
 "Metrics": {
 "Status": "Enabled",
 "EventThreshold": {
 "Minutes": 15
 }
 },

102 | Chapter 3: Storage

 "ReplicationTime": {
 "Status": "Enabled",
 "Time": {
 "Minutes": 15
 }
 }
 },
 "DeleteMarkerReplication": {
 "Status": "Disabled"
 },
 "Priority": 1
 }
],
 "Role": "ROLEARN"
}

9. Replace the values for DSTBUCKET and ROLEARN in the file and save it as
s3-replication.json:

sed -e "s|ROLEARN|${ROLE_ARN}|g" \
 -e "s|DSTBUCKET|awscookbook303-dst-${RANDOM_STRING}|g" \
 s3-replication-template.json > s3-replication.json

10. Configure the replication policy for the source S3 bucket:
aws s3api put-bucket-replication \
 --replication-configuration file://s3-replication.json \
 --bucket awscookbook303-src-${RANDOM_STRING}

Validation checks. View the replication configuration for the source bucket:
aws s3api get-bucket-replication \
 --bucket awscookbook303-src-${RANDOM_STRING}

Copy an object to the source bucket:
aws s3 cp ./book_cover.png s3://awscookbook303-src-$RANDOM_STRING

View the replication status for the file that you uploaded to the source bucket:
aws s3api head-object --bucket awscookbook303-src-${RANDOM_STRING} \
 --key book_cover.png

You should see output similar to the following:
{
 "AcceptRanges": "bytes",
 "LastModified": "2021-06-20T00:17:25+00:00",
 "ContentLength": 255549,
 "ETag": "\"d<<>>d\"",
 "VersionId": "I<>>X",
 "ContentType": "image/png",
 "Metadata": {},
 "ReplicationStatus": "PENDING"
}

3.3 Replicating S3 Buckets to Meet Recovery Point Objectives | 103

View the replication status after 15 minutes and confirm that ReplicationStatus is
COMPLETED, similar to the following:

{
 "AcceptRanges":"bytes",
 "ContentType":"image/png",
 "LastModified":"2021-06-20T00:17:41+00:00",
 "ContentLength":255549,
 "ReplicationStatus":"COMPLETED",
 "VersionId":"I<>>X",
 "ETag":\"d<<>>d\"",
 "Metadata":{}
}

You can also view the replication metrics in the AWS Console.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
If you are an engineer, developer, or architect working on AWS, there is a good
chance you will end up using S3. You may have to implement some sort of replication
on S3 for your applications; S3 offers two types of replication to meet your specific
needs: Same-Region Replication (SRR) and Cross-Region Replication (CRR). The
replication time is a configurable parameter of S3 Replication Time Control (S3 RTC)
and is documented to meet a 15-minute recovery point objective (RPO) backed by a
service level agreement (SLA).

SRR uses an IAM role, a source and destination bucket, and a replication configura‐
tion that references the role and buckets. You use SRR in this recipe to configure a
one-way replication; you can use SRR to facilitate many types of use cases:

• Log aggregation to a central bucket for indexing
• Replication of data between production and test environments
• Data redundancy while retaining object metadata
• Designing redundancy around data-sovereignty and compliance requirements
• Backup and archival purposes

104 | Chapter 3: Storage

https://oreil.ly/jlcu1
https://github.com/AWSCookbook/Storage
https://oreil.ly/oxTcA
https://aws.amazon.com/s3/sla-rtc

CRR uses a similar IAM role, a source and destination bucket, and a replication con‐
figuration that references the role and buckets. You can use CRR to extend the possi‐
bilities of what SRR enables:

• Meet requirements for data storage and archival across Regions
• Locate similar datasets closer to your regional compute and access needs to

reduce latency

S3 buckets that have versioning add markers to objects that you
have deleted. Both types of S3 replication are able to replicate
delete markers to your target bucket if you choose. For more infor‐
mation, see the support document.

Challenge 1
Create an S3 bucket in another Region and replicate the source bucket to that as well.

Challenge 2
You can replicate specific paths and prefixes using a filter. Apply a filter so that only
objects under a certain prefix (e.g., protected/) are replicated.

3.4 Observing S3 Storage and Access Metrics Using
Storage Lens
Problem
You need to gain observability into the usage patterns of your S3 buckets.

Solution
Configure S3 Storage Lens to provide observability and analytics about your S3
usage, as shown in Figure 3-4.

Figure 3-4. Configuring S3 Storage Lens for S3 observability

3.4 Observing S3 Storage and Access Metrics Using Storage Lens | 105

https://oreil.ly/2sIL5

Prerequisite

• S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

Per the documentation: You can’t use your account’s root user cre‐
dentials to view Amazon S3 Storage Lens dashboards.

1. From the S3 console, select S3 Storage Lens from the navigation pane on the left.
2. Click “Create dashboard.”

All AWS accounts have a default dashboard associated with
them that shows the free metrics available through S3 Storage
Lens. Enabling advanced metrics gives you deeper insights
into your S3 usage and also provides cost-savings recommen‐
dations you can take action on to optimize for cost. You can
use the default dashboard and/or create your own. The rest of
these steps will show you how to create your own.

3. Give your dashboard a name, as shown in Figure 3-5.

106 | Chapter 3: Storage

https://github.com/AWSCookbook/Storage
https://oreil.ly/Je1u0

Figure 3-5. S3 Storage Lens dashboard creation

4. Include all of your buckets and Regions (use the default values) for the “Dash‐
board scope” (see Figure 3-6).

Figure 3-6. Dashboard scope

3.4 Observing S3 Storage and Access Metrics Using Storage Lens | 107

5. Enable “Advanced metrics and recommendations,” keeping the default values, as
shown in Figure 3-7.

Figure 3-7. Selecting advanced metrics

6. Choose the defaults for Export settings (no export).

You can enable an automated export to periodically export
your metrics to CSV and Apache Parquet formats and send
them to an S3 bucket of your choice to run your own reports
and visualizations.

7. Click “Create dashboard,” and then view your dashboard from the dashboard
selection.

It may take up to 48 hours for advanced metrics to begin accu‐
mulating for your usage and access patterns. In the meantime,
you can view the default dashboard for the free metrics associ‐
ated with your S3 usage for all of your buckets in your
account.

Validation checks. Open the Storage Lens and view the dashboard that you config‐
ured. You should see metrics that correspond to your S3 usage. A sample is shown in
Figure 3-8.

108 | Chapter 3: Storage

Figure 3-8. Sample S3 Storage Lens dashboard

You can drill down into “Cost efficiency” and “Data protection”
metrics from the dashboard. After some time, you will be able to
view historical data that allows you to take action on moving your
objects to storage tiers that meet your needs for data access pat‐
terns and availability requirements.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
S3 was one of the first AWS services, and as a result, many customers have been using
S3 for a very long time. As customer storage usage grew exponentially, the ability to
analyze what is being stored became a clear, desired capability. S3 Storage Lens gives
you the ability to “see” into your S3 usage for your AWS accounts. Analyzing bucket
usage, observing storage costs, and discovering anomalies (e.g., undeleted multipart
upload fragments) are just a few of the many use cases S3 Storage Lens provides.

With Storage Lens, you can discover where your objects are being stored with a visual
dashboard backed by a powerful analytics engine so that you can make adjustments
to optimize for cost without impacting performance. You can also enable advanced
metrics on your dashboard to gain deeper insights and cost-savings recommenda‐
tions for your S3 buckets.

S3 Storage Lens uses metrics to help you visualize your usage and
activity. There are free metrics available and advanced metrics that
also give you recommendations on your usage. For more informa‐
tion about the different types of metrics and their associated costs,
see the support document.

3.4 Observing S3 Storage and Access Metrics Using Storage Lens | 109

https://github.com/AWSCookbook/Storage
https://oreil.ly/6XLUt
https://oreil.ly/6XLUt
https://oreil.ly/HQcLH

Challenge 1
Use Storage Lens findings to observe metrics and set an alert to continuously monitor
your usage.

Challenge 2
Create a new storage lens configuration that looks at only specific buckets.

3.5 Configuring Application-Specific Access to S3 Buckets
with S3 Access Points
Problem
You have an S3 bucket and two applications. You need to grant read/write access to
one of your applications and read-only access to another application. You do not
want to use S3 bucket policies, as you expect to have to add additional applications
with fine-grained security requirements in the future.

Solution
Create two S3 access points and apply a policy granting the S3:PutObject and
S3:GetObject actions to one of the access points and S3:GetObject to the other
access point. Then, configure your application to use the respective access point DNS
name (see Figure 3-9).

Figure 3-9. S3 access points for two applications using the same S3 bucket

Prerequisites

• VPC with isolated subnets created in two AZs and associated route tables.
• Two EC2 instances deployed. You will need the ability to connect to test access.
• S3 bucket.

110 | Chapter 3: Storage

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. In your VPC, create an access point for Application 1:
aws s3control create-access-point --name cookbook305-app-1 \
 --account-id $AWS_ACCOUNT_ID \
 --bucket $BUCKET_NAME --vpc-configuration VpcId=$VPC_ID

2. In your VPC, create an access point for Application 2:
aws s3control create-access-point --name cookbook305-app-2 \
 --account-id $AWS_ACCOUNT_ID \
 --bucket $BUCKET_NAME --vpc-configuration VpcId=$VPC_ID

3. Create a file named app-1-policy-template.json with the access point policy for
Application 1 to read/write with the following content (file provided in the
repository):

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "EC2_INSTANCE_PROFILE"
 },
 "Action": [ACTIONS],
 "Resource": "arn:aws:s3:AWS_REGION:AWS_ACCOUNT_ID:accesspoint/
ACCESS_POINT_NAME/object/*"
 }]
}

4. Use the sed command to replace the values in app-policy-template.json with your
EC2_INSTANCE_PROFILE, AWS_REGION, AWS_ACCOUNT_ID, ACCESS_POINT_NAME, and
ACTIONS values for Application 1:

sed -e "s/AWS_REGION/${AWS_REGION}/g" \
 -e "s|EC2_INSTANCE_PROFILE|${INSTANCE_ROLE_1}|g" \
 -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 -e "s|ACCESS_POINT_NAME|cookbook305-app-1|g" \
 -e "s|ACTIONS|\"s3:GetObject\",\"s3:PutObject\"|g" \
 app-policy-template.json > app-1-policy.json

3.5 Configuring Application-Specific Access to S3 Buckets with S3 Access Points | 111

https://github.com/AWSCookbook/Storage

5. Put the policy you created on the access point for Application 1:
aws s3control put-access-point-policy --account-id $AWS_ACCOUNT_ID \
 --name cookbook305-app-1 --policy file://app-1-policy.json

6. Use the sed command to replace the values in app-policy-template.json with your
EC2_INSTANCE_PROFILE, AWS_REGION, AWS_ACCOUNT_ID, ACCESS_POINT_NAME, and
ACTIONS values for Application 2:

sed -e "s/AWS_REGION/${AWS_REGION}/g" \
 -e "s|EC2_INSTANCE_PROFILE|${INSTANCE_ROLE_2}|g" \
 -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 -e "s|ACCESS_POINT_NAME|cookbook305-app-2|g" \
 -e "s|ACTIONS|\"s3:GetObject\"|g" \
 app-policy-template.json > app-2-policy.json

7. Put the policy you created on the access point for Application 2:
aws s3control put-access-point-policy --account-id $AWS_ACCOUNT_ID \
 --name cookbook305-app-2 --policy file://app-2-policy.json

You can use specific access points with AWS SDK and CLI in a
similar way. For example, the bucket name becomes the
following for SDK usage: https://[access_point_name]-
[accountID].s3-accesspoint.[region].amazonaws.com for URLs
and arn:aws:s3:[region]:[accountID]:

[access_point_name] as “bucket name” for CLI usage.
Here is a CLI example:

aws s3api get-object --key object.zip \
 --bucket \
 arn:aws:s3:us-east-1:111111111111:access_point_name object.zip

8. Follow this guide to modifying the bucket policy so that you delegate control to
the access points.

Validation checks. Connect to the EC2 instance 1 by using SSM Session Manager (see
Recipe 1.6):

aws ssm start-session --target $INSTANCE_ID_1

Set your AWS account ID from the instance’s metadata:
export AWS_ACCOUNT_ID=$(curl --silent http://169.254.169.254/latest/dynamic/instance-
identity/document \
| awk -F'"' ' /accountId/ {print $4}')

Set the Region by grabbing the value from the instance’s metadata:
export AWS_DEFAULT_REGION=$(curl --silent http://169.254.169.254/latest/dynamic/
instance-identity/document \
| awk -F'"' ' /region/ {print $4}')

112 | Chapter 3: Storage

https://oreil.ly/kqXrN

Try to get an object from the S3 access point for Application 1:
aws s3api get-object --key Recipe305Test.txt \
 --bucket arn:aws:s3:$AWS_DEFAULT_REGION:$AWS_ACCOUNT_ID:accesspoint/cookbook305-
app-1 \
 /tmp/Recipe305Test.txt

Write an object to the S3 access point for Application 1:
aws s3api put-object \
 --bucket arn:aws:s3:$AWS_DEFAULT_REGION:$AWS_ACCOUNT_ID:accesspoint/cookbook305-
app-1 \
--key motd.txt --body /etc/motd

These two commands work for Application 1 because you config‐
ured read/write access for this access point.

Disconnect from EC2 instance 1:
exit

Connect to the EC2 instance 2 using SSM Session Manager (see Recipe 1.6):
aws ssm start-session --target $INSTANCE_ID_2

Set your AWS account ID from the instance’s metadata:
export AWS_ACCOUNT_ID=$(curl --silent http://169.254.169.254/latest/dynamic/instance-
identity/document \
| awk -F'"' ' /accountId/ {print $4}')

Set the Region by grabbing the value from the instance’s metadata:
export AWS_DEFAULT_REGION=$(curl --silent http://169.254.169.254/latest/dynamic/
instance-identity/document \
| awk -F'"' ' /region/ {print $4}')

Try to get an object from the S3 bucket:
aws s3api get-object --key Recipe305Test.txt \
 --bucket \
arn:aws:s3:$AWS_DEFAULT_REGION:$AWS_ACCOUNT_ID:accesspoint/cookbook305-app-2 \
 /tmp/Recipe305Test.txt

Try to put an object to the S3 bucket:
aws s3api put-object \
 --bucket arn:aws:s3:$AWS_DEFAULT_REGION:$AWS_ACCOUNT_ID:accesspoint/cookbook305-
app-2 \
--key motd2.txt --body /etc/motd

3.5 Configuring Application-Specific Access to S3 Buckets with S3 Access Points | 113

The first command works, and the second command fails, for
Application 2 because you configured read-only access for this
access point.

Disconnect from EC2 instance 2:
exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
S3 access points allow you to grant fine-grained access to specific principals, and they
can be easier to manage than S3 bucket policies. In this recipe, you created two access
points with different kinds of allowed actions and associated the access points with
specific roles using access point IAM policies. You verified that only specific actions
were granted to your EC2 instances when they were being used with the CLI and S3
access point.

To help you meet your security requirements, access points use IAM policies in a sim‐
ilar way that you use for other AWS services. You can also configure S3 Block Public
Access on access points to ensure that no public access is ever granted by mistake to
your S3 buckets (see Recipe 1.9). There is no additional cost for S3 access points.

Challenge
Configure a third access point and specify access to a specific object or prefix only.

3.6 Using Amazon S3 Bucket Keys with KMS
to Encrypt Objects
Problem
You need to encrypt S3 objects at rest with a Key Management Service (KMS)
customer-managed key (CMK) and ensure that all objects within the bucket are
encrypted with the KMS key in a cost-effective manner.

Solution
Create a KMS customer-managed key, configure your S3 bucket to use S3 bucket keys
referencing your AWS KMS CMK, and configure an S3 bucket policy requiring KMS
to be used for all S3:PutObject operations (see Figure 3-10).

114 | Chapter 3: Storage

https://github.com/AWSCookbook/Storage
https://oreil.ly/T6Wdq

Figure 3-10. Encrypting objects in S3

Prerequisite

• An S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a KMS key to use for your S3 bucket and store the key ID in an environ‐
ment variable:

KEY_ID=$(aws kms create-key \
 --tags TagKey=Name,TagValue=AWSCookbook306Key \
 --description "AWSCookbook S3 CMK" \
 --query KeyMetadata.KeyId \
 --output text)

2. Create an alias to reference your key:
aws kms create-alias \
 --alias-name alias/awscookbook306 \
 --target-key-id $KEY_ID

3. Configure the S3 bucket to use an S3 bucket key specifying your KMS key ID:
aws s3api put-bucket-encryption \
 --bucket awscookbook306-$RANDOM_STRING \
 --server-side-encryption-configuration '{
 "Rules": [
 {
 "ApplyServerSideEncryptionByDefault": {
 "SSEAlgorithm": "aws:kms",
 "KMSMasterKeyID": "${KEY_ID}"
 },

3.6 Using Amazon S3 Bucket Keys with KMS to Encrypt Objects | 115

https://github.com/AWSCookbook/Storage

 "BucketKeyEnabled": true
 }
]
 }'

4. Create a bucket policy template for the bucket to force encryption of all objects:
{
 "Version":"2012-10-17",
 "Id":"PutObjectPolicy",
 "Statement":[{
 "Sid":"DenyUnEncryptedObjectUploads",
 "Effect":"Deny",
 "Principal":"*",
 "Action":"s3:PutObject",
 "Resource":"arn:aws:s3:::BUCKET_NAME/*",
 "Condition":{
 "StringNotEquals":{
 "s3:x-amz-server-side-encryption":"aws:kms"
 }
 }
 }
]
}

5. Use the sed command to replace the value in bucket-policy-template.json with
your BUCKET_NAME:

sed -e "s|BUCKET_NAME|awscookbook306-${RANDOM_STRING}|g" \
 bucket-policy-template.json > bucket-policy.json

6. Apply the bucket policy to force encryption on all uploads:
aws s3api put-bucket-policy --bucket awscookbook306-$RANDOM_STRING \
 --policy file://bucket-policy.json

Validation checks. Upload an object to the S3 bucket with encryption from the com‐
mand line. You will see a successful upload:

aws s3 cp ./book_cover.png s3://awscookbook306-$RANDOM_STRING \
 --sse aws:kms --sse-kms-key-id $KEY_ID

Now, upload an object to the S3 bucket without encryption. You will notice that you
receive a KMS.NotFoundException error on the command line. This indicates that the
bucket policy you configured is working properly:

aws s3 cp ./book_cover.png s3://awscookbook306-$RANDOM_STRING

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When applying encryption to your S3 bucket, you could have chosen to use an AWS-
managed CMK that Amazon S3 creates in your AWS account and manages for you.

116 | Chapter 3: Storage

https://github.com/AWSCookbook/Storage

Like the customer-managed CMK, your AWS managed CMK is unique to your AWS
account and Region. Only Amazon S3 has permission to use this CMK on your
behalf. You can create, rotate, and disable auditable customer-managed CMKs from
the AWS KMS Console. The S3 documentation provides a comprehensive explana‐
tion of the differences between the types of encryption supported on S3.

When you encrypt your data, your data is protected, but you have to protect your
encryption key. Envelope encryption is the practice of encrypting plaintext data with a
data key, and then encrypting the data key under another key, as shown in
Figure 3-11.

Figure 3-11. S3 encryption process with KMS

Challenge
To validate that you can rotate your keys without impacting your data, put an object
into your bucket, trigger a rotation of the KMS CMK, and then get the object back
out of the S3 bucket and confirm it can decrypt properly (see this AWS article for a
hint).

3.7 Creating and Restoring EC2 Backups to Another
Region Using AWS Backup
Problem
You need to create a backup of an instance and restore it in another Region.

Solution
Create an on-demand backup with AWS Backup for your EC2 instance and restore
the backup from the vault by using the AWS Console, as shown in Figure 3-12.

3.7 Creating and Restoring EC2 Backups to Another Region Using AWS Backup | 117

https://oreil.ly/oGBG0
https://oreil.ly/gK0o0
https://oreil.ly/RVAFZ
https://oreil.ly/j3pWr

Figure 3-12. Creating and restoring EC2 backups

Prerequisites

• VPC with isolated subnets created in two AZs and associated route tables
• EC2 instance deployed

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

118 | Chapter 3: Storage

https://github.com/AWSCookbook/Storage

Steps

1. Navigate to the AWS Backup console and select “Protected resources” from the
lefthand navigation pane.

2. Click the “Create an on-demand backup” and select your EC2 instance, choose
defaults, and click “Create on-demand backup” (see Figure 3-13).

Figure 3-13. Creating on-demand backup

AWS Backup will create a role for its purposes that uses the
AWS Backup Managed Policy to perform the required actions
for backups. You can also create your own custom role if you
require. For more information, see this AWS document.

3.7 Creating and Restoring EC2 Backups to Another Region Using AWS Backup | 119

https://oreil.ly/WirFO

The backup starts in the backup jobs view, as shown in Figure 3-14.

Figure 3-14. View of backup job running

3. Wait for the backup to complete in your account (this may take a few moments
to reach the Completed status shown in Figure 3-15).

Figure 3-15. View of backup job completed

4. Select the Default Backup vault for your current Region and view your image
backup that you just completed.

5. Click the backup recovery point that you just created and choose Copy, as shown
in Figure 3-16.

120 | Chapter 3: Storage

Figure 3-16. Copy recovery point

6. Select your destination Region, keep all defaults, and click Copy (shown in
Figure 3-17). You will see the copy job enter Running status, as shown in
Figure 3-18.

3.7 Creating and Restoring EC2 Backups to Another Region Using AWS Backup | 121

Figure 3-17. Copy recovery point to a different AWS Region

Figure 3-18. Copy recovery point running

122 | Chapter 3: Storage

7. After the copy job has completed in a few minutes, in the AWS Console, select
the destination Region from the drop-down Region selector (top right of the
AWS console).

8. Select your default Backup vault and choose the backup you wish to restore, as
shown in Figure 3-19.

Figure 3-19. Restore recovery point

9. Under “Network settings,” select your instance type and VPC for your restore,
and click “Restore backup.” An example of inputs is shown in Figure 3-20.

Figure 3-20. Network settings for backup restoration

3.7 Creating and Restoring EC2 Backups to Another Region Using AWS Backup | 123

10. You can monitor the progress of the restore under the “Restore jobs” tab of the
Jobs section in the console, shown in Figure 3-21.

Figure 3-21. Recovery point restore job running

Validation checks. Browse to the EC2 console to view your running instance in your
destination Region. This EC2 instance is a copy of your original instance.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
AWS Backup lets you manage and monitor the backups across the AWS services you
use, from a single place. You can back up many AWS services and set backup policies
for cloud resources in the AWS services that you use. You can also copy backups
cross-Region within your account (or to other AWS accounts), which is what you
explored in this recipe. EBS snapshots are an essential component of a backup strat‐
egy on AWS if you use the EC2 service to run instances with persistent data on them
that you would like to protect. You can take snapshots of EBS volumes manually,
write your own automation, automate them with Data Lifecycle Manager, or use AWS
Backup.

When you use AWS Backup to back up an EC2 instance, the service stores backups in
a backup vault of your choice (a default backup vault is created if you do not have
one), handles the process of building an Amazon Machine Image (AMI) which con‐
tains all of the configuration parameters, backed-up attached EBS volumes, and
metadata. The service stores the entire bundle within the backup vault. This allows

124 | Chapter 3: Storage

https://github.com/AWSCookbook/Storage
https://aws.amazon.com/backup/faqs
https://oreil.ly/KHpPB
https://oreil.ly/BYWAl
https://oreil.ly/eXbT7
https://oreil.ly/OnzyN

you to simply launch an EC2 instance from the AMI that was generated by the AWS
Backup service to reduce the recovery time objective (RTO) associated with restoring
an instance from a backup within your primary Region or another Region of your
choice.

Challenge
Configure an Automated Backup of the EC2 instance on a weekly schedule using
backup plans, which copies the backed-up instances to a vault within another Region.

3.8 Restoring a File from an EBS Snapshot
Problem
You need to restore a file from an EBS snapshot that you have taken from a volume in
your account.

Solution
Create a volume from a snapshot, mount the volume from an EC2 instance, and copy
the file to your instance volume (see Figure 3-22).

Figure 3-22. Process flow for file restore from a snapshot

Prerequisites

• VPC with isolated subnets created in two AZs and associated route tables.
• EC2 instance deployed. You will need the ability to connect to mount the EBS

snapshot and restore a file.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Find the EBS volume attached to your EC2 instance:

3.8 Restoring a File from an EBS Snapshot | 125

https://oreil.ly/uguyM
https://github.com/AWSCookbook/Storage

ORIG_VOLUME_ID=$(aws ec2 describe-volumes \
 --filters Name=attachment.instance-id,Values=$INSTANCE_ID \
 --output text \
 --query Volumes[0].Attachments[0].VolumeId)

2. Take a snapshot of the EBS volume (this will take a moment to complete):
SNAPSHOT_ID=$(aws ec2 create-snapshot \
 --volume-id $ORIG_VOLUME_ID \
 --output text --query SnapshotId)

3. Create a volume from the snapshot and save the VOLUME_ID as an environment
variable:

SNAP_VOLUME_ID=$(aws ec2 create-volume \
 --snapshot-id $SNAPSHOT_ID \
 --size 8 \
 --volume-type gp2 \
 --availability-zone us-east-1a \
 --output text --query VolumeId)

Validation checks. Attach the volume to the EC2 instance as /dev/sdf:
aws ec2 attach-volume --volume-id $SNAP_VOLUME_ID \
 --instance-id $INSTANCE_ID --device /dev/sdf

Wait until the volume’s state has reached Attached:
aws ec2 describe-volumes \
 --volume-ids $SNAP_VOLUME_ID

Connect to the EC2 instance using SSM Session Manager (see Recipe 1.6):
aws ssm start-session --target $INSTANCE_ID

Run the lsblk command to see volumes, and note the volume name that you
attached (you will use this volume name in the subsequent step to mount the
volume):

lsblk

You should see output similar to this:
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
nvme0n1 259:0 0 8G 0 disk
├─nvme0n1p1 259:1 0 8G 0 part /
└─nvme0n1p128 259:2 0 1M 0 part
nvme1n1 259:3 0 8G 0 disk
├─nvme1n1p1 259:4 0 8G 0 part
└─nvme1n1p128 259:5 0 1M 0 part

Create a folder to mount the attached disk:
sudo mkdir /mnt/restore

Mount the volume you attached to the folder you created:
sudo mount -t xfs -o nouuid /dev/nvme1n1p1 /mnt/restore

126 | Chapter 3: Storage

The XFS file uses universally unique identifiers (UUIDs) to identify
filesystems. By default, a safety mechanism is in place in the mount
command to prevent you from mounting the same filesystem
twice. Since you created a block-level snapshot and created a vol‐
ume from it, the mount command you used requires overriding
this check to allow mounting a volume with the same UUID using
the -o nouuid parameter. For more information, consult the man
page for mount.

Copy the file(s) you need from the mounted volume to the local filesystem:
sudo cp /mnt/restore/home/ec2-user/.bash_profile \
 /tmp/.bash_profile.restored

Unmount the volume:
sudo umount /dev/nvme1n1p1

Log out of the EC2 instance:
exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
EBS snapshots are an important part of a backup strategy within the EC2 service. If
you run EC2 instances, snapshots enable you to restore an instance to a point in time
when the snapshot was created. You can also create an EBS volume from a snapshot
and attach it to a running instance, which you accomplished in this recipe. This is
useful for site reliability engineering (SRE) teams, operations teams, and users who
need to restore single files to a point in time to meet their needs.

EBS snapshots allow you to take snapshots of EBS volumes man‐
ually, write your own automation (like a Lambda function on a
schedule), automate with Data Lifecycle Manager, or use AWS
Backup (see Recipe 3.7) for a more comprehensive solution to
backing up and restoring EC2 instances.

Challenge
Create an AMI from the snapshot you create and launch a new instance from the
newly created AMI.

3.8 Restoring a File from an EBS Snapshot | 127

https://github.com/AWSCookbook/Storage
https://oreil.ly/0DwtK
https://oreil.ly/8KFje

3.9 Replicating Data Between EFS and S3 with DataSync
Problem
You need to replicate files from Amazon S3 to Amazon EFS.

Solution
Configure AWS DataSync with an S3 source and EFS target; then create a DataSync
task and start the replication task, as shown in Figure 3-23.

Figure 3-23. Replicating S3 Bucket and EFS file system with DataSync

Prerequisites

• An S3 bucket and EFS file system.
• VPC with isolated subnets created in two AZs and associated route tables.
• EC2 instance deployed with EFS file system attached. You will need the ability to

connect to it for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create an IAM role using the statement in the provided assume-role-policy.json
file with this command:

S3_ROLE_ARN=$(aws iam create-role --role-name AWSCookbookS3LocationRole \
 --assume-role-policy-document file://assume-role-policy.json \
 --output text --query Role.Arn)

2. Attach the AmazonS3ReadOnlyAccess IAM managed policy to the IAM role:
aws iam attach-role-policy --role-name AWSCookbookS3LocationRole \
 --policy-arn arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess

3. Create a DataSync S3 location:
S3_LOCATION_ARN=$(aws datasync create-location-s3 \
 --s3-bucket-arn $BUCKET_ARN \
 --s3-config BucketAccessRoleArn=$S3_ROLE_ARN \
 --output text --query LocationArn)

128 | Chapter 3: Storage

https://github.com/AWSCookbook/Storage

4. Create an IAM role using the statement in the provided assume-role-policy.json
file with this command:

EFS_ROLE_ARN=$(aws iam create-role --role-name AWSCookbookEFSLocationRole \
 --assume-role-policy-document file://assume-role-policy.json \
 --output text --query Role.Arn)

5. Attach the AmazonElasticFileSystemClientReadWriteAccess IAM managed
policy to the IAM role:

aws iam attach-role-policy --role-name AWSCookbookEFSLocationRole \
 --policy-arn arn:aws:iam::aws:policy/AmazonElasticFileSystemClientFullAccess

6. Get the ARN of the EFS file system:
EFS_FILE_SYSTEM_ARN=$(aws efs describe-file-systems \
 --file-system-id $EFS_ID \
 --output text --query FileSystems[0].FileSystemArn)

7. Get the ARN of the subnet:
SUBNET_ARN=$(aws ec2 describe-subnets \
 --subnet-ids $ISOLATED_SUBNET_1 \
 --output text --query Subnets[0].SubnetArn)

8. Get the ARN of the security group:
SG_ARN=arn:aws:ec2:$AWS_REGION:$AWS_ACCOUNT_ID:security-group/$EFS_SG

9. Create a DataSync EFS location:
EFS_LOCATION_ARN=$(aws datasync create-location-efs \
 --efs-filesystem-arn $EFS_FILE_SYSTEM_ARN \
 --ec2-config SubnetArn=$SUBNET_ARN,SecurityGroupArns=[$SG_ARN] \
 --output text)

10. Create a DataSync task:
TASK_ARN=$(aws datasync create-task \
 --source-location-arn $S3_LOCATION_ARN \
 --destination-location-arn $EFS_LOCATION_ARN \
 --output text --query TaskArn)

11. Execute the task:
aws datasync start-task-execution \
 --task-arn $TASK_ARN

12. Ensure the task has completed after a few seconds:
aws datasync list-task-executions \
 --task-arn $TASK_ARN

Validation checks. Ensure your EC2 instance 1 has registered with SSM. Use this com‐
mand to check the status. This command should return the instance ID:

aws ssm describe-instance-information \
 --filters Key=ResourceType,Values=EC2Instance \
 --query "InstanceInformationList[].InstanceId" --output text

Connect to your EC2 instance using SSM Session Manager:
aws ssm start-session --target $INSTANCE_ID

3.9 Replicating Data Between EFS and S3 with DataSync | 129

The EC2 instance has the EFS volume mounted at /mnt/efs. You can browse to the
directory and view that the S3-Test-Content.txt file has been replicated from your S3
bucket to your EFS volume, as shown in the sample output:

sh-4.2$ cd /mnt/efs

sh-4.2$ ls

sh-4.2$ ls -al

total 12
drwxr-xr-x 3 nfsnobody nfsnobody 6144 Jan 1 1970 .
drwxr-xr-x 3 root root 17 Sep 10 02:07 ..
drwx------ 2 root root 6144 Sep 10 03:27 .aws-datasync
-rwxr-xr-x 1 nfsnobody nfsnobody 30 Jan 1 1970 S3-Test-Content.txt

Exit the Session Manager session:
exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You can use AWS DataSync for both on-demand and ongoing/automated file syn‐
chronization tasks across a variety of AWS services. DataSync preserves metadata for
copied items and checks file integrity during the synchronization task, supporting
retries if needed. This is useful if you are a developer or cloud engineer looking to
move data among a variety of sources and targets without provisioning any infra‐
structure or writing your own scripts to accomplish the same task. In this recipe, you
used it to synchronize data between S3 and EFS hosted in your AWS account, but you
can also use it to synchronize data among your non-AWS servers if you have a VPN
connection, Direct Connect, or among other AWS accounts using VPC peering or a
transit gateway.

At the time of this writing, the minimum automated sync schedule
interval you can set is one hour. You can find other details about
DataSync in the user documentation.

Like many AWS services, DataSync uses IAM roles to perform actions against S3 and
EFS for you. You granted DataSync the ability to interact with S3 and EFS. DataSync
provisions network interfaces in your VPC to connect to your EFS file shares and
uses the AWS APIs to interact with S3. It encrypts traffic in transit using TLS and also

130 | Chapter 3: Storage

https://github.com/AWSCookbook/Storage
https://aws.amazon.com/datasync
https://oreil.ly/dVnun

supports encryption at rest using KMS should your security and compliance require‐
ments mandate encryption at rest.

Challenge 1
Set up a DataSync task that excludes filenames in a certain folder (e.g., private-folder).

Challenge 2
Set up a scheduled DataSync task to replicate data from S3 to EFS on an hourly
schedule.

3.9 Replicating Data Between EFS and S3 with DataSync | 131

CHAPTER 4

Databases

4.0 Introduction
You have a myriad of choices for using databases with AWS. Installing and running a
database on EC2 provides you with the most choices of database engines and custom
configurations, but brings about challenges like patching, backups, configuring high-
availability, replication, and performance tuning. As noted on its product page, AWS
offers managed database services that help address these challenges and cover a broad
range of database types (relational, key-value/NoSQL, in-memory, document, wide
column, graph, time series, ledger). When choosing a database type and data model,
you must keep speed, volume, and access patterns in mind.

The managed database services on AWS integrate with many services to provide you
additional functionality from security, operations, and development perspectives. In
this chapter, you will explore Amazon Relational Database Service (RDS), NoSQL
usage with Amazon DynamoDB, and the ways to migrate, secure, and operate these
database types at scale. For example, you will learn how to integrate Secrets Manager
with an RDS database to automatically rotate database user passwords. You will also
learn how to leverage IAM authentication to reduce the application dependency on
database passwords entirely, granting access to RDS through IAM permissions
instead. You’ll explore autoscaling with DynamoDB and learn about why this is
important from a cost and performance perspective.

Some people think that Route 53 is a database but we disagree :-)

133

https://oreil.ly/wLQPC
https://oreil.ly/Da83G

Some database engines in the past have used certain terminology
for replica configurations, default root user names, primary tables,
etc. We took care to use inclusive terminology throughout this
chapter (and the whole book) wherever possible. We support the
movement to use inclusive terminology in these commercial and
open source database engines.

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” on page xvii to validate
your configuration and set up the required environment variables. Then, clone the
chapter code repository:

git clone https://github.com/AWSCookbook/Databases

During some of the steps in this chapter, you will create passwords
and temporarily save them as environment variables to use in sub‐
sequent steps. Make sure that you unset the environment variables
by following the cleanup steps when you complete the recipe. We
use this approach for simplicity of understanding. A more secure
method (such as the method used in Recipe 1.8) should be used in
production environments.

4.1 Creating an Amazon Aurora Serverless PostgreSQL
Database
Problem
You have a web application that receives unpredictable requests that require storage
in a relational database. You need a database solution that can scale with usage and be
cost-effective. You would like to build a solution that has low operational overhead
and must be compatible with your existing PostgreSQL-backed application.

Solution
Configure and create an Aurora Serverless database cluster with a complex password.
Then, apply a customized scaling configuration and enable automatic pause after
inactivity. The scaling activity in response to the policy is shown in Figure 4-1.

134 | Chapter 4: Databases

Figure 4-1. Aurora Serverless cluster scaling compute

Prerequisites

• VPC with isolated subnets created in two AZs and associated route tables.
• EC2 instance deployed. You will need the ability to connect to this for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Use AWS Secrets Manager to generate a complex password:
ADMIN_PASSWORD=$(aws secretsmanager get-random-password \
 --exclude-punctuation \
 --password-length 41 --require-each-included-type \
 --output text \
 --query RandomPassword)

We are excluding punctuation characters from the password
that we are creating because PostgreSQL does not support
them. See the “Naming constraints in Amazon RDS” table.

2. Create a database subnet group specifying the VPC subnets to use for the cluster.
Database subnet groups simplify the placement of RDS elastic network interfaces
(ENIs):

aws rds create-db-subnet-group \
 --db-subnet-group-name awscookbook401subnetgroup \
 --db-subnet-group-description "AWSCookbook401 subnet group" \
 --subnet-ids $SUBNET_ID_1 $SUBNET_ID_2

4.1 Creating an Amazon Aurora Serverless PostgreSQL Database | 135

https://github.com/AWSCookbook/Databases
https://oreil.ly/z0LvJ

You should see output similar to the following:
{
 "DBSubnetGroup": {
 "DBSubnetGroupName": "awscookbook402subnetgroup",
 "DBSubnetGroupDescription": "AWSCookbook401 subnet group",
 "VpcId": "vpc-<<VPCID>>",
 "SubnetGroupStatus": "Complete",
 "Subnets": [
 {
 "SubnetIdentifier": "subnet-<<SUBNETID>>",
 "SubnetAvailabilityZone": {
 "Name": "us-east-1b"
 },
 "SubnetOutpost": {},
 "SubnetStatus": "Active"
 },
...

3. Create a VPC security group for the database:
DB_SECURITY_GROUP_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook401sg \
 --description "Aurora Serverless Security Group" \
 --vpc-id $VPC_ID --output text --query GroupId)

4. Create a database cluster, specifying an engine-mode of serverless:
aws rds create-db-cluster \
 --db-cluster-identifier awscookbook401dbcluster \
 --engine aurora-postgresql \
 --engine-mode serverless \
 --engine-version 10.14 \
 --master-username dbadmin \
 --master-user-password $ADMIN_PASSWORD \
 --db-subnet-group-name awscookbook401subnetgroup \
 --vpc-security-group-ids $DB_SECURITY_GROUP_ID

You should see output similar to the following:
{
 "DBCluster": {
 "AllocatedStorage": 1,
 "AvailabilityZones": [
 "us-east-1f",
 "us-east-1b",
 "us-east-1a"
],
 "BackupRetentionPeriod": 1,
 "DBClusterIdentifier": "awscookbook401dbcluster",
 "DBClusterParameterGroup": "default.aurora-postgresql10",
 "DBSubnetGroup": "awscookbook401subnetgroup",
 "Status": "creating",
...

5. Wait for the Status to read available; this will take a few moments:
aws rds describe-db-clusters \
 --db-cluster-identifier awscookbook401dbcluster \
 --output text --query DBClusters[0].Status

136 | Chapter 4: Databases

6. Modify the database to automatically scale with new autoscaling capacity targets
(8 min, 16 max) and enable AutoPause after five minutes of inactivity:

aws rds modify-db-cluster \
 --db-cluster-identifier awscookbook401dbcluster --scaling-configuration \

MinCapacity=8,MaxCapacity=16,SecondsUntilAutoPause=300,TimeoutAction='ForceApplyC
apacityChange',AutoPause=true

You should see output similar to what you saw for step 4.

In practice, you may want to use a different AutoPause value.
To determine what is appropriate for your use, evaluate your
performance needs and Aurora pricing.

Wait at least five minutes and observe that the database’s capacity has scaled
down to 0:

aws rds describe-db-clusters \
 --db-cluster-identifier awscookbook401dbcluster \
 --output text --query DBClusters[0].Capacity

The AutoPause feature automatically sets the capacity of the
cluster to 0 after inactivity. When your database activity
resumes (e.g., with a query or connection), the capacity value
is automatically set to your configured minimum scaling
capacity value.

7. Grant your EC2 instance’s security group access to the default PostgreSQL port:
aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 5432 \
 --source-group $INSTANCE_SG \
 --group-id $DB_SECURITY_GROUP_ID

You should see output similar to the following:
{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<ID>>",
 "GroupId": "sg-<<ID>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 5432,
 "ToPort": 5432,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<ID>>"
 }
 }

4.1 Creating an Amazon Aurora Serverless PostgreSQL Database | 137

https://oreil.ly/o6mAP

]
}

Validation checks. List the endpoint for the RDS cluster:
aws rds describe-db-clusters \
 --db-cluster-identifier awscookbook401dbcluster \
 --output text --query DBClusters[0].Endpoint

You should see something similar to this:
awscookbook401dbcluster.cluster-<<unique>>.us-east-1.rds.amazonaws.com

Retrieve the password for your RDS cluster:
echo $ADMIN_PASSWORD

Connect to the EC2 instance by using SSM Session Manager (see Recipe 1.6):
aws ssm start-session --target $INSTANCE_ID

Install the PostgreSQL package so you can use the psql command to connect to the
database:

sudo yum -y install postgresql

Connect to the database. This may take a moment as the database capacity is scaling
up from 0. You’ll need to copy and paste the password (outputted previously):

psql -h $HOST_NAME -U dbadmin -W -d postgres

Here is an example of connecting to a database using the psql command:
sh-4.2$ psql -h awscookbook401dbcluster.cluster-<<unique>>.us-
east-1.rds.amazonaws.com -U dbadmin -W -d postgres
Password for user dbadmin:(paste in the password)

Quit psql:
\q

Exit the Session Manager session:
exit

Check the capacity of the cluster again to observe that the database has scaled up to
the minimum value that you configured:

aws rds describe-db-clusters \
 --db-cluster-identifier awscookbook401dbcluster \
 --output text --query DBClusters[0].Capacity

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

138 | Chapter 4: Databases

https://github.com/AWSCookbook/Databases

The default behavior of deleting an RDS cluster is to take a final
snapshot as a safety mechanism. We chose to skip this behavior by
adding the --skip-final-snapshot option to ensure you do not
incur any costs for storing the snapshot in your AWS account. In a
real-world scenario, you would likely want to retain the snapshot
for a period of time in case you needed to re-create the existing
database from the snapshot.

Discussion
The cluster will automatically scale capacity to meet the needs of your usage. Setting
MaxCapacity=16 limits the upper bound of your capacity to prevent runaway usage
and unexpected costs. The cluster will set its capacity to 0 when no connection or
activity is detected. This is triggered when the SecondsUntilAutoPause value is
reached.

When you enable AutoPause=true for your cluster, you pay for only the underlying
storage during idle times. The default (and minimum) “inactivity period” is five
minutes. Connecting to a paused cluster will cause the capacity to scale up to
MinCapacity.

Not all database engines and versions are available with the server‐
less engine. At the time of writing, the Aurora FAQ states that
Aurora Serverless is currently available for Aurora with MySQL 5.6
compatibility and for Aurora with PostgreSQL 10.7+ compatibility.

The user guide states that Aurora Serverless scaling is measured in capacity units
(CUs) that correspond to compute and memory reserved for your cluster. This capa‐
bility is a good fit for many workloads and use cases from development to batch-
based workloads, and production workloads where traffic is unpredictable and costs
associated with potential over-provisioning are a concern. By not needing to calculate
baseline usage patterns, you can start developing quickly, and the cluster will auto‐
matically respond to the demand that your application requires.

If you currently use a “provisioned” capacity type cluster on Amazon RDS and would
like to start using Aurora Serverless, you can snapshot your current database and
restore it from within the AWS Console or from the command line to perform a
migration. If your current database is not on RDS, you can use your database engine’s
dump and restore features or use the AWS Database Migration Service (AWS DMS)
to migrate to RDS.

4.1 Creating an Amazon Aurora Serverless PostgreSQL Database | 139

https://oreil.ly/P5A2B
https://oreil.ly/MJpCb

At the time of this writing, Amazon Aurora Serverless v2 is in
preview.

The user guide mentions that Aurora Serverless further builds on the existing Aurora
platform, which replicates your database’s underlying storage six ways across three
Availability Zones. While this replication is a benefit for resiliency, you should still
use automated backups for your database to guard against operational errors. Aurora
Serverless has automated backups enabled by default, and the backup retention can
be increased up to 35 days if needed.

Per the documentation, if your database cluster has been idle for
more than seven days, the cluster will be backed up with a snap‐
shot. If this occurs, the database cluster is restored when there is a
request to connect to it.

Challenge
Change the max capacity to 64 and idle time to 10 minutes for the database cluster.

See Also
Recipe 4.2, “Using IAM Authentication with an RDS Database”

Recipe 4.7, “Migrating Databases to Amazon RDS Using AWS DMS”

4.2 Using IAM Authentication with an RDS Database
Problem
You have a server that connects to a database with a password and would like to
instead use rotating temporary credentials.

Solution
First you will enable IAM authentication for your database. You will then configure
the IAM permissions for the EC2 instance to use. Finally, create a new user on the
database, retrieve the IAM authentication token, and verify connectivity (see
Figure 4-2).

140 | Chapter 4: Databases

https://oreil.ly/TVurx
https://oreil.ly/GMEVT
https://oreil.ly/Wq91f

Figure 4-2. IAM authentication from an EC2 instance to an RDS database

Prerequisites

• VPC with isolated subnets created in two AZs and associated route tables.
• An RDS MySQL instance.
• EC2 instance deployed. You will need the ability to connect to this for configur‐

ing MySQL and testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Enable IAM database authentication on the RDS database instance:
aws rds modify-db-instance \
 --db-instance-identifier $RDS_DATABASE_ID \
 --enable-iam-database-authentication \
 --apply-immediately

You should see output similar to the following:
{
 "DBInstance": {
 "DBInstanceIdentifier": "awscookbookrecipe402",
 "DBInstanceClass": "db.m5.large",
 "Engine": "mysql",
 "DBInstanceStatus": "available",
 "MasterUsername": "admin",
 "DBName": "AWSCookbookRecipe402",
 "Endpoint": {
 "Address": "awscookbookrecipe402.<<ID>>.us-east-1.rds.amazonaws.com",
 "Port": 3306,
 "HostedZoneId": "<<ID>>"
 },
...

4.2 Using IAM Authentication with an RDS Database | 141

https://github.com/AWSCookbook/Databases

IAM database authentication is available for only the database
engines listed in this AWS article.

2. Retrieve the RDS database instance resource ID:
DB_RESOURCE_ID=$(aws rds describe-db-instances \
 --query \
 'DBInstances[?DBName==`AWSCookbookRecipe402`].DbiResourceId' \
 --output text)

3. Create a file called policy.json with the following content (a policy-template.json
file is provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:AWS_REGION:AWS_ACCOUNT_ID:dbuser:DBResourceId/db_user"
]
 }
]
}

In the preceding example, db_user must match the name of
the user in the database that we would like to allow to connect.

4. Replace the values in the template file by using the sed command with environ‐
ment variables you have set:

sed -e "s/AWS_ACCOUNT_ID/${AWS_ACCOUNT_ID}/g" \
 -e "s|AWS_REGION|${AWS_REGION}|g" \
 -e "s|DBResourceId|${DB_RESOURCE_ID}|g" \
 policy-template.json > policy.json

5. Create an IAM policy using the file you just created:
aws iam create-policy --policy-name AWSCookbook402EC2RDSPolicy \
 --policy-document file://policy.json

142 | Chapter 4: Databases

https://oreil.ly/jUIQ0

You should see output similar to the following:
{
 "Policy": {
 "PolicyName": "AWSCookbook402EC2RDSPolicy",
 "PolicyId": "<<ID>>",
 "Arn": "arn:aws:iam::111111111111:policy/AWSCookbook402EC2RDSPolicy",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-09-21T21:18:54+00:00",
 "UpdateDate": "2021-09-21T21:18:54+00:00"
 }
}

6. Attach the IAM policy AWSCookbook402EC2RDSPolicy to the IAM role that the
EC2 is using:

aws iam attach-role-policy --role-name $INSTANCE_ROLE_NAME \
 --policy-arn arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook402EC2RDSPolicy

7. Retrieve the RDS admin password from Secrets Manager:
RDS_ADMIN_PASSWORD=$(aws secretsmanager get-secret-value \
 --secret-id $RDS_SECRET_ARN \
 --query SecretString | jq -r | jq .password | tr -d '"')

8. Output text so that you can use it later when you connect to the EC2 instance.
List the endpoint for the RDS cluster:

echo $RDS_ENDPOINT

You should see output similar to the following:
awscookbookrecipe402.<<unique>>.us-east-1.rds.amazonaws.com

List the password for the RDS cluster:
echo $RDS_ADMIN_PASSWORD

9. Connect to the EC2 instance using SSM Session Manager (see Recipe 1.6):
aws ssm start-session --target $INSTANCE_ID

10. Install MySQL:
sudo yum -y install mysql

11. Connect to the database. You’ll need to copy and paste the password and host‐
name (outputted in steps 7 and 8):

mysql -u admin -p$DB_ADMIN_PASSWORD -h $RDS_ENDPOINT

You should see output similar to the following:
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 18
Server version: 8.0.23 Source distribution
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
MySQL [(none)]>

4.2 Using IAM Authentication with an RDS Database | 143

In the mysql command in step 11, there is no space between
the -p flag and the first character of the password.

12. Create a new database user to associate with the IAM authentication:
CREATE USER db_user@'%' IDENTIFIED WITH AWSAuthenticationPlugin as 'RDS';
GRANT SELECT ON *.* TO 'db_user'@'%';

For both commands in step 12, you should see output similar to the following:
Query OK, 0 rows affected (0.01 sec)

13. Now, exit the mysql prompt:
quit

Validation checks. While still on the EC2 instance, download the RDS Root CA (cer‐
tificate authority) file provided by Amazon from the rds-downloads S3 bucket:

sudo wget https://s3.amazonaws.com/rds-downloads/rds-ca-2019-root.pem

Set the Region by grabbing the value from the instance’s metadata:
export AWS_DEFAULT_REGION=$(curl --silent http://169.254.169.254/latest/dynamic/
instance-identity/document \
| awk -F'"' ' /region/ {print $4}')

Generate the RDS authentication token and save it as a variable. You’ll need to copy
and paste the hostname (outputted in step 8):

TOKEN="$(aws rds generate-db-auth-token --hostname $RDS_ENDPOINT --port 3306 --
username db_user)"

Connect to the database using the RDS authentication token with the new db_user.
You’ll need to copy and paste the hostname (outputted in step 8):

mysql --host=$RDS_ENDPOINT --port=3306 \
 --ssl-ca=rds-ca-2019-root.pem \
--user=db_user --password=$TOKEN

Run a SELECT query at the mysql prompt to verify that this user has the SELECT *.*
grant that you applied:

SELECT user FROM mysql.user;

You should see output similar to the following:
MySQL [(none)]> SELECT user FROM mysql.user;
+------------------+
| user |
+------------------+
| admin |
| db_user |
| mysql.infoschema |
| mysql.session |

144 | Chapter 4: Databases

https://oreil.ly/2T2v5

| mysql.sys |
| rdsadmin |
+------------------+
6 rows in set (0.00 sec)

Exit the mysql prompt:
quit

Exit the Session Manager session:
exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Instead of a password in your MySQL connection string, you retrieved and used a
token associated with the EC2 instance’s IAM role. The documentation for IAM states
that this token lasts for 15 minutes. If you install an application on this EC2 instance,
the code can regularly refresh this token using the AWS SDK. There is no need to
rotate passwords for your database user because the old token will be invalidated after
15 minutes.

You can create multiple database users associated with specific grants to allow your
application to maintain different levels of access to your database. The grants happen
within the database, not within the IAM permissions. IAM controls the db-connect
action for the specific user. This IAM action allows the authentication token to be
retrieved. That username is mapped from IAM to the GRANT(s) by using the same
username within the database as in the policy.json file:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:AWS_REGION::dbuser:DBResourceId/db_user"
]
 }
]
}

4.2 Using IAM Authentication with an RDS Database | 145

https://github.com/AWSCookbook/Databases
https://oreil.ly/ahOrb

In this recipe, you also enabled encryption in transit by specifying the SSL certificate
bundle that you downloaded to the EC2 instance in your database connection com‐
mand. This encrypts the connection between your application and your database.
This is a good security practice and is often required for many compliance standards.
The connection string you used to connect with the IAM authentication token indi‐
cated an SSL certificate as one of the connection parameters. The certificate authority
bundle is available to download from AWS and use within your application.

Challenge
Try connecting to the database from a Lambda function using IAM authentication.
We have provided a lambda_function.py file in the repository to get you started.

4.3 Leveraging RDS Proxy for Database Connections from
Lambda
Problem
You have a serverless function that is accessing a relational database and you need to
implement connection pooling to minimize the number of database connections and
improve performance.

Solution
Create an RDS Proxy, associate it with your RDS MySQL database, and configure
your Lambda to connect to the proxy instead of accessing the database directly (see
Figure 4-3).

Figure 4-3. Lambda connection path to database via RDS Proxy

Prerequisites

• VPC with isolated subnets created in two AZs and associated route tables
• An RDS MySQL instance

146 | Chapter 4: Databases

https://oreil.ly/TJBbg

• A Lambda function that you would like to connect to your RDS database

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a file called assume-role-policy.json with the following content (file pro‐
vided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role for the RDS Proxy using the assume-role-policy.json file:
aws iam create-role --assume-role-policy-document \
 file://assume-role-policy.json --role-name AWSCookbook403RDSProxy

You should see output similar to the following:
{
 "Role": {
 "Path": "/",
 "RoleName": "AWSCookbook403RDSProxy",
 "RoleId": "<<ID>>",
 "Arn": "arn:aws:iam::111111111111:role/AWSCookbook403RDSProxy",
 "CreateDate": "2021-09-21T22:33:57+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }
}

3. Create a security group to be used by the RDS Proxy:
RDS_PROXY_SG_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook403RDSProxySG \

4.3 Leveraging RDS Proxy for Database Connections from Lambda | 147

https://github.com/AWSCookbook/Databases

 --description "Lambda Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

4. Create the RDS Proxy. This will take a few moments:
RDS_PROXY_ENDPOINT_ARN=$(aws rds create-db-proxy \
 --db-proxy-name $DB_NAME \
 --engine-family MYSQL \
 --auth '{
 "AuthScheme": "SECRETS",
 "SecretArn": "'"$RDS_SECRET_ARN"'",
 "IAMAuth": "REQUIRED"
 }' \
 --role-arn arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook403RDSProxy \
 --vpc-subnet-ids $ISOLATED_SUBNETS \
 --vpc-security-group-ids $RDS_PROXY_SG_ID \
 --require-tls --output text \
 --query DBProxy.DBProxyArn)

Wait for the RDS Proxy to become available:
aws rds describe-db-proxies \
 --db-proxy-name $DB_NAME \
 --query DBProxies[0].Status \
 --output text

5. Retrieve the RDS_PROXY_ENDPOINT:
RDS_PROXY_ENDPOINT=$(aws rds describe-db-proxies \
 --db-proxy-name $DB_NAME \
 --query DBProxies[0].Endpoint \
 --output text)

6. Next you need an IAM policy that allows the Lambda function to generate IAM
authentication tokens. Create a file called template-policy.json with the following
content (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:AWS_REGION:AWS_ACCOUNT_ID:dbuser:RDSProxyID/admin"
]
 }
]
}

7. Separate out the Proxy ID from the RDS Proxy endpoint ARN. The Proxy ID is
required for configuring IAM policies in the following steps:

RDS_PROXY_ID=$(echo $RDS_PROXY_ENDPOINT_ARN | awk -F: '{ print $7} ')

8. Replace the values in the template file by using the sed command with environ‐
ment variables you have set:

148 | Chapter 4: Databases

sed -e "s/AWS_ACCOUNT_ID/${AWS_ACCOUNT_ID}/g" \
 -e "s|AWS_REGION|${AWS_REGION}|g" \
 -e "s|RDSProxyID|${RDS_PROXY_ID}|g" \
policy-template.json > policy.json

9. Create an IAM policy using the file you just created:
aws iam create-policy --policy-name AWSCookbook403RdsIamPolicy \
 --policy-document file://policy.json

You should see output similar to the following:
{
 "Policy": {
 "PolicyName": "AWSCookbook403RdsIamPolicy",
 "PolicyId": "<<Id>>",
 "Arn": "arn:aws:iam::111111111111:policy/AWSCookbook403RdsIamPolicy",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-09-21T22:50:24+00:00",
 "UpdateDate": "2021-09-21T22:50:24+00:00"
 }
}

10. Attach the policy to the DBAppFunction Lambda function’s role:
aws iam attach-role-policy --role-name $DB_APP_FUNCTION_ROLE_NAME \
 --policy-arn arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook403RdsIamPolicy

Use this command to check when the proxy enters the available status and then
proceed:

aws rds describe-db-proxies --db-proxy-name $DB_NAME \
 --query DBProxies[0].Status \
 --output text

11. Attach the SecretsManagerReadWrite policy to the RDS Proxy’s role:
aws iam attach-role-policy --role-name AWSCookbook403RDSProxy \
 --policy-arn arn:aws:iam::aws:policy/SecretsManagerReadWrite

In a production scenario, you would want to scope this per‐
mission down to the minimal secret resources that your appli‐
cation needs to access, rather than grant SecretsManagerRead
Write, which allows read/write for all secrets.

12. Add an ingress rule to the RDS instance’s security group that allows access on
TCP port 3306 (the default MySQL engine TCP port) from the RDS Proxy secu‐
rity group:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 3306 \
 --source-group $RDS_PROXY_SG_ID \
 --group-id $RDS_SECURITY_GROUP

4.3 Leveraging RDS Proxy for Database Connections from Lambda | 149

You should see output similar to the following:
{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<ID>>",
 "GroupId": "sg-<<ID>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 3306,
 "ToPort": 3306,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<ID>>"
 }
 }
]
}

Security groups can reference other security groups. Because
of dynamic IP addresses within VPCs, this is considered the
best way to grant access without opening up your security
group too wide. For more information, see Recipe 2.5.

13. Register targets with the RDS Proxy:
aws rds register-db-proxy-targets \
 --db-proxy-name $DB_NAME \
 --db-instance-identifiers $RDS_DATABASE_ID

You should see output similar to the following:
{
 "DBProxyTargets": [
 {
 "Endpoint": "awscookbook403db.<<ID>>.us-east-1.rds.amazonaws.com",
 "RdsResourceId": "awscookbook403db",
 "Port": 3306,
 "Type": "RDS_INSTANCE",
 "TargetHealth": {
 "State": "REGISTERING"
 }
 }
]
}

Check the status of the target registration with this command. Wait until the
State reaches AVAILABLE:

aws rds describe-db-proxy-targets \
 --db-proxy-name awscookbookrecipe403 \
 --query Targets[0].TargetHealth.State \
 --output text

150 | Chapter 4: Databases

14. Add an ingress rule to the RDS Proxy security group that allows access on TCP
port 3306 from the Lambda App function’s security group:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 3306 \
 --source-group $DB_APP_FUNCTION_SG_ID \
 --group-id $RDS_PROXY_SG_ID

You should see output similar to the following:
{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<ID>>",
 "GroupId": "sg-<<ID>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 3306,
 "ToPort": 3306,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<ID>>"
 }
 }
]
}

15. Modify the Lambda function to now use the RDS Proxy endpoint as the DB_HOST,
instead of connecting directly to the database:

aws lambda update-function-configuration \
 --function-name $DB_APP_FUNCTION_NAME \
 --environment Variables={DB_HOST=$RDS_PROXY_ENDPOINT}

You should see output similar to the following:
{
 "FunctionName": "cdk-aws-cookbook-403-LambdaApp<<ID>>",
 "FunctionArn": "arn:aws:lambda:us-east-1:111111111111:function:cdk-aws-
cookbook-403-LambdaApp<<ID>>",
 "Runtime": "python3.8",
 "Role": "arn:aws:iam::111111111111:role/cdk-aws-cookbook-403-
LambdaAppServiceRole<<ID>>",
 "Handler": "lambda_function.lambda_handler",
 "CodeSize": 665,
 "Description": "",
 "Timeout": 600,
 "MemorySize": 1024,
...

Validation checks. Run the Lambda function with this command to validate that the
function can connect to RDS using your RDS Proxy:

aws lambda invoke \
 --function-name $DB_APP_FUNCTION_NAME \
 response.json && cat response.json

4.3 Leveraging RDS Proxy for Database Connections from Lambda | 151

You should see output similar to the following:
{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
"Successfully connected to RDS via RDS Proxy!"

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Connection pooling is important to consider when you use Lambda with RDS. Since
the function could be executed with a lot of concurrency and frequency depending
on your application, the number of raw connections to your database can grow and
impact performance. By using RDS Proxy to manage the connections to the database,
fewer connections are needed to the actual database. This setup increases perfor‐
mance and efficiency.

Without RDS Proxy, a Lambda function might establish a new connection to the
database each time the function is invoked. This behavior depends on the execution
environment, runtimes (Python, NodeJS, Go, etc.), and the way you instantiate con‐
nections to the database from the function code. In cases with large amounts of func‐
tion concurrency, this could result in large amounts of TCP connections to your data‐
base, reducing database performance and increasing latency. Per the documentation,
RDS Proxy helps manage the connections from Lambda by managing them as a
“pool,” so that as concurrency increases, RDS Proxy increases the actual connections
to the database only as needed, offloading the TCP overhead to RDS Proxy.

SSL encryption in transit is supported by RDS Proxy when you include the certificate
bundle provided by AWS in your database connection string. RDS Proxy supports
MySQL and PostgreSQL RDS databases. For a complete listing of all supported data‐
base engines and versions, see this support document.

You can also architect to be efficient with short-lived database con‐
nections by leveraging the RDS Data API within your application,
which leverages a REST API exposed by Amazon RDS. For an
example on the RDS Data API, see Recipe 4.8.

Challenge
Enable enhanced logging for the RDS Proxy. This is useful for debugging.

152 | Chapter 4: Databases

https://github.com/AWSCookbook/Databases
https://oreil.ly/tkrh5
https://oreil.ly/7zUhZ
https://oreil.ly/7zUhZ

4.4 Encrypting the Storage of an Existing Amazon RDS for
MySQL Database
Problem
You need to encrypt the storage of an existing database.

Solution
Create a read replica of your existing database, take a snapshot of the read replica,
copy the snapshot to an encrypted snapshot, and restore the encrypted snapshot to a
new encrypted database, as shown in Figure 4-4.

Figure 4-4. Process of encrypting an RDS database using a snapshot

Prerequisites

• VPC with isolated subnets created in two AZs and associated route tables
• An RDS MySQL instance with an RDS subnet group

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Verify that the storage for the database is not encrypted:
aws rds describe-db-instances \
 --db-instance-identifier $RDS_DATABASE_ID \
 --query DBInstances[0].StorageEncrypted

You should see false outputted.
2. Create a KMS key to use to encrypt your database snapshot later. Store the key ID

in an environment variable:
KEY_ID=$(aws kms create-key \
 --tags TagKey=Name,TagValue=AWSCookbook404RDS \
 --description "AWSCookbook RDS Key" \

4.4 Encrypting the Storage of an Existing Amazon RDS for MySQL Database | 153

https://github.com/AWSCookbook/Databases

 --query KeyMetadata.KeyId \
 --output text)

3. Create an alias to easily reference the key that you created:
aws kms create-alias \
 --alias-name alias/awscookbook404 \
 --target-key-id $KEY_ID

4. Create a read replica of your existing unencrypted database:
aws rds create-db-instance-read-replica \
 --db-instance-identifier awscookbook404db-rep \
 --source-db-instance-identifier $RDS_DATABASE_ID \
 --max-allocated-storage 10

You should see output similar to the following:
{
 "DBInstance": {
 "DBInstanceIdentifier": "awscookbook404db-rep",
 "DBInstanceClass": "db.m5.large",
 "Engine": "mysql",
 "DBInstanceStatus": "creating",
 "MasterUsername": "admin",
 "DBName": "AWSCookbookRecipe404",
 "AllocatedStorage": 8,
 "PreferredBackupWindow": "05:51-06:21",
 "BackupRetentionPeriod": 0,
 "DBSecurityGroups": [],
...

By creating a read replica, you allow the snapshot to be created
from it and therefore not affect the performance of the pri‐
mary database.

Wait for the DBInstanceStatus to become “available”:
aws rds describe-db-instances \
 --db-instance-identifier awscookbook404db-rep \
 --output text --query DBInstances[0].DBInstanceStatus

5. Take an unencrypted snapshot of your read replica:
aws rds create-db-snapshot \
 --db-instance-identifier awscookbook404db-rep \
 --db-snapshot-identifier awscookbook404-snapshot

You should see output similar to the following:
{
 "DBSnapshot": {
 "DBSnapshotIdentifier": "awscookbook404-snapshot",
 "DBInstanceIdentifier": "awscookbook404db-rep",
 "Engine": "mysql",
 "AllocatedStorage": 8,
 "Status": "creating",
 "Port": 3306,

154 | Chapter 4: Databases

 "AvailabilityZone": "us-east-1b",
 "VpcId": "vpc-<<ID>>",
 "InstanceCreateTime": "2021-09-21T22:46:07.785000+00:00",

Wait for the Status of the snapshot to become available:
aws rds describe-db-snapshots \
 --db-snapshot-identifier awscookbook404-snapshot \
 --output text --query DBSnapshots[0].Status

6. Copy the unencrypted snapshot to a new snapshot while encrypting by specify‐
ing your KMS key:

aws rds copy-db-snapshot \
--copy-tags \
--source-db-snapshot-identifier awscookbook404-snapshot \
--target-db-snapshot-identifier awscookbook404-snapshot-enc \
--kms-key-id alias/awscookbook404

You should see output similar to the following:
{
 "DBSnapshot": {
 "DBSnapshotIdentifier": "awscookbook404-snapshot-enc",
 "DBInstanceIdentifier": "awscookbook404db-rep",
 "Engine": "mysql",
 "AllocatedStorage": 8,
 "Status": "creating",
 "Port": 3306,
 "AvailabilityZone": "us-east-1b",
 "VpcId": "vpc-<<ID>>",
 "InstanceCreateTime": "2021-09-21T22:46:07.785000+00:00",
 "MasterUsername": "admin",
...

Specifying a KMS key with the copy-snapshot command
encrypts the copied snapshot. Restoring an encrypted snap‐
shot to a new database results in an encrypted database.

Wait for the Status of the encrypted snapshot to become available:
aws rds describe-db-snapshots \
 --db-snapshot-identifier awscookbook404-snapshot-enc \
 --output text --query DBSnapshots[0].Status

7. Restore the encrypted snapshot to a new RDS instance:
aws rds restore-db-instance-from-db-snapshot \
 --db-subnet-group-name $RDS_SUBNET_GROUP \
 --db-instance-identifier awscookbook404db-enc \
 --db-snapshot-identifier awscookbook404-snapshot-enc

You should see output similar to the following:
{
 "DBInstance": {
 "DBInstanceIdentifier": "awscookbook404db-enc",
 "DBInstanceClass": "db.m5.large",

4.4 Encrypting the Storage of an Existing Amazon RDS for MySQL Database | 155

 "Engine": "mysql",
 "DBInstanceStatus": "creating",
 "MasterUsername": "admin",
 "DBName": "AWSCookbookRecipe404",
 "AllocatedStorage": 8,
...

Validation checks. Wait for DBInstanceStatus to become available:
aws rds describe-db-instances \
 --db-instance-identifier awscookbook404db-enc \
 --output text --query DBInstances[0].DBInstanceStatus

Verify that the storage is now encrypted:
aws rds describe-db-instances \
 --db-instance-identifier awscookbook404db-enc \
 --query DBInstances[0].StorageEncrypted

You should see true outputted.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When you complete the steps, you need to reconfigure your application to point to a
new database endpoint hostname. To perform this with minimal downtime, you can
configure a Route 53 DNS record that points to your database endpoint. Your appli‐
cation would be configured to use the DNS record. Then you would shift your data‐
base traffic over to the new encrypted database by updating the DNS record with the
new database endpoint DNS.

Encryption at rest is a security approach left up to end users in the AWS shared
responsibility model, and often it is required to achieve or maintain compliance with
regulatory standards. The encrypted snapshot you took could also be automatically
copied to another Region, as well as exported to S3 for archival/backup purposes.

Challenge
Create an RDS database from scratch that initially has encrypted storage and migrate
your data from your existing database to the new database using AWS DMS, as
shown in Recipe 4.7.

156 | Chapter 4: Databases

https://github.com/AWSCookbook/Databases
https://oreil.ly/SFZuW
https://oreil.ly/n6Cz3
https://oreil.ly/n6Cz3

4.5 Automating Password Rotation for RDS Databases
Problem
You would like to implement automatic password rotation for a database user.

Solution
Create a password and place it in AWS Secrets Manager. Configure a rotation interval
for the secret containing the password. Finally, create a Lambda function using AWS-
provided code, and configure the function to perform the password rotation. This
configuration allows the password rotation automation to perform as shown in
Figure 4-5.

Figure 4-5. Secrets Manager Lambda function integration

Prerequisites

• VPC with isolated subnets created in two AZs and associated route tables.
• MySQL RDS instance and EC2 instance deployed. You will need the ability to

connect to these for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Use AWS Secrets Manager to generate a password that meets RDS requirements:
RDS_ADMIN_PASSWORD=$(aws secretsmanager get-random-password \
 --exclude-punctuation \

4.5 Automating Password Rotation for RDS Databases | 157

https://github.com/AWSCookbook/Databases

 --password-length 41 --require-each-included-type \
 --output text --query RandomPassword)

You can call the Secrets Manager GetRandomPassword API
method to generate random strings of characters for various
uses beyond password generation.

2. Change the admin password for your RDS database to the one you just created:
aws rds modify-db-instance \
 --db-instance-identifier $RDS_DATABASE_ID \
 --master-user-password $RDS_ADMIN_PASSWORD \
 --apply-immediately

You should see output similar to the following:
{
 "DBInstance": {
 "DBInstanceIdentifier": "awscookbook405db",
 "DBInstanceClass": "db.m5.large",
 "Engine": "mysql",
 "DBInstanceStatus": "available",
 "MasterUsername": "admin",
 "DBName": "AWSCookbookRecipe405",
...

3. Create a file with the following content called rdscreds-template.json (file pro‐
vided in the repository):

{
 "username": "admin",
 "password": "PASSWORD",
 "engine": "mysql",
 "host": "HOST",
 "port": 3306,
 "dbname": "DBNAME",
 "dbInstanceIdentifier": "DBIDENTIFIER"
}

4. Use sed to modify the values in rdscreds-template.json to create rdscreds.json:
sed -e "s/AWS_ACCOUNT_ID/${AWS_ACCOUNT_ID}/g" \
 -e "s|PASSWORD|${RDS_ADMIN_PASSWORD}|g" \
 -e "s|HOST|${RdsEndpoint}|g" \
 -e "s|DBNAME|${DbName}|g" \
 -e "s|DBIDENTIFIER|${RdsDatabaseId}|g" \
 rdscreds-template.json > rdscreds.json

5. Download code from the AWS Samples GitHub repository for the Rotation
Lambda function:

wget https://raw.githubusercontent.com/aws-samples/aws-secrets-manager-rotation-
lambdas/master/SecretsManagerRDSMySQLRotationSingleUser/lambda_function.py

158 | Chapter 4: Databases

https://oreil.ly/7DAG9
https://oreil.ly/H5kgh

AWS provides information and templates for different data‐
base rotation scenarios in this article.

6. Compress the file containing the code:
zip lambda_function.zip lambda_function.py

You should see output similar to the following:
 adding: lambda_function.py (deflated 76%)

7. Create a new security group for the Lambda function to use:
LAMBDA_SG_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook405LambdaSG \
 --description "Lambda Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

8. Add an ingress rule to the RDS instances security group that allows access on
TCP port 3306 from the Lambda’s security group:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 3306 \
 --source-group $LAMBDA_SG_ID \
 --group-id $RDS_SECURITY_GROUP

You should see output similar to the following:
{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<ID>>",
 "GroupId": "sg-<<ID>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 3306,
 "ToPort": 3306,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<ID>>"
 }
 }
]
}

9. Create a file named assume-role-policy.json with the following content (file pro‐
vided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },

4.5 Automating Password Rotation for RDS Databases | 159

https://oreil.ly/IdYkf

 "Action": "sts:AssumeRole"
 }
]
}

10. Create an IAM role with the statement in the provided assume-role-policy.json file
using this command:

aws iam create-role --role-name AWSCookbook405Lambda \
 --assume-role-policy-document file://assume-role-policy.json

You should see output similar to the following:
{
 "Role": {
 "Path": "/",
 "RoleName": "AWSCookbook405Lambda",
 "RoleId": "<<ID>>",
 "Arn": "arn:aws:iam::111111111111:role/AWSCookbook405Lambda",
 "CreateDate": "2021-09-21T23:01:57+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
...

11. Attach the IAM managed policy for AWSLambdaVPCAccess to the IAM role:
aws iam attach-role-policy --role-name AWSCookbook405Lambda \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AWSLambdaVPCAccessExecutionRole

12. Attach the IAM managed policy for SecretsManagerReadWrite to the IAM role:
aws iam attach-role-policy --role-name AWSCookbook405Lambda \
 --policy-arn arn:aws:iam::aws:policy/SecretsManagerReadWrite

The IAM role that you associated with the Lambda function to
rotate the password used the SecretsManagerReadWrite man‐
aged policy. In a production scenario, you would want to
scope this down to limit which secrets the Lambda function
can interact with.

13. Create the Lambda function to perform the secret rotation using the code:
LAMBDA_ROTATE_ARN=$(aws lambda create-function \
 --function-name AWSCookbook405Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --environment Variables={SECRETS_MANAGER_ENDPOINT=https://secretsmanager.
$AWS_REGION.amazonaws.com} \
 --layers $PyMysqlLambdaLayerArn \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook405Lambda \
 --output text --query FunctionArn \
 --vpc-config SubnetIds=${ISOLATED_SUBNETS},SecurityGroupIds=$LAMBDA_SG_ID)

160 | Chapter 4: Databases

Use this command to determine when the Lambda function has entered the
Active state:

aws lambda get-function --function-name $LAMBDA_ROTATE_ARN \
 --output text --query Configuration.State

14. Add a permission to the Lambda function so that Secrets Manager can invoke it:
aws lambda add-permission --function-name $LAMBDA_ROTATE_ARN \
 --action lambda:InvokeFunction --statement-id secretsmanager \
 --principal secretsmanager.amazonaws.com

You should see output similar to the following:
{
 "Statement": "{\"Sid\":\"secretsmanager\",\"Effect\":\"Allow\",\"Principal\":
{\"Service\":\"secretsmanager.amazonaws.com\"},\"Action\":\"lambda:InvokeFunction
\",\"Resource\":\"arn:aws:lambda:us-
east-1:111111111111:function:AWSCookbook405Lambda\"}"
}

15. Set a unique suffix to use for the secret name to ensure you can reuse this pattern
for additional automatic password rotations if desired:

AWSCookbook405SecretName=AWSCookbook405Secret-$(aws secretsmanager \
 get-random-password \
 --exclude-punctuation \
 --password-length 6 --require-each-included-type \
 --output text \
 --query RandomPassword)

16. Create a secret in Secrets Manager to store your admin password:
aws secretsmanager create-secret --name $AWSCookbook405SecretName \
 --description "My database secret created with the CLI" \
 --secret-string file://rdscreds.json

You should see output similar to the following:
{
 "ARN": "arn:aws:secretsmanager:us-
east-1:1111111111111:secret:AWSCookbook405Secret-T4tErs-AlJcLn",
 "Name": "AWSCookbook405Secret-<<Random>>",
 "VersionId": "<<ID>>"
}

17. Set up automatic rotation every 30 days and specify the Lambda function to
perform rotation for the secret you just created:

aws secretsmanager rotate-secret \
 --secret-id $AWSCookbook405SecretName \
 --rotation-rules AutomaticallyAfterDays=30 \
 --rotation-lambda-arn $LAMBDA_ROTATE_ARN

You should see output similar to the following:
{
 "ARN": "arn:aws:secretsmanager:us-
east-1:1111111111111:secret:AWSCookbook405Secret-<<unique>>",
 "Name": "AWSCookbook405Secret-<<unique>>",
 "VersionId": "<<ID>>"
}

4.5 Automating Password Rotation for RDS Databases | 161

The rotate-secret command triggers an initial rotation of
the password. You will trigger an extra rotation of the pass‐
word in the next step to demonstrate how to perform rotations
on demand.

18. Perform another rotation of the secret:
aws secretsmanager rotate-secret --secret-id $AWSCookbook405SecretName

You should see output similar to the output from step 17. Notice that the Version
Id will be different from the last command indicating that the secret has been
rotated.

Validation checks. Retrieve the RDS admin password from Secrets Manager:
RDS_ADMIN_PASSWORD=$(aws secretsmanager get-secret-value --secret-id
$AWSCookbook405SecretName --query SecretString | jq -r | jq .password | tr -d '"')

List the endpoint for the RDS cluster:
echo $RDS_ENDPOINT

Retrieve the password for your RDS cluster:
echo $RDS_ADMIN_PASSWORD

Connect to the EC2 instance by using SSM Session Manager (see Recipe 1.6):
aws ssm start-session --target $INSTANCE_ID

Install the MySQL client:
sudo yum -y install mysql

Connect to the database to verify that the latest rotated password is working. You’ll
need to copy and paste the password (outputted previously):

mysql -u admin -p$password -h $hostname

Run a SELECT statement on the mysql.user table to validate administrator
permissions:

SELECT user FROM mysql.user;

You should see output similar to the following:
+------------------+
| user |
+------------------+
| admin |
| mysql.infoschema |
| mysql.session |
| mysql.sys |
| rdsadmin |
+------------------+
5 rows in set (0.00 sec)

162 | Chapter 4: Databases

Exit from the mysql prompt:
quit

Exit the Session Manager session:
exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
The AWS-provided Lambda function stores the rotated password in Secrets Manager.
You can then configure your application to retrieve secrets from Secrets Manager
directly; or the Lambda function you configured to update the Secrets Manager val‐
ues could also store the password in a secure location of your choosing. You would
need to grant the Lambda additional permissions to interact with the secure location
you choose and add some code to store the new value there. This method could also
be applied to rotate the passwords for nonadmin database user accounts by following
the same steps after you have created the user(s) in your database.

The Lambda function you deployed is Python-based and connects to a MySQL
engine-compatible database. The Lambda runtime environment does not have this
library included by default, so you specified a Lambda layer with the aws lambda
create-function command. This layer is required so that the PyMySQL library was
available to the function in the Lambda runtime environment, and it was deployed
for you as part of the preparation step when you ran cdk deploy.

Challenge
Create another Lambda function and a separate IAM role. Grant this new function
access to the same secret.

See Also
Recipe 5.2, “Packaging Libraries with Lambda Layers”

4.6 Autoscaling DynamoDB Table Provisioned Capacity
Problem
You have a DynamoDB database table with a low provisioned throughput. You realize
that your application load is variable and you may need to scale up or scale down
your provisioned throughput based on the variability of the incoming application
load.

4.6 Autoscaling DynamoDB Table Provisioned Capacity | 163

https://github.com/AWSCookbook/Databases

Solution
Configure read and write scaling by setting a scaling target and a scaling policy for
the read and write capacity of the DynamoDB table by using AWS application
autoscaling, as shown in Figure 4-6.

Figure 4-6. DynamoDB autoscaling configuration

Prerequisite

• A DynamoDB table

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Navigate to this recipe’s directory in the chapter repository:
cd 406-Auto-Scaling-DynamoDB

2. Register a ReadCapacityUnits scaling target for the DynamoDB table:
aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --resource-id "table/AWSCookbook406" \
 --scalable-dimension "dynamodb:table:ReadCapacityUnits" \
 --min-capacity 5 \
 --max-capacity 10

3. Register a WriteCapacityUnits scaling target for the DynamoDB table:
aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --resource-id "table/AWSCookbook406" \
 --scalable-dimension "dynamodb:table:WriteCapacityUnits" \
 --min-capacity 5 \
 --max-capacity 10

164 | Chapter 4: Databases

https://github.com/AWSCookbook/Databases

4. Create a scaling policy JSON file for read capacity scaling (read-policy.json pro‐
vided in the repository):

{
 "PredefinedMetricSpecification": {
 "PredefinedMetricType": "DynamoDBReadCapacityUtilization"
 },
 "ScaleOutCooldown": 60,
 "ScaleInCooldown": 60,
 "TargetValue": 50.0
}

5. Create a scaling policy JSON file for write capacity scaling (write-policy.json file
provided in the repository):

{
 "PredefinedMetricSpecification": {
 "PredefinedMetricType": "DynamoDBWriteCapacityUtilization"
 },
 "ScaleOutCooldown": 60,
 "ScaleInCooldown": 60,
 "TargetValue": 50.0
}

DynamoDB-provisioned capacity uses capacity units to define
the read and write capacity of your tables. The target value that
you set defines when to scale based on the current usage. Scal‐
ing cooldown parameters define, in seconds, how long to wait
to scale again after a scaling operation has taken place. For
more information, see the API reference for autoscaling
TargetTrackingScalingPolicyConfiguration.

6. Apply the read scaling policy to the table by using the read-policy.json file:
aws application-autoscaling put-scaling-policy \
 --service-namespace dynamodb \
 --resource-id "table/AWSCookbook406" \
 --scalable-dimension "dynamodb:table:ReadCapacityUnits" \
 --policy-name "AWSCookbookReadScaling" \
 --policy-type "TargetTrackingScaling" \
 --target-tracking-scaling-policy-configuration \
 file://read-policy.json

7. Apply the write scaling policy to the table using the write-policy.json file:
aws application-autoscaling put-scaling-policy \
 --service-namespace dynamodb \
 --resource-id "table/AWSCookbook406" \
 --scalable-dimension "dynamodb:table:WriteCapacityUnits" \
 --policy-name "AWSCookbookWriteScaling" \
 --policy-type "TargetTrackingScaling" \
 --target-tracking-scaling-policy-configuration \
 file://write-policy.json

4.6 Autoscaling DynamoDB Table Provisioned Capacity | 165

https://oreil.ly/gWTDb
https://oreil.ly/cWtJI
https://oreil.ly/cWtJI

Validation checks. You can observe the autoscaling configuration for your table by
selecting it in the DynamoDB console and looking under the “Additional settings”
tab.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion

These steps will autoscale read and write capacities independently
for your DynamoDB table, which helps you achieve the lowest
operating cost model for your application’s specific requirements.

DynamoDB allows for two capacity modes: provisioned and on-demand. When using
provisioned capacity mode, you are able to select the number of data reads and writes
per second. The pricing guide notes that you are charged according to the capacity
units you specify. Conversely, with on-demand capacity mode, you pay per request
for the data reads and writes your application performs on your tables. In general,
using on-demand mode can result in higher costs over provisioned mode for espe‐
cially transactionally heavy applications.

You need to understand your application and usage patterns when selecting a provi‐
sioned capacity for your tables. If you set the capacity too low, you will experience
slow database performance and your application could enter error and wait states,
since the DynamoDB API will return ThrottlingException and Provisioned
ThroughputExceededException responses to your application when these limits are
met. If you set the capacity too high, you are paying for unneeded capacity. Enabling
autoscaling allows you to define minimum and maximum target values by setting a
scaling target, while also allowing you to define when the autoscaling trigger should
go into effect for scaling up, and when it should begin to scale down your capacity.
This allows you to optimize for both cost and performance while taking advantage of
the DynamoDB service. To see a list of the scalable targets that you configured for
your table, you can use the following command:

aws application-autoscaling describe-scalable-targets \
 --service-namespace dynamodb \
 --resource-id "table/AWSCookbook406"

For more information on DynamoDB capacities and how they are measured, see this
support document.

166 | Chapter 4: Databases

https://github.com/AWSCookbook/Databases
https://oreil.ly/QtLJP
https://oreil.ly/uAFIs

Challenge
Create a Lambda function that monitors the performance of your DynamoDB table,
and then modify the autoscaling target minimums and maximums accordingly.

4.7 Migrating Databases to Amazon RDS Using AWS DMS
Problem
You need to move data from a source database to a target database.

Solution
Configure the VPC security groups and IAM permissions to allow AWS Database
Migration Service (DMS) connectivity to the databases. Then, configure the DMS
endpoints for the source and target databases. Next, configure a DMS replication
task. Finally, start the replication task. An architecture diagram of the solution is
shown in Figure 4-7.

Figure 4-7. DMS network diagram

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

4.7 Migrating Databases to Amazon RDS Using AWS DMS | 167

https://github.com/AWSCookbook/Databases

Steps

1. Create a security group for the replication instance:
DMS_SG_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook407DMSSG \
 --description "DMS Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

2. Grant the DMS security group access to the source and target databases on TCP
port 3306:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 3306 \
 --source-group $DMS_SG_ID \
 --group-id $SOURCE_RDS_SECURITY_GROUP
aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 3306 \
 --source-group $DMS_SG_ID \
 --group-id $TARGET_RDS_SECURITY_GROUP

3. Create a role for DMS by using the assume-role-policy.json provided:
aws iam create-role --role-name dms-vpc-role \
 --assume-role-policy-document file://assume-role-policy.json

The DMS service requires an IAM role with a specific name
and a specific policy. The command you ran previously satis‐
fies this requirement. You may also already have this role in
your account if you have used DMS previously. This com‐
mand would result in an error if that is the case, and you can
proceed with the next steps without concern.

4. Attach the managed DMS policy to the role:
aws iam attach-role-policy --role-name dms-vpc-role --policy-arn \
arn:aws:iam::aws:policy/service-role/AmazonDMSVPCManagementRole

5. Create a replication subnet group for the replication instance:
REP_SUBNET_GROUP=$(aws dms create-replication-subnet-group \
 --replication-subnet-group-identifier awscookbook407 \
 --replication-subnet-group-description "AWSCookbook407" \
 --subnet-ids $ISOLATED_SUBNETS \
 --query ReplicationSubnetGroup.ReplicationSubnetGroupIdentifier \
 --output text)

6. Create a replication instance and save the ARN in a variable:
REP_INSTANCE_ARN=$(aws dms create-replication-instance \
 --replication-instance-identifier awscookbook407 \
 --no-publicly-accessible \
 --replication-instance-class dms.t2.medium \
 --vpc-security-group-ids $DMS_SG_ID \
 --replication-subnet-group-identifier $REP_SUBNET_GROUP \
 --allocated-storage 8 \
 --query ReplicationInstance.ReplicationInstanceArn \
 --output text)

168 | Chapter 4: Databases

Wait until the ReplicationInstanceStatus reaches available; check the status by
using this command:

aws dms describe-replication-instances \
 --filter=Name=replication-instance-id,Values=awscookbook407 \
 --query ReplicationInstances[0].ReplicationInstanceStatus

You used the dms.t2.medium replication instance size for this
example. You should choose an instance size appropriate to
handle the amount of data you will be migrating. DMS trans‐
fers tables in parallel, so you will need a larger instance size for
larger amounts of data. For more information, see this user
guide document about best practices for DMS.

7. Retrieve the source and target DB admin passwords from Secrets Manager and
save to environment variables:

RDS_SOURCE_PASSWORD=$(aws secretsmanager get-secret-value --secret-id
$RDS_SOURCE_SECRET_NAME --query
SecretString --output text | jq .password | tr -d '"')

RDS_TARGET_PASSWORD=$(aws secretsmanager get-secret-value --secret-id
$RDS_TARGET_SECRET_NAME --query
SecretString --output text | jq .password | tr -d '"')

8. Create a source endpoint for DMS and save the ARN to a variable:
SOURCE_ENDPOINT_ARN=$(aws dms create-endpoint \
 --endpoint-identifier awscookbook407source \
 --endpoint-type source --engine-name mysql \
 --username admin --password $RDS_SOURCE_PASSWORD \
 --server-name $SOURCE_RDS_ENDPOINT --port 3306 \
 --query Endpoint.EndpointArn --output text)

9. Create a target endpoint for DMS and save the ARN to a variable:
TARGET_ENDPOINT_ARN=$(aws dms create-endpoint \
 --endpoint-identifier awscookbook407target \
 --endpoint-type target --engine-name mysql \
 --username admin --password $RDS_TARGET_PASSWORD \
 --server-name $TARGET_RDS_ENDPOINT --port 3306 \
 --query Endpoint.EndpointArn --output text)

4.7 Migrating Databases to Amazon RDS Using AWS DMS | 169

https://oreil.ly/vzBOB
https://oreil.ly/vzBOB

10. Create your replication task:
REPLICATION_TASK_ARN=$(aws dms create-replication-task \
 --replication-task-identifier awscookbook-task \
 --source-endpoint-arn $SOURCE_ENDPOINT_ARN \
 --target-endpoint-arn $TARGET_ENDPOINT_ARN \
 --replication-instance-arn $REP_INSTANCE_ARN \
 --migration-type full-load \
 --table-mappings file://table-mapping-all.json \
 --query ReplicationTask.ReplicationTaskArn --output text)

Wait for the status to reach ready. To check the status of the replication task, use
the following:

aws dms describe-replication-tasks \
 --filters "Name=replication-task-arn,Values=$REPLICATION_TASK_ARN" \
 --query "ReplicationTasks[0].Status"

11. Start the replication task:
aws dms start-replication-task \
 --replication-task-arn $REPLICATION_TASK_ARN \
 --start-replication-task-type start-replication

Validation checks. Monitor the progress of the replication task:
aws dms describe-replication-tasks

Use the AWS Console or the aws dms describe-replication-tasks operation to
validate that your tables have been migrated:

aws dms describe-replication-tasks \
 --query ReplicationTasks[0].ReplicationTaskStats

You can also view the status of the replication task in the DMS console.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion

You could also run full-load-and-cdc to continuously replicate
changes on the source to the destination to minimize your applica‐
tion downtime when you cut over to the new database.

170 | Chapter 4: Databases

https://github.com/AWSCookbook/Databases

DMS comes with functionality to test source and destination endpoints from the rep‐
lication instance. This is a handy feature to use when working with DMS to validate
that you have the configuration correct before you start to run replication tasks. Test‐
ing connectivity from the replication instance to both of the endpoints you config‐
ured can be done through the DMS console or the command line with the following
commands:

aws dms test-connection \
 --replication-instance-arn $rep_instance_arn \
 --endpoint-arn $source_endpoint_arn

aws dms test-connection \
 --replication-instance-arn $rep_instance_arn \
 --endpoint-arn $target_endpoint_arn

The test-connection operation takes a few moments to complete. You can check the
status and the results of the operation by using this command:

aws dms describe-connections --filter \
"Name=endpoint-arn,Values=$source_endpoint_arn,$target_endpoint_arn"

The DMS service supports many types of source and target databases within your
VPC, another AWS account, or databases hosted in a non-AWS environment. The
service can also transform data for you if your source and destination are different
types of databases by using additional configuration in the table-mappings.json file.
For example, the data type of a column in an Oracle database may have a different
format than the equivalent type in a PostgreSQL database. The AWS Schema Conver‐
sion Tool (SCT) can assist with identifying these necessary transforms, and also gen‐
erate configuration files to use with DMS.

Challenge
Enable full load and ongoing replication to continuously replicate from one database
to another.

4.8 Enabling REST Access to Aurora Serverless Using
RDS Data API
Problem
You have a PostgreSQL database and would like to connect to it without having your
application manage persistent database connections.

4.8 Enabling REST Access to Aurora Serverless Using RDS Data API | 171

https://oreil.ly/TowD5
https://oreil.ly/8vggA
https://oreil.ly/Tnt1a
https://oreil.ly/Tnt1a
https://oreil.ly/h8bPq

Solution
First, enable the Data API for your database and configure the IAM permissions for
your EC2 instance. Then, test from both the CLI and RDS console. This allows your
application to connect to your Aurora Serverless database, as shown in Figure 4-8.

Figure 4-8. An application using the RDS Data API

Prerequisites

• VPC with isolated subnets created in two AZs and associated route tables.
• PostgreSQL RDS instance and EC2 instance deployed. You will need the ability to

connect to these for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Enable the Data API on your Aurora Serverless cluster:
aws rds modify-db-cluster \
 --db-cluster-identifier $CLUSTER_IDENTIFIER \
 --enable-http-endpoint \
 --apply-immediately

2. Ensure that HttpEndpointEnabled is set to true:
aws rds describe-db-clusters \
 --db-cluster-identifier $CLUSTER_IDENTIFIER \
 --query DBClusters[0].HttpEndpointEnabled

3. Test a command from your CLI:
aws rds-data execute-statement \
 --secret-arn "$SECRET_ARN" \
 --resource-arn "$CLUSTER_ARN" \
 --database "$DATABASE_NAME" \
 --sql "select * from pg_user" \
 --output json

172 | Chapter 4: Databases

https://github.com/AWSCookbook/Databases

(Optional) You can also test access via the AWS Console using the Amazon RDS
Query Editor. First run these two commands from your terminal so you can copy
and paste the values:

echo $SECRET_ARN
echo $DATABASE_NAME

4. Log in to the AWS Console with admin permissions and go to the RDS console.
On the lefthand sidebar menu, click Query Editor. Fill out the values and select
“Connect to database,” as shown in Figure 4-9.

Figure 4-9. Connect to database settings

5. Run the same query and view the results below the Query Editor (see
Figure 4-10):

SELECT * from pg_user;

4.8 Enabling REST Access to Aurora Serverless Using RDS Data API | 173

Figure 4-10. RDS Query Editor

6. Configure your EC2 instance to use the Data API with your database cluster.
Create a file called policy-template.json with the following content (file provided
in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "rds-data:BatchExecuteStatement",
 "rds-data:BeginTransaction",
 "rds-data:CommitTransaction",
 "rds-data:ExecuteStatement",
 "rds-data:RollbackTransaction"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"
],
 "Resource": "SecretArn",
 "Effect": "Allow"
 }
]
}

7. Replace the values in the template file by using the sed command with environ‐
ment variables you have set:

174 | Chapter 4: Databases

sed -e "s/SecretArn/${SECRET_ARN}/g" \
 policy-template.json > policy.json

8. Create an IAM policy by using the file you just created:
aws iam create-policy --policy-name AWSCookbook408RDSDataPolicy \
 --policy-document file://policy.json

9. Attach the IAM policy for AWSCookbook408RDSDataPolicy to your EC2 instance’s
IAM role:

aws iam attach-role-policy --role-name $INSTANCE_ROLE_NAME \
 --policy-arn arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook408RDSDataPolicy

Validation checks. Create and populate some SSM parameters to store values so that
you can retrieve them from your EC2 instance:

aws ssm put-parameter \
 --name "Cookbook408DatabaseName" \
 --type "String" \
 --value $DATABASE_NAME

aws ssm put-parameter \
 --name "Cookbook408ClusterArn" \
 --type "String" \
 --value $CLUSTER_ARN

aws ssm put-parameter \
 --name "Cookbook408SecretArn" \
 --type "String" \
 --value $SECRET_ARN

Connect to the EC2 instance by using SSM Session Manager (see Recipe 1.6):
aws ssm start-session --target $INSTANCE_ID

Set the Region:
export AWS_DEFAULT_REGION=us-east-1

Retrieve the SSM parameter values and set them to environment values:
DatabaseName=$(aws ssm get-parameters \
 --names "Cookbook408DatabaseName" \
 --query "Parameters[*].Value" --output text)

SecretArn=$(aws ssm get-parameters \
 --names "Cookbook408SecretArn" \
 --query "Parameters[*].Value" --output text)

ClusterArn=$(aws ssm get-parameters \
 --names "Cookbook408ClusterArn" \
 --query "Parameters[*].Value" --output text)

Run a query against the database:
aws rds-data execute-statement \
 --secret-arn "$SecretArn" \
 --resource-arn "$ClusterArn" \

4.8 Enabling REST Access to Aurora Serverless Using RDS Data API | 175

 --database "$DatabaseName" \
 --sql "select * from pg_user" \
 --output json

Exit the Session Manager session:
exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
The Data API exposes an HTTPS endpoint for usage with Aurora and uses IAM
authentication to allow your application to execute SQL statements on your database
over HTTPS instead of using classic TCP database connectivity.

Per the Aurora user guide, all calls to the Data API are synchro‐
nous, and the default timeout for a query is 45 seconds. If your
queries take longer than 45 seconds, you can use the continueAf
terTimeout parameter to facilitate long-running queries.

As is the case with other AWS service APIs that use IAM authentication, all activities
performed with the Data API are captured in CloudTrail to ensure an audit trail is
present, which can help satisfy your security and audit requirements. You can control
and delegate access to the Data API endpoint by using IAM policies associated with
roles for your application. For example, if you wanted to grant your application the
ability to only read from your database using the Data API, you could write a policy
that omits the rds-data:CommitTransaction and rds-data:RollbackTransaction
permissions.

The Query Editor within the RDS console provides a web-based means of access for
executing SQL queries against your database. This is a convenient mechanism for
developers and DBAs to quickly accomplish bespoke tasks. The same privileges that
you assigned your EC2 instance in this recipe would need to be granted to your
developer and DBA via IAM roles.

Challenge
Create and deploy a Lambda function that has permissions to access the RDS Data
API that you provisioned.

176 | Chapter 4: Databases

https://github.com/AWSCookbook/Databases
https://oreil.ly/wvADq

CHAPTER 5

Serverless

5.0 Introduction
The technology industry term serverless can sometimes lead to confusion in that
servers are involved with the cloud services associated with this model of execution.
The advantage is that end users do not need to worry about managing the underlying
infrastructure and platform. The cloud provider (in this case, AWS) is responsible for
all of the management, operating system updates, availability, capacity, and more.

In terms of “serverless” services available on AWS, many options are available to take
advantage of the benefits. Here are some examples:

• AWS Lambda and Amazon Fargate for compute
• Amazon EventBridge, Amazon SNS, Amazon SQS, and Amazon API Gateway

for application integration
• Amazon S3, Amazon DynamoDB, and Amazon Aurora Serverless for datastores

The main benefits of serverless on AWS are as follows:

Cost savings
You pay for only what you use.

Scalability
Scale up to what you need; scale down to save costs.

Less management
There are no servers to deploy or systems to manage.

Flexibility
Many programming languages are supported in AWS Lambda.

177

https://oreil.ly/5CIjp

The recipes in this chapter will enable you to explore several of the AWS services that
fall under the “serverless” umbrella. You will find opportunities to extend the solu‐
tions with challenges and get experience with some new services that are leading the
serverless industry trend.

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” on page xvii to validate
your configuration and set up the required environment variables. Then, clone the
chapter code repository:

git clone https://github.com/AWSCookbook/Serverless

Chapter Prerequisites

IAM role for Lambda function execution
Create a file named assume-role-policy.json with the following content (file provided
in root of the chapter repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

A similar role is created automatically when you create a Lambda
function in the AWS Management Console and select “Create a
new role from AWS policy templates” for the execution role.

Create an IAM role with the statement in the provided assume-role-policy.json file
using this command:

aws iam create-role --role-name AWSCookbookLambdaRole \
 --assume-role-policy-document file://assume-role-policy.json

Attach the AWSLambdaBasicExecutionRole IAM managed policy to the IAM role:
aws iam attach-role-policy --role-name AWSCookbookLambdaRole \
 --policy-arn arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

178 | Chapter 5: Serverless

5.1 Configuring an ALB to Invoke a Lambda Function
Problem
You have a requirement that your entire web application must be exposed to the
internet with a load balancer. Your application architecture includes serverless func‐
tions. You need a function to be able to respond to HTTP requests for specific URL
paths.

Solution
Grant the Elastic Load Balancing service permission to invoke Lambda functions;
then create a Lambda function. Create an ALB target group; then register the Lambda
function with the target group. Associate the target group with the listener on your
ALB. Finally, add a listener rule that directs traffic for the /function path to the
Lambda function (see Figure 5-1).

Figure 5-1. Lambda function invoked by ALB

Prerequisites

• VPC with public subnets in two AZs and associated route tables
• An Application Load Balancer that includes the following:

— An associated security group that allows port 80 from the world
— A listener on port 80

• IAM role that allows the Lambda function to execute (provided in chapter
prerequisites)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

5.1 Configuring an ALB to Invoke a Lambda Function | 179

https://github.com/AWSCookbook/Serverless

Steps

1. Compress the function code provided in this recipe’s directory in the repository.
This code will be used for the Lambda function. You can modify this code if you
wish, but we have provided code for you to use. For example, zip the code with
the following command:

zip lambda_function.zip lambda_function.py

2. Create a Lambda function that will respond to HTTP requests:
LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook501Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole \
 --output text --query FunctionArn)

3. Create an ALB target group with the target type set to lambda:
TARGET_GROUP_ARN=$(aws elbv2 create-target-group \
 --name awscookbook501tg \
 --target-type lambda --output text \
 --query TargetGroups[0].TargetGroupArn)

4. Use the add-permission command to give the Elastic Load Balancing service
permission to invoke your Lambda function:

aws lambda add-permission \
 --function-name $LAMBDA_ARN \
 --statement-id load-balancer \
 --principal elasticloadbalancing.amazonaws.com \
 --action lambda:InvokeFunction \
 --source-arn $TARGET_GROUP_ARN

5. Use the register-targets command to register the Lambda function as a target:
aws elbv2 register-targets \
 --target-group-arn $TARGET_GROUP_ARN \
 --targets Id=$LAMBDA_ARN

6. Modify the listener for your ALB on port 80; then create a rule that forwards traf‐
fic destined for the /function path to your target group:

RULE_ARN=$(aws elbv2 create-rule \
 --listener-arn $LISTENER_ARN --priority 10 \
 --conditions Field=path-pattern,Values='/function' \
 --actions Type=forward,TargetGroupArn=$TARGET_GROUP_ARN \
 --output text --query Rules[0].RuleArn)

Validation checks. Test the invocation to verify that the Lambda function is invoked
when requesting /function:

curl -v $LOAD_BALANCER_DNS/function

180 | Chapter 5: Serverless

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Developers and software architects can leverage Lambda functions to provide a pro‐
grammatic response to some kind of event within a larger system. This type of com‐
pute is most often used when the functions are responsible for a small unit of work.
AWS added the ability for Application Load Balancers to invoke Lambda functions in
2018.

When an end user requests a specific URL path (configured by the developer) on an
ALB, the ALB can pass the request to a Lambda function to handle the response. The
ALB then receives the output from the function and hands the result back to the end
user as an HTTP response. ALBs can have multiple paths and targets configured for a
single load balancer, sending portions of traffic to specific targets (Lambda functions,
containers, EC2 instances, etc.) ALBs also support routing to Lambda functions using
header values. This simple architecture is extremely cost-effective and highly scalable.

This flexibility allows for a single ALB to handle all the traffic for your application
and provides for a nice building block when architecting a system that needs to be
exposed via HTTP/HTTPS.

Challenge 1
Add a Fargate task that responds to another path on your ALB.

Challenge 2
Try using an Amazon API Gateway to play in front of your Lambda function.

5.2 Packaging Libraries with Lambda Layers
Problem
You have Python code using external libraries that you need to include with your ser‐
verless function deployments.

Solution
Create a folder and use pip to install a Python package to the folder. Then, zip the
folder and use the .zip file to create a Lambda layer that your function will leverage
(see Figure 5-2).

5.2 Packaging Libraries with Lambda Layers | 181

https://github.com/AWSCookbook/Serverless
https://oreil.ly/R15DP
https://oreil.ly/ljYBe
https://oreil.ly/ljYBe
https://aws.amazon.com/api-gateway

Figure 5-2. Lambda function layer creation and representation

Prerequisite

• IAM role that allows Lambda functions to execute (provided in chapter
prerequisites)

Steps

1. In the root of this chapter’s repository, cd to the 502-Packaging-Libraries-with-
Lambda-Layers directory and follow the subsequent steps:

cd 502-Packaging-Libraries-with-Lambda-Layers/

2. Zip up lambda_function.py provided in the repository:
zip lambda_function.zip lambda_function.py

You should see output similar to the following:
updating: lambda_function.py (deflated 49%)

3. Create a Lambda function that we will add a layer to:
LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook502Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole \
 --output text --query FunctionArn)

4. Create a directory for the layer contents:
mkdir python

5. Use pip to install the latest requests module to the directory:
pip install requests --target="./python"

You should see output similar to the following:
Collecting requests
 Using cached requests-2.26.0-py2.py3-none-any.whl (62 kB)
Collecting certifi>=2017.4.17
 Using cached certifi-2021.5.30-py2.py3-none-any.whl (145 kB)
Collecting idna<4,>=2.5
 Using cached idna-3.2-py3-none-any.whl (59 kB)

182 | Chapter 5: Serverless

Collecting urllib3<1.27,>=1.21.1
 Using cached urllib3-1.26.7-py2.py3-none-any.whl (138 kB)
Collecting charset-normalizer~=2.0.0
 Using cached charset_normalizer-2.0.6-py3-none-any.whl (37 kB)
Installing collected packages: urllib3, idna, charset-normalizer, certifi,
requests
Successfully installed certifi-2021.5.30 charset-normalizer-2.0.6 idna-3.2
requests-2.26.0 urllib3-1.26.7

6. Zip the contents of the directory:
zip -r requests-layer.zip ./python

You should see output similar to the following:
 adding: python/ (stored 0%)
 adding: python/bin/ (stored 0%)
 adding: python/bin/normalizer (deflated 28%)
 adding: python/requests-2.26.0.dist-info/ (stored 0%)
 adding: python/requests-2.26.0.dist-info/RECORD (deflated 55%)
 adding: python/requests-2.26.0.dist-info/LICENSE (deflated 65%)
 adding: python/requests-2.26.0.dist-info/WHEEL (deflated 14%)
 adding: python/requests-2.26.0.dist-info/top_level.txt (stored 0%)
 adding: python/requests-2.26.0.dist-info/REQUESTED (stored 0%)
 adding: python/requests-2.26.0.dist-info/INSTALLER (stored 0%)
 adding: python/requests-2.26.0.dist-info/METADATA (deflated 58%)

Lambda layers require a specific folder structure. You create
this folder structure when you use pip to install the requests
module to the Python folder within your directory:

$ tree -L 1 python/
python/
├── bin
├── certifi
├── certifi-2020.12.5.dist-info
├── chardet
├── chardet-4.0.0.dist-info
├── idna
├── idna-2.10.dist-info
├── requests
├── requests-2.25.1.dist-info
├── urllib3
└── urllib3-1.26.4.dist-info

11 directories, 0 files

5.2 Packaging Libraries with Lambda Layers | 183

7. Publish the layer and set an environment variable to use in the next steps:
LAYER_VERSION_ARN=$(aws lambda publish-layer-version \
 --layer-name AWSCookbook502RequestsLayer \
 --description "Requests layer" \
 --license-info "MIT" \
 --zip-file fileb://requests-layer.zip \
 --compatible-runtimes python3.8 \
 --output text --query LayerVersionArn)

8. Update the Lambda to use the layer that you created:
aws lambda update-function-configuration \
 --function-name AWSCookbook502Lambda \
 --layers $LAYER_VERSION_ARN

You should see output similar to the following:
{
 "FunctionName": "AWSCookbook502Lambda",
 "FunctionArn": "arn:aws:lambda:us-
east-1:111111111111:function:AWSCookbook502Lambda",
 "Runtime": "python3.8",
 "Role": "arn:aws:iam::111111111111:role/AWSCookbookLambdaRole",
 "Handler": "lambda_function.lambda_handler",
 "CodeSize": 691,
 "Description": "",
 "Timeout": 3,
 "MemorySize": 128,
...

Validation checks. Test the Lambda:
aws lambda invoke \
 --function-name AWSCookbook502Lambda \
 response.json && cat response.json

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Lambda layers can be used to extend the packages available within the default
Lambda runtimes and also to provide your own custom runtimes for your functions.
The default runtimes are associated with Amazon Linux. Custom runtimes can be
developed on top of Amazon Linux to support your own programming language
requirements. See this tutorial to publish a custom runtime.

In this recipe, you packaged the Python requests module as a layer and deployed a
Python function that uses that module. Layers can be used by multiple functions,
shared with other AWS accounts, and they can also be version-controlled so that you
can deploy and test new versions of your layers without impacting existing versions
that are being used for your functions.

184 | Chapter 5: Serverless

https://github.com/AWSCookbook/Serverless
https://oreil.ly/XTWHX

Challenge
Create another Lambda function that uses the same layer.

5.3 Invoking Lambda Functions on a Schedule
Problem
You need to run a serverless function once per minute.

Solution
Add a permission to your Lambda function to allow the EventBridge service to
invoke the function. Then configure an EventBridge rule using a schedule expression
for one minute that targets your function (see Figure 5-3).

Figure 5-3. EventBridge triggering a time-based invocation of a Lambda function

Prerequisites

• Lambda function that you want to trigger
• IAM role that allows Lambda functions to execute (provided in chapter

prerequisites)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create an events rule with a scheduled expression with a rate of one minute:
RULE_ARN=$(aws events put-rule --name "EveryMinuteEvent" \
 --schedule-expression "rate(1 minute)")

5.3 Invoking Lambda Functions on a Schedule | 185

https://github.com/AWSCookbook/Serverless

You can use rate expressions and Cron formats for schedule
expressions when defining a time-based event rule. The Cron
expression syntax for the rule you created would look like the
following:

RULE_ARN=$(aws events put-rule --name
"EveryMinuteEvent" \
--schedule-expression "cron(* * * * ? *)")

For more information about schedule expressions, see this
support document.

2. Add a permission to the Lambda function so that the EventBridge service can
invoke it:

aws lambda add-permission --function-name $LAMBDA_ARN \
 --action lambda:InvokeFunction --statement-id events \
 --principal events.amazonaws.com

You should see output similar to the following:
{
 "Statement": "{\"Sid\":\"events\",\"Effect\":\"Allow\",\"Principal\":{\"Service
\":\"events.amazonaws.com\"},\"Action\":\"lambda:InvokeFunction\",\"Resource\":
\"arn:aws:lambda:us-east-1:111111111111:function:AWSCookbook503Lambda\"}"
}

3. Add your Lambda function as a target for the rule that you created:
aws events put-targets --rule EveryMinuteEvent \
 --targets "Id"="1","Arn"="$LAMBDA_ARN"

You should see output similar to the following:
{
 "FailedEntryCount": 0,
 "FailedEntries": []
}

There are many available target options. For the latest list,
check the documentation.

Validation checks. Tail the CloudWatch Logs log group to observe the function
invoked every 60 seconds:

aws logs tail "/aws/lambda/AWSCookbook503Lambda" --follow --since 10s

You may have to wait a few moments for the log group to be cre‐
ated. If the log group doesn’t exist, you will get the following error:

An error occurred (ResourceNotFoundException) when calling
the FilterLogEvents operation: The specified log group does
not exist.

186 | Chapter 5: Serverless

https://crontab.guru
https://oreil.ly/K7e8Z
https://oreil.ly/Rggow

You should see output similar to the following:
$ $ aws logs tail "/aws/lambda/AWSCookbook503Lambda" --follow --since 10s
2021-06-12T21:17:30.605000+00:00 2021/06/12/
[$LATEST]4d1335bf8b0846938cb585871db38374 START RequestId:
685481eb-9279-4007-854c-f99289bf9609 Version: $LATEST
2021-06-12T21:17:30.607000+00:00 2021/06/12/
[$LATEST]4d1335bf8b0846938cb585871db38374 AWS Cookbook Lambda
function run at 2021-06-12 21:17:30.607500
2021-06-12T21:17:30.608000+00:00 2021/06/12/
[$LATEST]4d1335bf8b0846938cb585871db38374 END RequestId:
685481eb-9279-4007-854c-f99289bf9609
2021-06-12T21:17:30.608000+00:00 2021/06/12/
[$LATEST]4d1335bf8b0846938cb585871db38374 REPORT RequestId:
685481eb-9279-4007-854c-f99289bf9609 Duration: 0.94 ms Billed Duration: 1
ms Memory Size: 128 MB
Max Memory Used: 51 MB
...

You can exit the tail session by pressing Ctrl-C.

Notice that subsequent runs occur at one-minute increments from
the time that you added the Lambda function as a target for your
event rule.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
There are many reasons you would want to run functions on a schedule:

• Checking stock prices
• Checking the weather
• Starting scheduled processes
• Scheduling EC2 starting and stop

Being able to run serverless functions on a schedule without provisioning resources
allows costs and management to be kept at a minimum. There are no servers to
update, and you don’t need to pay for them when they are idle.

Challenge
Pause and then enable the event rule. Here is a hint:

aws events disable-rule --name "EveryMinuteEvent"
aws events enable-rule --name "EveryMinuteEvent"

5.3 Invoking Lambda Functions on a Schedule | 187

https://github.com/AWSCookbook/Serverless

EventBridge was formerly known as Amazon CloudWatch Events.
EventBridge is now the preferred way to schedule events and uses
the same API as CloudWatch Events.

When you need an AWS service to interact with another AWS service, you need to
explicitly grant the permissions. In this case, EventBridge needs to be granted the per‐
missions to invoke a Lambda function by using the aws lambda add-permission
command.

5.4 Configuring a Lambda Function to Access
an EFS File System
Problem
You have an existing network share that is accessible by servers, but you want to be
able to process files on it with serverless functions.

Solution
You will create a Lambda function and mount your EFS file system to it (see
Figure 5-4).

Figure 5-4. Lambda function accessing ENIs within the subnet of a VPC

Prerequisites

• VPC with isolated subnets in two AZs and associated route tables
• EFS file system with content that you want to access

188 | Chapter 5: Serverless

https://oreil.ly/K4ElM

• IAM role that allows the Lambda function to execute (provided in chapter
prerequisites)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a new security group for the Lambda function to use:
LAMBDA_SG_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook504LambdaSG \
 --description "Lambda Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

2. Add an ingress rule to the EFS file system’s security group that allows access on
TCP port 2049 from the Lambda function’s security group:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 2049 \
 --source-group $LAMBDA_SG_ID \
 --group-id $EFS_SECURITY_GROUP

You should see output similar to the following:
{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-0f837d0b090ba38de",
 "GroupId": "sg-0867c2c4ca6f4ab83",
 "GroupOwnerId": "611652777867",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 2049,
 "ToPort": 2049,
 "ReferencedGroupInfo": {
 "GroupId": "sg-0c71fc94eb6cd1ae3"
 }
 }
]
}

3. Create an IAM role using the statement in the provided assume-role-policy.json
file using this command:

aws iam create-role --role-name AWSCookbook504Role \
 --assume-role-policy-document file://assume-role-policy.json

4. You need to give your Lambda function the ability to execute within a VPC, so
attach the IAM managed policy for AWSLambdaVPCAccessExecutionRole to the
IAM role:

aws iam attach-role-policy --role-name AWSCookbook504Role \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AWSLambdaVPCAccessExecutionRole

5.4 Configuring a Lambda Function to Access an EFS File System | 189

https://github.com/AWSCookbook/Serverless

5. Zip up the lambda_function.py provided in the repository:
zip lambda_function.zip lambda_function.py

6. Create a Lambda function specifying the ACCESS_POINT_ARN of the EFS file
system:

LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook504Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook504Role \
 --file-system-configs Arn="$ACCESS_POINT_ARN",LocalMountPath="/mnt/efs" \
 --output text --query FunctionArn \
 --vpc-config SubnetIds=${ISOLATED_SUBNETS},SecurityGroupIds=${LAMBDA_SG_ID})

7. Use this command to determine when the Lambda function has entered the
active state (this may take a few moments):

aws lambda get-function --function-name $LAMBDA_ARN \
 --output text --query Configuration.State

Validation checks. Execute the Lambda function to display the file’s contents:
aws lambda invoke \
 --function-name $LAMBDA_ARN \
 response.json && cat response.json

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
As a developer or software architect, you start to see the benefits of serverless tech‐
nologies when you connect serverless compute to serverless persistent storage (file‐
systems and databases both). The compute and storage operational overhead is dras‐
tically reduced when using these types of services within applications. You can provi‐
sion and scale your storage on demand while relying on AWS to manage the underly‐
ing infrastructure for you. While many applications will use an object-style storage
service such as Amazon S3, others are best suited to a somewhat more traditional file-
style storage service. Combining Lambda and EFS, as shown in this recipe, solves this
problem with ease.

By integrating Amazon EFS with AWS Lambda, you can build solutions like the
following:

• Persistent storage for applications
• Maintenance activities

190 | Chapter 5: Serverless

https://github.com/AWSCookbook/Serverless

• Event-driven notifications
• Event-driven file processing

The fully managed nature and the pay-per-use aspects of these services allow for the
design, building, deployment, and operation of cost-effective and modern application
architectures.

Challenge 1
Create another Lambda function that has access to the same EFS file system.

Challenge 2
Create a Lambda function that runs on a scheduled interval to detect if any files have
been changed in the last 30 days.

See Also
Recipe 5.9, “Accessing VPC Resources with Lambda”

5.5 Running Trusted Code in Lambda Using AWS Signer
Problem
You need to ensure that a serverless function deployed in your environment is run‐
ning code from trusted sources. You need to verify the integrity of the code and have
confidence that the code has not been modified after it has been signed.

Solution
Create a signing profile and then start a signing job for your code by using AWS
Signer. Finally, deploy a Lambda function that references your signing configuration
and uses the signed code (see Figure 5-5).

Figure 5-5. Signing process for Lambda function code

5.5 Running Trusted Code in Lambda Using AWS Signer | 191

Prerequisites

• S3 bucket with versioning enabled and source code copied to it
• S3 bucket for AWS Signer to use a destination
• IAM role that allows the Lambda function to execute (provided in chapter

prerequisites)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Get the version of the object in S3 that you will use. This is a zip of the code to be
used in your Lambda function. You’ll need this when you start the signing job:

OBJ_VER_ID=$(aws s3api list-object-versions \
 --bucket awscookbook505-src-$RANDOM_STRING \
 --prefix lambda_function.zip \
 --output text --query Versions[0].VersionId)

2. Create a signing profile:
SIGNING_PROFILE_ARN=$(aws signer put-signing-profile \
 --profile-name AWSCookbook505_$RANDOM_STRING \
 --platform AWSLambda-SHA384-ECDSA \
 --output text --query arn)

You can find a list of the available signing platforms by run‐
ning this command:

aws signer list-signing-platforms

3. Create a code-signing configuration for Lambda that refers to the signing profile:
CODE_SIGNING_CONFIG_ARN=$(aws lambda create-code-signing-config \
 --allowed-publishers SigningProfileVersionArns=$SIGNING_PROFILE_ARN \
 --output text --query CodeSigningConfig.CodeSigningConfigArn)

4. Start the signing job:
SIGNING_JOB_ID=$(aws signer start-signing-job \
 --source 's3={bucketName=awscookbook505-src-'"$
{RANDOM_STRING}"',key=lambda_function.zip,version='"$OBJ_VER_ID"'}' \
 --destination 's3={bucketName=awscookbook505-dst-'"$
{RANDOM_STRING}"',prefix=signed-}' \
 --profile-name AWSCookbook505_$RANDOM_STRING \
 --output text --query jobId)

Wait a few moments and then verify that the signing job was successful:
aws signer list-signing-jobs --status Succeeded

You should see output similar to the following:

192 | Chapter 5: Serverless

https://github.com/AWSCookbook/Serverless

{
 "jobs": [
 {
 "jobId": "efd392ae-2503-4c78-963f-8f40a58d770f",
 "source": {
 "s3": {
 "bucketName": "awscookbook505-src-<<unique>>",
 "key": "lambda_function.zip",
 "version": "o.MffnpzjBmaBR1yzvoti0AnluovMtMf"
 }
 },
 "signedObject": {
 "s3": {
 "bucketName": "awscookbook505-dst-<<unique>>",
 "key": "signed-efd392ae-2503-4c78-963f-8f40a58d770f.zip"
 }
 },
 "signingMaterial": {},
 "createdAt": "2021-06-13T11:52:51-04:00",
 "status": "Succeeded",
...

5. Retrieve the S3 object key of the resulting signed code:
OBJECT_KEY=$(aws s3api list-objects-v2 \
 --bucket awscookbook505-dst-$RANDOM_STRING \
 --prefix 'signed-' \
 --output text --query Contents[0].Key)

6. Create a Lambda function that uses the signed code:
LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook505Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --code S3Bucket=awscookbook505-dst-$RANDOM_STRING,S3Key=$OBJECT_KEY \
 --code-signing-config-arn $CODE_SIGNING_CONFIG_ARN \
 --handler lambda_function.lambda_handler --publish \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole \
 --output text --query FunctionArn)

7. Use this command to determine when the Lambda function has entered the
active state:

aws lambda get-function --function-name $LAMBDA_ARN \
 --output text --query Configuration.State

Validation checks. View your Lambda function in that console. Notice that you can’t
edit the code. You will see the message, “Your function has signed code and can’t be
edited inline.”

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

5.5 Running Trusted Code in Lambda Using AWS Signer | 193

https://github.com/AWSCookbook/Serverless

Discussion
Security-focused administrators and application developers can use this approach to
implement a DevSecOps strategy by enforcing rules that allow only trusted code to be
deployed in a given environment. By using AWS Signer, you can ensure that you are
running only trusted code in your environments. This helps meet compliance
requirements and increases the security posture of your application.

By using a digital signature generated by AWS Signer, your code is validated against a
cryptographic fingerprint, and enforcement policies can be applied to restrict the
deployment and execution of code. This capability paves the way to a strategic shift
from “reactive” to “preventive” controls in your security and compliance governance.

Challenge 1
Make a modification to the source code, sign it, and update the Lambda function.

Challenge 2

You can change your CodeSigningPolicies from Warn to Enforce—this will block
deployments if validation checks of the signature aren’t successful. Deploy a function
that leverages this capability to ensure you are running only signed code in your
environment:

"CodeSigningPolicies": {
 "UntrustedArtifactOnDeployment": "Warn"
 },

5.6 Packaging Lambda Code in a Container Image
Problem
You want to use your existing container-based development processes and tooling to
package your serverless code.

Solution
Create a Docker image and push it to an Amazon Elastic Container Registry (ECR)
repository. Create a Lambda function with the package-type of Image and code that
references an image URL in ECR (see Figure 5-6).

194 | Chapter 5: Serverless

https://oreil.ly/sPLFP

Figure 5-6. Deploying Lambda code packaged in a Docker image

Prerequisites

• ECR repository
• IAM role that allows the Lambda function to execute (provided in chapter

prerequisites)
• Docker installed

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Get ECR login information and pass to Docker:
aws ecr get-login-password | docker login --username AWS \
 --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com

You should see output similar to the following:
Login Succeeded

2. Create a file called app.py with the following code that you would like to execute
in Lambda (file provided in the repository):

import sys
def handler(event, context):
 return 'Hello from the AWS Cookbook ' + sys.version + '!'

3. Create a file called Dockerfile with the following content that builds on an AWS-
provided base image and references your Python code (file provided in the
repository):

FROM public.ecr.aws/lambda/python:3.8

COPY app.py ./
CMD ["app.handler"]

5.6 Packaging Lambda Code in a Container Image | 195

https://github.com/AWSCookbook/Serverless

4. In the folder where the Dockerfile and app.py files exist, build the container
image. The process will take a few minutes to complete:

docker build -t aws-cookbook506-image .

You should see output similar to the following:
[+] Building 19.1s (4/6)
 => [internal] load build definition from Dockerfile
 0.0s
 => => transferring dockerfile: 36B
 0.0s
 => [internal] load .dockerignore
 0.0s
 => => transferring context: 2B
 0.0s
 => [internal] load metadata for public.ecr.aws/lambda/python:3.8
 2.2s
 => [internal] load build context
 0.0s
...

5. Add an additional tag to the image to allow it to be pushed to ECR:
docker tag \
 aws-cookbook506-image:latest \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-cookbook-506repo:latest

6. Push the image to the ECR repository. The process should take a few minutes to
complete:

docker push \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-cookbook-506repo:latest

You should see output similar to the following:
The push refers to repository [111111111111.dkr.ecr.us-east-1.amazonaws.com/aws-
cookbook-506repo]
5efc5a3f50dd: Pushed
a1f8e0568112: Pushing [=====>] 10.3MB/98.4MB
bcf453d1de13: Pushing [>] 3.244MB/201.2MB
f6ae2f36d5d7: Pushing [==============================>] 4.998MB/8.204MB
5959c8f9752b: Pushed
3e5452c20c48: Pushed
9c4b6b04eac3: Pushing [>

7. Create a Lambda function with the Docker image by specifying a --code value
that is the ImageUri of the Docker image :

LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook506Lambda \
 --package-type "Image" \
 --code ImageUri=$AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-
cookbook-506repo:latest \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole \
 --output text --query FunctionArn)

196 | Chapter 5: Serverless

The --runtime and --handler parameters are not necessary
or supported when creating a function that uses a container
image.

Use this command to determine when the Lambda function has entered the
active state:

aws lambda get-function --function-name $LAMBDA_ARN \
 --output text --query Configuration.State

Validation checks. In the AWS Console, navigate to the Lambda→Functions menu.
Notice that the “Package type” for your function is Image.

Invoke the function and view the response:
aws lambda invoke \
 --function-name $LAMBDA_ARN response.json && cat response.json

You should see output similar to the following:
{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
"Hello from the AWS Cookbook 3.8.8 (default, Mar 8 2021, 20:13:42) \n[GCC 7.3.1
20180712 (Red Hat 7.3.1-12)]!"

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
If your application code is packaged in container images, AWS Lambda provides this
ability to package your function code inside container images. This allows for align‐
ment with existing build, test, package, and deploy pipelines that you may already be
using. You can package application code up to 10 GB in size for your functions. You
can use the base images that AWS provides or create your own images, as long as you
include a runtime interface client that is required by the Lambda runtime environ‐
ment.

You can store your container images on Amazon ECR, and your function must be in
the same account as the ECR repository where you have stored your container image.

Challenge
Update the application code, create a new image, push it to ECR, and update the
Lambda function.

5.6 Packaging Lambda Code in a Container Image | 197

https://github.com/AWSCookbook/Serverless
https://oreil.ly/N4wd7

5.7 Automating CSV Import into DynamoDB from S3
with Lambda
Problem
You need to load data from S3 into DynamoDB when files are uploaded to S3.

Solution
Use a Lambda function to load the S3 data into DynamoDB and configure an S3 noti‐
fication specifying the Lambda function to trigger on S3:PutObject events (see
Figure 5-7).

Figure 5-7. Using a Lambda function to load data into a DynamoDB table

Steps

1. Navigate to this recipe’s directory in the chapter repository:
cd 507-Importing-CSV-to-DynamoDB-from-S3

2. Create a DynamoDB table:
aws dynamodb create-table \
 --table-name 'AWSCookbook507' \
 --attribute-definitions 'AttributeName=UserID,AttributeType=S' \
 --key-schema 'AttributeName=UserID,KeyType=HASH' \
 --sse-specification 'Enabled=true,SSEType=KMS' \
 --provisioned-throughput \
 'ReadCapacityUnits=5,WriteCapacityUnits=5'

3. Set a unique suffix to use for the S3 bucket name:
RANDOM_STRING=$(aws secretsmanager get-random-password \
 --exclude-punctuation --exclude-uppercase \
 --password-length 6 --require-each-included-type \
 --output text \
 --query RandomPassword)

4. Create an S3 bucket:
aws s3api create-bucket --bucket awscookbook507-$RANDOM_STRING

5. Create a role for a Lambda function allowing S3 and DynamoDB usage (file pro‐
vided in the repository):

aws iam create-role --role-name AWSCookbook507Lambda \
 --assume-role-policy-document file://assume-role-policy.json

198 | Chapter 5: Serverless

6. Attach the IAM managed policy for AmazonS3ReadOnlyAccess to the IAM role:
aws iam attach-role-policy --role-name AWSCookbook507Lambda \
 --policy-arn arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess

7. Attach the IAM managed policy for AmazonDynamoDBFullAccess to the IAM role:
aws iam attach-role-policy --role-name AWSCookbook507Lambda \
 --policy-arn arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess

It is best to scope the Lambda function permission to the spe‐
cific DynamoDB table resource rather than AmazonDynamoDB
FullAccess (we used it for simplicity here). See Recipe 1.2 for
details on how to create a more narrowly scoped permission.

8. Attach the AWSLambdaBasicExecutionRole IAM managed policy to the IAM role:
aws iam attach-role-policy --role-name AWSCookbook507Lambda \
 --policy-arn arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

9. Zip the function code:
zip lambda_function.zip lambda_function.py

10. Create a Lambda function by using the provided code and specifying the code:
LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook507Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --environment Variables={bucket=awscookbook507-$RANDOM_STRING} \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook507Lambda \
 --output text --query FunctionArn)

11. Grant the S3 service invoke permissions for the Lambda function:
aws lambda add-permission --function-name $LAMBDA_ARN \
 --action lambda:InvokeFunction --statement-id s3invoke \
 --principal s3.amazonaws.com

12. Create a notification-template.json file to use as the event definition for automati‐
cally triggering the Lambda function when your file (sample_data.csv) is uploa‐
ded. A file you can use is provided in the repository:

{
 "LambdaFunctionConfigurations": [
 {
 "Id": "awscookbook507event",
 "LambdaFunctionArn": "LAMBDA_ARN",
 "Events": [
 "s3:ObjectCreated:*"
],
 "Filter": {
 "Key": {
 "FilterRules": [
 {

5.7 Automating CSV Import into DynamoDB from S3 with Lambda | 199

 "Name": "prefix",
 "Value": "sample_data.csv"
 }
]
 }
 }
 }
]
}

13. You can use the sed command to replace the values in the provided notification-
template.json file with the environment variables you have created:

sed -e "s/LAMBDA_ARN/${LAMBDA_ARN}/g" \
 notification-template.json > notification.json

14. Configure the S3 bucket notification settings to trigger the Lambda function
(one-liner config). NotificationConfiguration→LambdaConfigurations→Lambda
ARN:

aws s3api put-bucket-notification-configuration \
 --bucket awscookbook507-$RANDOM_STRING \
 --notification-configuration file://notification.json

15. Upload a file to S3 to trigger the import:
aws s3 cp ./sample_data.csv s3://awscookbook507-$RANDOM_STRING

Validation checks. View the results from your DynamoDB console, or use this CLI
command to scan the table:

aws dynamodb scan --table-name AWSCookbook507

One of the great features of DynamoDB is that it provides AWS
API endpoints for easy CRUD operations by your application via
the AWS SDK.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You can use AWS Lambda and Amazon DynamoDB together to build applications
with massively scalable database persistence while minimizing the operational over‐
head required. Software architects and developers who are looking to build applica‐
tions without worrying about server infrastructure may find it useful to use these two
services together.

200 | Chapter 5: Serverless

https://github.com/AWSCookbook/Serverless

At the time of this writing, Lambda functions time out after 900
seconds. This could cause an issue with large CSV files or if the
DynamoDB table does not have sufficient write capacity.

Event-driven applications are also an important concept in building modern cloud-
native applications on AWS. When you created the notification.json file, you specified
your Lambda function and the S3 bucket, as well as a key pattern to watch for
uploads to trigger the Lambda function when an object is put into the bucket. Using
event-driven architecture helps minimize the cost and complexity associated with
running your applications because the function logic is run only when needed.

Challenge 1
Add some new data to the sample_data.csv file, delete the file from your bucket, and
re-upload the file to trigger the new import. Note that the existing data will remain,
and the new data will be added.

Challenge 2
Change the S3 notification and the Lambda function to allow for other filenames to
be used with the solution.

Challenge 3
Create a fine-grained IAM policy for your Lambda function that scopes down the
function’s granted access to the DynamoDB table.

5.8 Reducing Lambda Startup Times with Provisioned
Concurrency
Problem
You need to ensure that a predetermined number (five) of invocations to your server‐
less function are as fast as possible. You need to eliminate any latency associated with
cold starts.

Solution
Create a Lambda function and set the function concurrency to 5 (see Figure 5-8).

5.8 Reducing Lambda Startup Times with Provisioned Concurrency | 201

https://oreil.ly/MnJNV
https://oreil.ly/MnJNV

Figure 5-8. Provisioned concurrency for a Lambda function

Prerequisite

• IAM role that allows the Lambda function to execute (provided in chapter
prerequisites)

Steps

1. Create a file called lambda_function.py with the following content (file provided
in the repository):

from datetime import datetime
import time

def lambda_handler(event, context):
 time.sleep(5)
 print('AWS Cookbook Function run at {}'.format(str(datetime.now())))

2. Zip the function code:
zip lambda_function.zip lambda_function.py

3. Create a Lambda function:
aws lambda create-function \
 --function-name AWSCookbook508Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --timeout 20 \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole

202 | Chapter 5: Serverless

4. Use this command to determine when the Lambda function has entered the
active state:

aws lambda get-function --function-name AWSCookbook509Lambda \
 --output text --query Configuration.State

Lambda function aliases allow you to reference a specific ver‐
sion of a function. Each Lambda function can have one or
more aliases. The initial alias is named LATEST.

5. Configure the provisioned concurrency for the Lambda function:
aws lambda put-provisioned-concurrency-config \
 --function-name AWSCookbook508Lambda \
 --qualifier LATEST \
 --provisioned-concurrent-executions 5

Validation checks. Invoke the function six times in a row to see the limit hit:
aws lambda invoke --function-name AWSCookbook508Lambda response.json &
aws lambda invoke --function-name AWSCookbook508Lambda response.json

The Lambda function you deployed needs to be run in parallel to
demonstrate the capability of the provisioned concurrency feature.
You may want to write a simple script which runs this command
multiple times in parallel to prove that the provisioned concur‐
rency enabled.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Your code’s execution environment provisioning is handled for you by the Lambda
service. This is a benefit of it being a fully managed service on AWS. Since the execu‐
tion environment is provisioned on demand, a small amount of time is required to
provision this environment for you. This is referred to as a cold start. Lambda keeps
your execution environment provisioned (or “warm”) for a period of time so that if
your function is invoked again, it will launch quickly. When you need your functions
to respond quickly and achieve more concurrency, you can avoid the cold start and
use provisioned concurrency to keep multiple copies of the execution environments
“warm.”

5.8 Reducing Lambda Startup Times with Provisioned Concurrency | 203

https://oreil.ly/8vXHA
https://github.com/AWSCookbook/Serverless

Some developers and software architects need to build solutions with time-sensitive
requirements measured in milliseconds in microservice-based applications. When
you use Lambda-provisioned concurrency, you minimize the amount of time your
function needs to start up when it is invoked.

Challenge 1
Configure an API Gateway in front of your Lambda function and use a tool like bees
with machine guns or ApacheBench to simulate user load.

Challenge 2
Configure application autoscaling to modify the provisioned concurrency for your
Lambda function based on time and/or a performance metric (e.g., response time).

5.9 Accessing VPC Resources with Lambda
Problem
You need a serverless function to be able to access an ElastiCache cluster that has an
endpoint in a VPC.

Solution
Create a Lambda function that has a Redis client connection and package and speci‐
fies VPC subnets and security groups. Then create ElastiCache subnet groups and an
ElastiCache cluster. Invoke the Lambda and pass the cluster endpoint to the function
to test (see Figure 5-9).

Figure 5-9. Lambda accessing an ElastiCache cluster in a VPC

204 | Chapter 5: Serverless

https://oreil.ly/EmxSn
https://oreil.ly/EmxSn
https://oreil.ly/3i7WV

Prerequisite

• IAM role that allows the Lambda function to execute (provided in chapter
prerequisites)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. You need to give your Lambda function the ability to execute within a VPC, so
attach the IAM managed policy for AWSLambdaVPCAccess to the IAM role (cre‐
ated in the chapter prerequisites):

aws iam attach-role-policy --role-name AWSCookbookLambdaRole \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AWSLambdaVPCAccessExecutionRole

2. Install the Redis Python package to the current directory from the Python Pack‐
age Index (PyPI):

pip install redis -t .

3. Zip the function code:
zip -r lambda_function.zip lambda_function.py redis*

4. Create a security group for the Lambda:
LAMBDA_SG_ID=$(aws ec2 create-security-group \
 --group-name Cookbook509LambdaSG \
 --description "Lambda Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

5. Create a Lambda function that will respond to HTTP requests:
LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook509Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --role arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole \
 --output text --query FunctionArn \
 --vpc-config SubnetIds=${TRIMMED_ISOLATED_SUBNETS},SecurityGroupIds=$
{LAMBDA_SG_ID})

6. Create an ElastiCache subnet group:
aws elasticache create-cache-subnet-group \
 --cache-subnet-group-name "AWSCookbook509CacheSG" \
 --cache-subnet-group-description "AWSCookbook509CacheSG" \
 --subnet-ids $ISOLATED_SUBNETS

5.9 Accessing VPC Resources with Lambda | 205

https://github.com/AWSCookbook/Serverless

7. Create an ElastiCache Redis cluster with one node:
aws elasticache create-cache-cluster \
 --cache-cluster-id "AWSCookbook509CacheCluster" \
 --cache-subnet-group-name AWSCookbook509CacheSG \
 --engine redis \
 --cache-node-type cache.t3.micro \
 --num-cache-nodes 1

Wait for the cache cluster to be available.
8. Invoke the function and view the response replacing HOSTNAME with the host

name of your cluster:
aws lambda invoke \
 --cli-binary-format raw-in-base64-out \
 --function-name $LAMBDA_ARN \
 --payload '{ "hostname": "HOSTNAME" }' \
 response.json && cat response.json

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
By default, Lambda functions do not have access to any VPC that you may have pro‐
visioned in your AWS environment. However, Lambda does support VPC connectiv‐
ity by provisioning network interfaces in your VPC. ElastiCache requires compute
nodes that have network interfaces in your VPC, so you need to configure Lambda
within your VPC to allow it to access the ElastiCache nodes that you provision.

The compute memory that your function uses is not persistent if the function is
invoked when the execution environment is spun down and restarted. If your appli‐
cation requires access to memory persistence (for example, in HTTP sessions), you
can use the Amazon ElastiCache service to implement redis or memcached for ses‐
sion storage and key/value storage. These common solutions implement in-memory
cache for fast read/write and allow you to scale horizontally with your application
while maintaining memory persistence that your application requires.

Challenge 1
Configure your Lambda function to read and write additional values to Amazon
ElastiCache for Redis.

206 | Chapter 5: Serverless

https://github.com/AWSCookbook/Serverless

CHAPTER 6

Containers

6.0 Introduction
A container, put simply, packages application code, binaries, configuration files, and
libraries together into a single package, called a container image. By packaging every‐
thing together in this way, you can develop, test, and run applications with control
and consistency. You can quickly start packaging up and testing containers that you
build locally, while ensuring that the exact same runtime environment is present
regardless of where it is running. This generally reduces the time it takes to build
something and offer it to a wide audience, and ensures consistency whenever you
deploy.

Containers are wholly “contained” environments that leverage the underlying com‐
pute and memory capabilities on the host where they are running (your laptop, a
server in a closet, or the cloud). Multiple containers can be run on the same host at
once without conflicts. You can also have multiple containers running with the inten‐
tion of them communicating with one another. Imagine that you have a frontend web
application running as a container that accesses a container running a backend for
your website, and you might want to run multiple instances of them at once to handle
more traffic. Running multiple containers at once and ensuring they are always avail‐
able can present some challenges, which is why you enlist the help of a container
orchestrator. Popular orchestrators come in many flavors, but some of the common
ones you may have heard of are Kubernetes and Docker Swarm.

You have options for running containers on AWS, such as Amazon Elastic Container
Service (Amazon ECS) and Amazon Elastic Kubernetes Service (Amazon EKS) as
container orchestrators, and Amazon Elastic Cloud Compute (Amazon EC2) for
deployments with custom requirements. Both of the AWS container orchestrator
services mentioned (Amazon ECS and Amazon EKS) can run workloads on Amazon

207

EC2 or on the fully managed AWS Fargate compute engine. In other words, you can
choose to control the underlying EC2 instance (or instances) responsible for running
your containers on Amazon ECS and Amazon EKS, allowing some level of customi‐
zation to your host, or you can use Fargate, which is fully managed by AWS—you
don’t have to worry about instance management. You can even use ECS and EKS
within your own datacenter using ECS Anywhere and EKS Anywhere. AWS provides
a comprehensive listing of all up-to-date container services on its website.

Some AWS services (AWS CodeDeploy, AWS CodePipeline, and Amazon Elastic
Container Registry) can help streamline the development lifecycle and provide auto‐
mation to your workflow. These integrate well with Amazon ECS and Amazon EKS.
Some examples of AWS services that provide network capabilities are Amazon Vir‐
tual Private Cloud, AWS Elastic Load Balancing, AWS Cloud Map, and Amazon
Route 53.You can address your logging and monitoring concerns with Amazon
CloudWatch and the Amazon Managed Service for Prometheus. Fine-grained secu‐
rity capabilities can be provided by AWS Identity and Access Management (IAM) and
AWS Key Management System (KMS). By following the recipes in this chapter, you
will see how some of these services combine to meet your needs.

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” on page xvii to validate
your configuration and set up the required environment variables. Then, clone the
chapter code repository:

git clone https://github.com/AWSCookbook/Containers

Chapter Prerequisites

Docker installation and validation
Docker Desktop is recommended for Windows and Mac users; Docker Linux Engine
is recommended for Linux users. In the following recipes, you’ll use Docker to create
a consistent working environment on your particular platform. Be sure to install the
latest stable version of Docker for your OS.

208 | Chapter 6: Containers

https://aws.amazon.com/containers
https://aws.amazon.com/prometheus
https://oreil.ly/Wfv89
https://oreil.ly/taxpH

MacOS.
1. Follow instructions from Docker Desktop: https://docs.docker.com/docker-for-

mac/install.
2. Run the Docker Desktop application after installation.

Windows.
1. Follow instructions from Docker Desktop: https://docs.docker.com/desktop/

windows/install.
2. Run the Docker Desktop application after installation.

Linux.
1. Follow instructions from Docker Desktop: https://docs.docker.com/engine/install.
2. Start the Docker daemon on your distribution:

Validation the installation of Docker on your workstation with the following
command:

docker --version

You should see output similar to the following:
Docker version 19.03.13, build 4484c46d9d

Run the docker images command to list images on your local machine:
REPOSITORY TAG IMAGE ID CREATED SIZE

6.1 Building, Tagging, and Pushing a Container Image to
Amazon ECR
Problem
You need a repository to store built and tagged container images.

Solution
First, you will create a repository in Amazon ECR. Next, you will create a Dockerfile
and use it to build a Docker image. Finally, you will apply two tags to the container
image and push them both to the newly created ECR repository. This process is illus‐
trated in Figure 6-1.

6.1 Building, Tagging, and Pushing a Container Image to Amazon ECR | 209

https://docs.docker.com/docker-for-mac/install
https://docs.docker.com/docker-for-mac/install
https://docs.docker.com/desktop/windows/install
https://docs.docker.com/desktop/windows/install
https://docs.docker.com/engine/install

Figure 6-1. Solution workflow of build, tag, and push for container images

Steps

1. Log into the AWS Management Console and search for Elastic Container Regis‐
try. Click the “Create repository” button.
Give your repository a name, keep all defaults (as shown in Figure 6-2), scroll to
the bottom, and click “Create repository” again to finish.

Figure 6-2. ECR repository creation

210 | Chapter 6: Containers

You now have a repository created on Amazon ECR that you can use to store
container images. An example of the ECR console is shown in Figure 6-3.

Figure 6-3. Screenshot of created ECR repository

Alternatively, you can also create an ECR repository from the command line:
REPO=aws-cookbook-repo && \
 aws ecr create-repository --repository-name $REPO

You should see output similar to the following:
{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-1:111111111111:repository/aws-cookbook-
repo",
 "registryId": "1111111111111",
 "repositoryName": "aws-cookbook-repo",
 "repositoryUri": "611652777867.dkr.ecr.us-east-1.amazonaws.com/aws-cookbook-
repo",
 "createdAt": "2021-10-02T19:57:56-04:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": false
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

2. Create a simple Dockerfile:
echo FROM nginx:latest > Dockerfile

6.1 Building, Tagging, and Pushing a Container Image to Amazon ECR | 211

This command creates a Dockerfile that contains a single line
instructing the Docker Engine to use the nginx:latest image
as the base image. Since you use only the base image with no
other lines in the Dockerfile, the resulting image is identical to
the nginx:latest image. You could include some HTML files
within this image by using the COPY and ADD Dockerfile direc‐
tives.

3. Build and tag the image. This step may take a few moments as it downloads and
combines the image layers:

docker build . -t \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-cookbook-repo:latest

4. Add an additional tag:
docker tag \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-cookbook-repo:latest \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-cookbook-repo:1.0

5. Get Docker login information:
aws ecr get-login-password | docker login --username AWS \
 --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com

Here is the output:
Login Succeeded

An authorization token needs to be provided each time an
operation is executed against a private repository. Tokens last
for 12 hours, so the command you ran would need to be man‐
ually refreshed at that interval on your command line. To help
you with automating the task of obtaining authorization
tokens, you can use the ECR Docker Credential Helper, avail‐
able from the awslabs GitHub repository.

6. Push each image tag to Amazon ECR:
docker push \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-cookbook-repo:latest

docker push \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-cookbook-repo:1.0

You will see “Layer already exists” for the image layer uploads
on the second push. This is because the image already exists in
the ECR repository due to the first push, but this step is still
required to add the additional tag.

212 | Chapter 6: Containers

https://oreil.ly/VCCb7
https://oreil.ly/xI0xD

Validation checks. Now you can view both of the tagged images in Amazon ECR from
the console, as shown in Figure 6-4.

Figure 6-4. Screenshot of the image with two tags

Alternatively, you can use the AWS CLI to list the images:
aws ecr list-images --repository-name aws-cookbook-repo

You should see output similar to the following:
{
 "imageIds": [
 {
 "imageDigest":
"sha256:99d0a53e3718cef59443558607d1e100b325d6a2b678cd2a48b05e5e22ffeb49",
 "imageTag": "1.0"
 },
 {
 "imageDigest":
"sha256:99d0a53e3718cef59443558607d1e100b325d6a2b678cd2a48b05e5e22ffeb49",
 "imageTag": "latest"
 }
]
}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Having a repository for your container images is an important foundational compo‐
nent of the application development process. A private repository for your container
images that you control is a best practice to increase the security of your application
development process. You can grant access to other AWS accounts, IAM entities, and
AWS services with permissions for Amazon ECR. Now that you know how to create

6.1 Building, Tagging, and Pushing a Container Image to Amazon ECR | 213

https://github.com/AWSCookbook/Containers

an ECR repository, you will be able to store your container images and use them with
AWS services.

Amazon ECR supports the popular Docker Image Manifest V2,
Schema 2 and most recently Open Container Initiative (OCI)
images. It can translate between these formats on pull. Legacy sup‐
port is available for Manifest V2, Schema 1, and Amazon ECR can
translate on the fly when interacting with legacy Docker client ver‐
sions. The experience should be seamless for most Docker client
versions in use today.

Container tagging allows you to version and keep track of your container images. You
can apply multiple tags to an image, which can help you implement your versioning
strategy and deployment process. For example, you may always refer to a “latest” tag‐
ged image in your dev environment, but your production environment can be locked
to a specific version tag. The Docker CLI pushes tagged images to the repository and
the tags can be used with pulls.

Challenge
Modify the Dockerfile, build a new image, tag it with a new version number, and put
it to ECR.

6.2 Scanning Images for Security Vulnerabilities on Push
to Amazon ECR
Problem
You want to automatically scan your container images for security vulnerabilities
each time you push to a repository.

Solution
Enable automatic image scanning on a repository in Amazon ECR, push an image,
and observe the scan results, as shown in Figure 6-5.

Prerequisite

• ECR repository

214 | Chapter 6: Containers

https://oreil.ly/FeYVY
https://oreil.ly/FeYVY
https://oreil.ly/tzgdd

Figure 6-5. Container image scanning solution workflow

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Rather than building a new container image from a Dockerfile (as you did in
Recipe 6.1), this time you are going to pull an old NGINX container image:

docker pull nginx:1.14.1

2. On the command line, apply the scanning configuration to the repository you
created:

REPO=aws-cookbook-repo && \
 aws ecr put-image-scanning-configuration \
 --repository-name $REPO \
 --image-scanning-configuration scanOnPush=true

3. Get Docker login information:
aws ecr get-login-password | docker login --username AWS \
 --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com

4. Apply a tag to the image so that you can push it to the ECR repository:
docker tag nginx:1.14.1 \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-cookbook-repo:old

5. Push the image:
docker push \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-cookbook-repo:old

Validation checks. Shortly after the push is complete, you can examine the results of
the security scan of the image in JSON format:

aws ecr describe-image-scan-findings \
 --repository-name aws-cookbook-repo --image-id imageTag=old

You should see output similar to the following:

6.2 Scanning Images for Security Vulnerabilities on Push to Amazon ECR | 215

https://github.com/AWSCookbook/Containers

{
 "imageScanFindings": {
 "findings": [
 {
 "name": "CVE-2019-3462",
 "description": "Incorrect sanitation of the 302 redirect field in HTTP
transport method of apt versions 1.4.8 and earlier can lead to content injection by
a MITM attacker, potentially leading to remote code execution on the target
machine.",
 "uri": "https://security-tracker.debian.org/tracker/CVE-2019-3462",
 "severity": "CRITICAL",
 "attributes": [
 {
 "key": "package_version",
 "value": "1.4.8"
 },

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Amazon ECR has a safety mechanism built in that does not let you
delete a repository containing images. If the repository is not
empty and the delete-repository command is failing, you can
bypass this check by adding --force to the delete-repository
command.

Discussion
The Common Vulnerabilities and Exposures (CVEs) database from the open source
Clair project is used by Amazon ECR for vulnerability scanning. You are provided a
Common Vulnerability Scoring System (CVSS) score to indicate the severity of any
detected vulnerabilities. This helps you detect and remediate vulnerabilities in your
container image. You can configure alerts for newly discovered vulnerabilities in
images by using Amazon EventBridge and Amazon Simple Notification Service
(Amazon SNS).

The scanning feature does not continuously scan your images, so it
is important to push your image versions routinely (or trigger a
manual scan).

You can retrieve the results of the last scan for an image at any time with the com‐
mand used in the last step of this recipe. Furthermore, you can use these commands
as part of an automated CI/CD process that may validate whether or not an image has
a certain CVSS score before deploying.

216 | Chapter 6: Containers

https://github.com/AWSCookbook/Containers
https://cve.mitre.org
https://github.com/quay/clair
https://oreil.ly/ZSiob

Challenge 1
Remediate the vulnerability by updating the image with the latest NGINX container
image.

Challenge 2
Configure an SNS topic to send you an email when vulnerabilities are detected in
your repository.

6.3 Deploying a Container Using Amazon Lightsail
Problem
You need to quickly deploy a container-based application and access it securely over
the internet.

Solution
Deploy a plain NGINX container that listens on port 80 to Lightsail. Lightsail pro‐
vides a way to quickly deploy applications to AWS. The workflow is shown in
Figure 6-6.

Figure 6-6. Amazon Lightsail serving a container image

Prerequisite

• In addition to Docker Desktop and the AWS CLI (version 2), you need to install
the Lightsail Control plugin (lightsailctl) for the AWS CLI.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

6.3 Deploying a Container Using Amazon Lightsail | 217

https://oreil.ly/SaZCa
https://oreil.ly/Tn2B9
https://github.com/AWSCookbook/Containers

Steps

Several power levels are available for Lightsail, each of which is
priced according to the amount of compute power your container
needs. We selected nano in this example. A list of power levels and
associated costs is available in the Lightsail pricing guide.

1. Once you have lightsailctl installed, create a new container service and give it a
name, power parameter, and scale parameter:

aws lightsail create-container-service \
 --service-name awscookbook --power nano --scale 1

You should see output similar to the following:
{
 "containerService": {
 "containerServiceName": "awscookbook",
 "arn": "arn:aws:lightsail:us-east-1:111111111111:ContainerService/124633d7-
b625-48b2-b066-5826012904d5",
 "createdAt": "2020-11-15T10:10:55-05:00",
 "location": {
 "availabilityZone": "all",
 "regionName": "us-east-1"
 },
 "resourceType": "ContainerService",
 "tags": [],
 "power": "nano",
 "powerId": "nano-1",
 "state": "PENDING",
 "scale": 1,
 "isDisabled": false,
 "principalArn": "",
 "privateDomainName": "awscookbook.service.local",
 "url": "https://awscookbook.<<unique-id>>.us-east-1.cs.amazonlightsail.com/"
 }
}

2. Pull a plain NGINX container image to use that listens on port 80/TCP.
docker pull nginx

Use the following command to ensure that the state of your container service has
entered the READY state (this may take a few minutes):

aws lightsail get-container-services --service-name awscookbook

3. When the container service is ready, push the container image to Lightsail:
aws lightsail push-container-image --service-name awscookbook \
 --label awscookbook --image nginx

You should see output similar to the following:
7b5417cae114: Pushed
Image "nginx" registered.
Refer to this image as ":awscookbook.awscookbook.1" in deployments.

218 | Chapter 6: Containers

https://oreil.ly/DSPNv

You can specify public image repositories or push your own
image to your container service within Amazon Lightsail.
Rather than using a private Amazon ECR location, your Light‐
sail images are kept within the Lightsail service. For more
information, refer to the Lightsail documentation for image
locations.

4. Now you will associate the image you pushed with the container service you cre‐
ated for deployment. Create a file with the following contents and save it as light‐
sail.json (file provided in the code repository):

{
 "serviceName": "awscookbook",
 "containers": {
 "awscookbook": {
 "image": ":awscookbook.awscookbook.1",
 "ports": {
 "80": "HTTP"
 }
 }
 },
 "publicEndpoint": {
 "containerName": "awscookbook",
 "containerPort": 80
 }
}

5. Create the deployment:
aws lightsail create-container-service-deployment \
 --service-name awscookbook --cli-input-json file://lightsail.json

View your container service again and wait for the ACTIVE state. This may take
a few minutes:

aws lightsail get-container-services --service-name awscookbook

Note the endpoint URL at the end of the output.

Validation checks. Now, visit the endpoint URL in your browser, or use the curl on
the command line (e.g., url: https://awscookbook.un94eb3cd7hgk.us-

east-1.cs.amazonlightsail.com):
curl <<URL endpoint>>

You should see output similar to the following:
...
<h1>Welcome to nginx!</h1>
...

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

6.3 Deploying a Container Using Amazon Lightsail | 219

https://oreil.ly/Hi4Ny
https://oreil.ly/Hi4Ny
https://github.com/AWSCookbook/Containers
https://github.com/AWSCookbook/Containers

Discussion
Lightsail manages the TLS certificate, load balancer, compute, and storage. It can also
manage MySQL and PostgreSQL databases as part of your deployment if your appli‐
cation requires it. Lightsail performs routine health checks on your application and
will automatically replace a container you deploy that may have become unresponsive
for some reason. Changing the power and scale parameters in the lightsail
create-container-service command will allow you to create services for demand‐
ing workloads.

Using this recipe, you could deploy any common container-based application (e.g.,
Wordpress) and have it served on the internet in a short period of time. You could
even point a custom domain alias at your Lightsail deployment for an SEO-friendly
URL.

Challenge
Scale your service so that it will be able to handle more traffic.

6.4 Deploying Containers Using AWS Copilot
Problem
You need a way to use your existing Dockerfile to quickly deploy and manage a load
balanced web service using best practices in a private network.

Solution
Starting with a Dockerfile, you can use AWS Copilot to quickly deploy an application
using an architecture shown in Figure 6-7.

220 | Chapter 6: Containers

https://oreil.ly/rB5Xf
https://oreil.ly/zH8YD

Figure 6-7. AWS Copilot load balanced web service infrastructure

Prerequisite

• AWS Copilot CLI

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Copilot requires an ECS service-linked role to allow Amazon ECS to perform
actions on your behalf. This may already exist in your AWS account. To see if you
have this role already, issue the following command:

aws iam list-roles --path-prefix /aws-service-role/ecs.amazonaws.com/

(If the role is displayed, you can skip the following role-creation step.)
Create the ECS service-linked role if it does not exist:

aws iam create-service-linked-role --aws-service-name ecs.amazonaws.com

6.4 Deploying Containers Using AWS Copilot | 221

https://oreil.ly/PvZlD
https://github.com/AWSCookbook/Containers

IAM service-linked roles allow AWS services to securely inter‐
act with other AWS services on your behalf. See the AWS arti‐
cle on using these roles.

2. cd to this recipe’s directory in this chapter’s code repository:
cd 604-Deploy-Container-With-Copilot-CLI

You could provide your own Dockerfile and content for this
recipe. If you choose to use your own container with this
recipe, ensure that the container listens on port 80/TCP. Or
configure the alternate port with the copilot init command.

3. Now use AWS Copilot to deploy the sample NGINX Dockerfile to Amazon ECS:
copilot init --app web --name nginx --type 'Load Balanced Web Service' \
 --dockerfile './Dockerfile' --port 80 --deploy

If you don’t specify any arguments to the copilot init com‐
mand, it will walk you through a menu of options for your
deployment.

The deployment will take a few moments. You can watch the progress of the
deployment in your terminal.

Validation checks. After the deployment is complete, get information on the deployed
service with this command:

copilot svc show

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion

Copilot exposes a command-line interface that simplifies deploy‐
ments to Amazon ECS, AWS Fargate, and AWS App Runner. It
helps streamline your development workflow and deployment
lifecycle.

222 | Chapter 6: Containers

https://oreil.ly/CwzCZ
https://oreil.ly/CwzCZ
https://github.com/AWSCookbook/Containers
https://github.com/AWSCookbook/Containers

The copilot init command created a directory called copilot in your current work‐
ing directory. You can view and customize the configuration by using the mani‐
fest.yml that is associated with your application.

The test environment is the default environment created. You can
add additional environments to suit your needs and keep your
environments isolated from each other by using the copilot env
init command.

Copilot configures all of the required resources for hosting containers on Amazon
ECS according to many best practices. Some examples are deploying to multiple
Availability Zones), using subnet tiers to segment traffic, and using AWS KMS to
encrypt.

The AWS Copilot commands can also be embedded in your CI/CD pipeline to per‐
form automated deployments. In fact, Copilot can orchestrate the creation and man‐
agement of a CI/CD pipeline for you with the copilot pipeline command. For all
of the current supported features and examples, visit the AWS Copilot home page.

Challenge
Reconfigure your Load Balanced Web Service to deploy to AWS App Runner instead
of Amazon ECS.

6.5 Updating Containers with Blue/Green Deployments
Problem
You want to use a deployment strategy with your container-based application so you
can update your application to the latest version without introducing downtime to
customers, while also being able to easily roll back if the deployment was not
successful.

Solution
Use AWS CodeDeploy to orchestrate your application deployments to Amazon ECS
with the Blue/Green strategy, as shown in Figure 6-8.

6.5 Updating Containers with Blue/Green Deployments | 223

https://aws.github.io/copilot-cli
https://oreil.ly/BvUTg

Figure 6-8. Blue/Green target group association

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. With the CDK stack deployed, open a web browser and visit the LOAD_BAL
ANCER_DNS address on TCP port 8080 that the CDK output displayed. You will
see the “Blue” application running:

E.g.:
firefox $LOAD_BALANCER_DNS:8080
or
open http://$LOAD_BALANCER_DNS:8080

2. Create an IAM role with the statement in the provided assume-role-policy.json file
using this command:

aws iam create-role --role-name ecsCodeDeployRole \
 --assume-role-policy-document file://assume-role-policy.json

3. Attach the IAM managed policy for CodeDeployRoleForECS to the IAM role:
aws iam attach-role-policy --role-name ecsCodeDeployRole \
 --policy-arn arn:aws:iam::aws:policy/AWSCodeDeployRoleForECS

4. Create a new ALB target group to use as the “Green” target group with
CodeDeploy:

224 | Chapter 6: Containers

https://github.com/AWSCookbook/Containers

aws elbv2 create-target-group --name "GreenTG" --port 80 \
 --protocol HTTP --vpc-id $VPC_ID --target-type ip

5. Create the CodeDeploy application:
aws deploy create-application --application-name awscookbook-605 \
 --compute-platform ECS

CodeDeploy requires some configuration. We provided a tem‐
plate file for you (codedeploy-template.json) in this recipe’s
directory of the code repository.

6. Use the sed command to replace the values with the environment variables you
exported with the helper.py script:

sed -e "s/AWS_ACCOUNT_ID/${AWS_ACCOUNT_ID}/g" \
 -e "s|PROD_LISTENER_ARN|${PROD_LISTENER_ARN}|g" \
 -e "s|TEST_LISTENER_ARN|${TEST_LISTENER_ARN}|g" \
 codedeploy-template.json > codedeploy.json

sed (short for stream editor) is a great tool to use for text find-
and-replace operations as well as other types of text manipula‐
tion in your terminal sessions and scripts. In this case, sed is
used to replace values in a template file with values output
from cdk deploy set as environment variables.

7. Now, create a deployment group:
aws deploy create-deployment-group --cli-input-json file://codedeploy.json

AppSpec-template.yaml contains information about the application you are going
to update. The CDK preprovisioned a task definition you can use.

8. Use the sed command to replace the value with the environment variable you
exported with the helper.py script:

sed -e "s|FargateTaskGreenArn|${FARGATE_TASK_GREEN_ARN}|g" \
 appspec-template.yaml > appspec.yaml

9. Now copy the AppSpec file to the S3 bucket created by the CDK deployment so
that CodeDeploy can use it to update the application:

aws s3 cp ./appspec.yaml s3://$BUCKET_NAME

10. One final configuration file needs to be created; this contains the instructions
about the deployment. Use sed to modify the S3 bucket used in the deployment-
template.json file:

sed -e "s|S3BucketName|${BUCKET_NAME}|g" \
 deployment-template.json > deployment.json

11. Now create a deployment with the deployment configuration:
aws deploy create-deployment --cli-input-json file://deployment.json

6.5 Updating Containers with Blue/Green Deployments | 225

https://github.com/AWSCookbook/Containers

To get the status of the deployment, observe the status in the AWS Console
(Developer Tools→CodeDeploy→Deployments, and click the deployment ID).
You should see CodeDeploy in progress with the deployment, as shown in
Figure 6-9.

Figure 6-9. Initial deployment status

Validation checks. Once the replacement task is serving 100% of the traffic, you can
visit the same URL where you previously observed the Blue application running,
replaced with the Green version of the application.

You may need to refresh your browser or clear your cache to see
the updated Green application.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
CodeDeploy offers several deployment strategies—Canary, AllAtOnce, Blue/Green,
etc.—and you can also create your own custom deployment strategies. You might
customize the strategy to define a longer wait period for the cutover window or to
define other conditions to be met before traffic switchover occurs. In the default

226 | Chapter 6: Containers

https://github.com/AWSCookbook/Containers
https://oreil.ly/18B4u

Blue/Green strategy, CodeDeploy keeps your previous version of the application run‐
ning for five minutes while all traffic is routed to the new version. If you notice that
the new version is not behaving properly, you can quickly route traffic back to the
original version since it is still running in a separate AWS Application Load Balancer
target group.

CodeDeploy uses ALB target groups to manage which application is considered “pro‐
duction.” When you deployed the initial stack with the AWS CDK, the V1 Blue con‐
tainers were registered with a target group associated with port 8080 on the ALB.
After you initiate the deployment of the new version, CodeDeploy starts a brand new
version of the ECS service, associates it with the Green target group you created, and
then gracefully shifts all traffic to the Green target group. The final result is the Green
V2 containers now being served on port 8080 of the ALB. The previous target group
is now ready to execute the next Blue/Green deployment.

This is a common pattern to utilize with CI/CD. Your previous version can quickly be
reactivated with a seamless rollback. If no rollback is needed, the initial version (V1)
is terminated, and you can repeat the processes the next time you deploy, putting V3
in the Blue target group, shifting traffic to it when you are ready. Using this strategy
helps you minimize the impact to users of new application versions while allowing
more frequent deployments.

Deployment conditions allow you to define deployment success
criteria. You can use a combination of a custom deployment strat‐
egy and a deployment condition to build automation tests into
your CodeDeploy process. This would allow you to ensure that all
of your tests run and pass before traffic is sent to your new
deployment.

Challenge
Trigger a rollback to the original V1 container deployment and observe the results.

6.6 Autoscaling Container Workloads on Amazon ECS
Problem
You need to deploy a containerized service that scales out during times of heavy traf‐
fic to meet demand.

Solution
Configure a CloudWatch alarm and scaling policy for an ECS service so that your ser‐
vice adds more containers when the CPU load increases, as shown in Figure 6-10.

6.6 Autoscaling Container Workloads on Amazon ECS | 227

Figure 6-10. ECS service with a CloudWatch alarm and scaling policy

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Access the ECS service URL over the internet with the curl command (or your
web browser) to verify the successful deployment:

curl -v -m 3 $LOAD_BALANCER_DNS

2. Use verbose (-v) and three-second timeout (-m 3) to ensure you see the entire
connection and have a timeout set. The following is an example command and
output:

curl -v -m 3 http://AWSCookbook.us-east-1.elb.amazonaws.com:80/
* Trying 1.2.3.4...
* TCP_NODELAY set
* Connected to AWSCookbook.us-east-1.elb.amazonaws.com (1.2.3.4) port 80<
> GET / HTTP/1.1
> Host: AWSCookbook.us-east-1.elb.amazonaws.com:80
> User-Agent: curl/7.64.1
> Accept: */*
>
< HTTP/1.1 200
< Content-Type: application/json
< Content-Length: 318
< Connection: keep-alive
<
{

"URL":"http://awscookbookloadtestloadbalancer-36821611.us-
east-1.elb.amazonaws.com:80/",
 "ContainerLocalAddress":"10.192.2.179:8080",
 "ProcessingTimeTotalMilliseconds":"0",
 "LoadBalancerPrivateIP":"10.192.2.241",
 "ContainerHostname":"ip-10-192-2-179.ec2.internal",
 "CurrentTime":"1605724705176"
}
Closing connection 0

228 | Chapter 6: Containers

https://github.com/AWSCookbook/Containers

Run this same curl command several times in a row, and you
will notice the ContainerHostname and ContainerLocalAd
dress alternating between two addresses. This indicates that
Amazon ECS is load balancing between the two containers
you should expect to be running at all times, as defined by the
ECS service.

3. You will need to create a role for the autoscaling trigger to execute; this file is pro‐
vided in this solution’s directory in the code repository:

aws iam create-role --role-name AWSCookbook606ECS \
 --assume-role-policy-document file://task-execution-assume-role.json

4. Attach the managed policy for autoscaling:
aws iam attach-role-policy --role-name AWSCookbook606ECS --policy-arn
arn:aws:iam::aws:policy/service-role/AmazonEC2ContainerServiceAutoscaleRole

5. Register an autoscaling target:
aws application-autoscaling register-scalable-target \
 --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/$ECS_CLUSTER_NAME/AWSCookbook606 \
 --min-capacity 2 \
 --max-capacity 4

6. Set up an autoscaling policy for the autoscaling target using the sample configu‐
ration file specifying a 50% average CPU target:

aws application-autoscaling put-scaling-policy --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/$ECS_CLUSTER_NAME/AWSCookbook606 \
 --policy-name cpu50-awscookbook-606 --policy-type TargetTrackingScaling \
 --target-tracking-scaling-policy-configuration file://scaling-policy.json

7. Now, to trigger a process within the container that simulates high CPU load, run
the same curl command, appending cpu to the end of the service URL:

curl -v -m 3 $LOAD_BALANCER_DNS/cpu

This command will time out after three seconds, indicating that the container is
running a CPU-intensive process as a result of visiting that URL (the ECS service
you deployed with the CDK runs a CPU load generator that we provided to sim‐
ulate high CPU usage). The following is an example command and output:

curl -v -m 3 http://AWSCookbookLoadtestLoadBalancer-36821611.us-
east-1.elb.amazonaws.com:80/cpu
* Trying 52.4.148.24...
* TCP_NODELAY set
* Connected to AWSCookbookLoadtestLoadBalancer-36821611.us-
east-1.elb.amazonaws.com (52.4.148.245) port 80 (#0)
> GET /cpu HTTP/1.1
> Host: AWSCookbookLoadtestLoadBalancer-36821611.us-east-1.elb.amazonaws.com:80
> User-Agent: curl/7.64.1
> Accept: */*
>

6.6 Autoscaling Container Workloads on Amazon ECS | 229

https://github.com/AWSCookbook/Containers

* Operation timed out after 3002 milliseconds with 0 bytes received
* Closing connection 0
curl: (28) Operation timed out after 3002 milliseconds with 0 bytes received

Validation checks. Wait approximately five minutes. Then log into the AWS Console,
locate Elastic Container Service, go to the Clusters page, select the cluster deployed,
and select the ECS service. Verify that the Desired Count has increased to 4, the max‐
imum scaling value that you configured. You can click the Tasks tab to view four con‐
tainer tasks now running for your service.

Click the Metrics tab to view the CPU usage for the service. You set the scaling target
at 50% to trigger the autoscaling actions, adding two additional containers to the ser‐
vice as a result of high CPU usage. An example metrics graph is shown in
Figure 6-11.

Figure 6-11. ECS service metrics on the AWS Console

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Autosccaling is an important mechanism to implement to save costs associated with
running your applications on AWS services. It allows your applications to provision
their own resources as needed during times when load may increase, and it removes
their own resources during times when the application may be idle. Note that when‐
ever you have an AWS service doing something like this on your behalf, you have to
specifically grant permission for services to execute these functions via IAM.

230 | Chapter 6: Containers

https://github.com/AWSCookbook/Containers

The underlying data that provides the metrics for such operations is contained in the
CloudWatch metrics service. There are many data points and metrics that you can
use for configuring autoscaling; some of the most common ones are listed here:

• Network I/O
• CPU usage
• Memory used
• Number of transactions

In this recipe, you monitor the CPU usage metric on the ECS service. You set the
metric at 50% and trigger the CPU load with a cURL call to the HTTP endpoint of
the ECS service. Scaling metrics are dependent upon the type of applications you are
running and the technologies you use to build them. As a best practice, you should
observe your application metrics over a period of time to set a baseline before choos‐
ing metrics to implement autoscaling.

Challenge
Replace the provided sample CPU load application with your own containerized
application and configure the target scaling policy to meet your needs.

6.7 Launching a Fargate Container Task in Response
to an Event
Problem
You need to launch a container task to process incoming files.

Solution
Use Amazon EventBridge to trigger the launch of ECS container tasks on Fargate
after a file is uploaded to S3, as shown in Figure 6-12.

Figure 6-12. Flow of container EventBridge pattern

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

6.7 Launching a Fargate Container Task in Response to an Event | 231

https://github.com/AWSCookbook/Containers

Steps

1. Configure CloudTrail to log events on the S3 bucket:
aws cloudtrail put-event-selectors --trail-name $CLOUD_TRAIL_ARN --event-
selectors "[{ \"ReadWriteType\":
\"WriteOnly\", \"IncludeManagementEvents\":false, \"DataResources\": [{ \"Type
\": \"AWS::S3::Object\",
\"Values\": [\"arn:aws:s3:::$BUCKET_NAME/input/\"] }],
\"ExcludeManagementEventSources\": [] }]"

Now create an assume-role policy JSON statement called policy1.json to use in
the next step (this file is provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create the role and specify the policy1.json file:
aws iam create-role --role-name AWSCookbook607RuleRole \
 --assume-role-policy-document file://policy1.json

3. You will also need a policy document with the following content called
policy2.json (this file is provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask"
],
 "Resource": [
 "arn:aws:ecs:*:*:task-definition/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "*"
],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "ecs-tasks.amazonaws.com"
 }
 }
 }

232 | Chapter 6: Containers

]
}

4. Now attach the IAM policy JSON you just created to the IAM role:
aws iam put-role-policy --role-name AWSCookbook607RuleRole \
 --policy-name ECSRunTaskPermissionsForEvents \
 --policy-document file://policy2.json

5. Create an EventBridge rule that monitors the S3 bucket for file uploads:
aws events put-rule --name "AWSCookbookRule" --role-arn "arn:aws:iam::
$AWS_ACCOUNT_ID:role/AWSCookbook607RuleRole" --event-pattern "{\"source\":
[\"aws.s3\"],\"detail-type\":[\"AWS API Call via CloudTrail\"],\"detail\":
{\"eventSource\":[\"s3.amazonaws.com\"],\"eventName\":[\"CopyObject\",\"PutObject
\",\"CompleteMultipartUpload\"],\"requestParameters\":{\"bucketName\":
[\"$BUCKET_NAME\"]}}}"

6. Modify the value in targets-template.json and create a targets.json for use:
sed -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 -e "s|AWS_REGION|${AWS_REGION}|g" \
 -e "s|ECSClusterARN|${ECS_CLUSTER_ARN}|g" \
 -e "s|TaskDefinitionARN|${TASK_DEFINITION_ARN}|g" \
 -e "s|VPCPrivateSubnets|${VPC_PRIVATE_SUBNETS}|g" \
 -e "s|VPCDefaultSecurityGroup|${VPC_DEFAULT_SECURITY_GROUP}|g" \
 targets-template.json > targets.json

7. Create a rule target that specifies the ECS cluster, ECS task definition, IAM role,
and networking parameters. This specifies what the rule will trigger; in this case,
launch a container on Fargate:

aws events put-targets --rule AWSCookbookRule \
 --targets file://targets.json

You should see output similar to the following:
{
 "FailedEntryCount": 0,
 "FailedEntries": []
}

8. Check the S3 bucket to verify that it’s empty before we populate it:
aws s3 ls s3://$BUCKET_NAME/

9. Copy the provided maze.jpg file to the S3 bucket. This will trigger the ECS task
that launches a container with a Python library to process the file:

aws s3 cp maze.jpg s3://$BUCKET_NAME/input/maze.jpg

This will trigger an ECS task to process the image file. Quickly, check the task
with the ecs list-tasks command. The task will run for about two to three
minutes:

aws ecs list-tasks --cluster $ECS_CLUSTER_ARN

You should see output similar to the following:
{
 "taskArns": [
 "arn:aws:ecs:us-east-1:111111111111:task/cdk-aws-cookbook-607-
AWSCookbookEcsCluster46494E6E-MX7kvtp1sYWZ/d86f16af55da56b5ca4874d6029"

6.7 Launching a Fargate Container Task in Response to an Event | 233

https://pypi.org/project/mazesolver

]
}

Validation checks. After a few minutes, observe the output directory created in the S3
bucket:

aws s3 ls s3://$BUCKET_NAME/output/

Download and view the output file:
aws s3 cp s3://$BUCKET_NAME/output/output.jpg ./output.jpg

Open output.jpg with a file viewer of your choice to view the file that was processed.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Event-driven architecture is an important approach to application and process design
in the cloud. This type of design allows for removing long-running application work‐
loads in favor of serverless architectures, which can be more resilient and easily scale
to peaks of higher usage when needed. When there are no events to handle in your
application, you generally do not pay much for compute resources (if at all), so poten‐
tial cost savings is also a point to consider when choosing an application architecture.

It is common to use Lambda functions with S3 for event-driven
architectures, but for longer-running data-processing jobs and
computational jobs like this one, Fargate is a better choice because
the runtime is essentially infinite, while the maximum runtime for
Lambda functions is limited.

Amazon ECS can run tasks and services. Services are made up of tasks, and generally,
are long-running in that a service keeps a specific set of tasks running. Tasks can be
short-lived; a container may start, process some data, and then gracefully exit after
the task is complete. This is what you have achieved in this solution: a task was
launched in response to an S3 event signaling a new object, and the container read
the object, processed the file, and exited.

Challenge
While EventBridge is a powerful solution that can be used to orchestrate many types
of event-driven solutions, you can achieve similar functionality with S3’s triggers. Try
to deploy and configure a Lambda function to be invoked directly from S3 events.
Here is a hint.

234 | Chapter 6: Containers

https://github.com/AWSCookbook/Containers
https://oreil.ly/rfTno

6.8 Capturing Logs from Containers Running
on Amazon ECS
Problem
You have an application running in a container and want to inspect the application
logs.

Solution
Send the logs from the container to Amazon CloudWatch. By specifying the awslogs
driver within an ECS task definition and providing an IAM role that allows the con‐
tainer to write to CloudWatch logs, you are able to stream container logs to a location
within Amazon CloudWatch. A high-level view of this configuration and process is
shown in Figure 6-13.

Figure 6-13. Streaming container logs to CloudWatch

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a file called task-execution-assume-role.json with the following content.
The file is provided in the root of this recipe’s directory in the code repository.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role using the statement in the preceding file:

6.8 Capturing Logs from Containers Running on Amazon ECS | 235

https://github.com/AWSCookbook/Containers

aws iam create-role --role-name AWSCookbook608ECS \
 --assume-role-policy-document file://task-execution-assume-role.json

3. Attach the AWS managed IAM policy for ECS task execution to the IAM role
that you just created:

aws iam attach-role-policy --role-name AWSCookbook608ECS --policy-arn
arn:aws:iam::aws:policy/service-
role/AmazonECSTaskExecutionRolePolicy

4. Create a log group in CloudWatch:
aws logs create-log-group --log-group-name AWSCookbook608ECS

5. Create a file called taskdef.json with the following content (a file is provided in
this recipe’s directory in the code repository):

{
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [
 "sh",
 "-c"
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "AWSCookbook608ECS",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "LogStream"
 }
 },
 "name": "awscookbook608",
 "image": "httpd:2.4",
 "command": [
 "/bin/sh -c \"echo 'Hello AWS Cookbook Reader, this container is running
on ECS!' >
/usr/local/apache2/htdocs/index.html && httpd-foreground\""
]
 }
],
 "family": "awscookbook608",
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "256",
 "memory": "512"
}

236 | Chapter 6: Containers

6. Now that you have an IAM role and an ECS task definition configuration, you
need to create the ECS task using the configuration and associate the IAM role:

aws ecs register-task-definition --execution-role-arn \
 "arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook608ECS" \
 --cli-input-json file://taskdef.json

7. Run the ECS task on the ECS cluster that you created earlier in this recipe with
the AWS CDK:

aws ecs run-task --cluster $ECS_CLUSTER_NAME \
 --launch-type FARGATE --network-configuration
"awsvpcConfiguration={subnets=[$VPC_PUBLIC_SUB
NETS],securityGroups=[$VPC_DEFAULT_SECURITY_GROUP],assign
PublicIp=ENABLED}" --task-definition awscookbook608

Validation checks. Check the status of the task to make sure the task is running. First,
find the Task’s Amazon Resource Name (ARN):

TASK_ARNS=$(aws ecs list-tasks --cluster $ECS_CLUSTER_NAME \
 --output text --query taskArns)

Then use the task ARNs to check for the RUNNING state with the describe-tasks
command output:

aws ecs describe-tasks --cluster $ECS_CLUSTER_NAME --tasks $TASK_ARNS

After the task has reached the RUNNING state (approximately 15 seconds), use the
following commands to view logs:

aws logs describe-log-streams --log-group-name AWSCookbook608ECS

You should see output similar to the following:
{
 "logStreams": [
 {
 "logStreamName": "LogStream/webserver/97635dab942e48d1bab11dbe88c8e5c3",
 "creationTime": 1605584764184,
 "firstEventTimestamp": 1605584765067,
 "lastEventTimestamp": 1605584765067,
 "lastIngestionTime": 1605584894363,
 "uploadSequenceToken":
"49612420096740389364147985468451499506623702081936625922",
 "arn": "arn:aws:logs:us-east-1:111111111111:log-group:AWSCookbook608ECS:log-
stream:LogStream/webserver/97635dab942e48d1bab11dbe88c8e5c3",
 "storedBytes": 0
 }
]
}

Note the logStreamName from the output and then run the get-log-events
command:

aws logs get-log-events --log-group-name AWSCookbook608ECS \
 --log-stream-name <<logStreamName>>

6.8 Capturing Logs from Containers Running on Amazon ECS | 237

You should see output similar to the following:
{
 "events": [
 {
 "timestamp": 1605590555566,
 "message": "[Tue Nov 17 05:22:35.566054 2020] [mpm_event:notice] [pid 7:tid
140297116308608] AH00489: Apache/2.4.46 (Unix) configured -- resuming normal
operations",
 "ingestionTime": 1605590559713
 },
 {
 "timestamp": 1605590555566,
 "message": "[Tue Nov 17 05:22:35.566213 2020] [core:notice] [pid 7:tid
140297116308608] AH00094: Command line: 'httpd -D FOREGROUND'",
 "ingestionTime": 1605590559713
 }
],
 "nextForwardToken": "f/35805865872844590178623550035180924397996026459535048705",
 "nextBackwardToken": "b/35805865872844590178623550035180924397996026459535048704"
}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You made use of the awslogs driver and an IAM role, which allows the running task
to write to a CloudWatch log group. This is a common pattern when working with
containers on AWS, as you most likely need log output for troubleshooting and
debugging your application. This configuration is handled by tools like Copilot since
it is a common pattern, but when working with Amazon ECS directly, like defining
and running a task, the configuration is critical for developers to know about.

The PID 1 process output to /dev/stdout and /dev/stderr is captured by the awslogs
driver. In other words, the first process in the container is the only process logging to
these streams. Be sure your application that you would like to see logs from is run‐
ning with PID 1 inside of your container.

In order for most AWS services to communicate with one another, you must assign a
role to them that allows the required level of permissions for the communication.
This holds true when configuring logging to CloudWatch from a container ECS task;
the container must have a role associated with it that allows the CloudWatchLogs
operations via the awslogs logConfiguration driver:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

238 | Chapter 6: Containers

https://github.com/AWSCookbook/Containers
https://oreil.ly/XY2UF
https://oreil.ly/OrzrZ

 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 }
]
}

CloudWatch logs allow for a central logging solution for many AWS services. When
running multiple containers, it is important to be able to quickly locate logs for
debugging purposes.

Challenge
You can tail the logs of a log stream to give you a more real-time view of the logs that
your application is generating. This can help in your development and troubleshoot‐
ing activities. Try using the aws logs tail command with your log stream while
generating some output for you to observe.

6.8 Capturing Logs from Containers Running on Amazon ECS | 239

https://oreil.ly/kFrGf

CHAPTER 7

Big Data

7.0 Introduction
Data is sometimes referred to as “the new gold.” Many companies are leveraging data
in new and exciting ways every day as available data science tools continue to
improve. You can now mine troves of historical data quickly for insights and patterns
by using modern analytics tools. You might not yet know the queries and analysis you
need to run against the data, but tomorrow you might be faced with a challenge that
could be supported by historical data analysis using new and emerging techniques.
With the advent of cheaper data storage, many organizations and individuals opt to
keep data rather than discard it so that they can run historical analysis to gain busi‐
ness insights, discover trends, train AI/ML models, and be ready to implement future
technologies that can use the data.

In addition to the amount of data you might collect over time, you are also collecting
a wider variety of data types and structures at an increasingly faster velocity. Imagine
that you might deploy IoT devices to collect sensor data, and as you continue to
deploy these over time, you need a way to capture and store the data in a scalable way.
This can be structured, semistructured, and unstructured data with schemas that
might be difficult to predict as new data sources are ingested. You need tools to be
able to transform and analyze your diverse data.

An informative and succinct AWS re:Invent 2020 presentation by Francis Jayakumar,
“An Introduction to Data Lakes and Analytics on AWS,” provides a high-level intro‐
duction to what is available on AWS for big data and analytics. We could have
included so much in this chapter—enough to fill another book—but we will focus on
foundational recipes for sending data to S3, discovering data on S3, and transforming
data to give you examples of working with data on AWS.

241

https://oreil.ly/6EDB0
https://oreil.ly/WcmSj

Workstation Configuration
You will need a few things installed to be ready for the recipes in this chapter.

General setup
Follow the “General workstation setup steps for CLI recipes” on page xvii to validate
your configuration and set up the required environment variables. Then, clone the
chapter code repository:

git clone https://github.com/awscookbook/BigData

7.1 Using a Kinesis Stream for Ingestion of
Streaming Data
Problem
You need a way to ingest streaming data for your applications.

Solution
Create a Kinesis stream and verify that it is working by using the AWS CLI to put a
record on the stream, as shown in Figure 7-1.

Figure 7-1. Using a Kinesis stream for ingestion of streaming data

Steps

1. Create a Kinesis stream:
aws kinesis create-stream --stream-name AWSCookbook701 --shard-count 1

Shards are an important concept to understand with Kinesis
streams as you scale your stream to handle larger velocities of
incoming streaming data. Each shard can support up to five
transactions per second for reads, up to a maximum total data
read rate of 2 MB per second. For writes, each shard can sup‐
port up to 1,000 records per second, up to a maximum total
data write rate of 1 MB per second (including partition keys).
You can re-shard your stream at any time if you need to han‐
dle more data.

242 | Chapter 7: Big Data

https://oreil.ly/XKI0q

2. Confirm that your stream is in ACTIVE state:
aws kinesis describe-stream-summary --stream-name AWSCookbook701

You should see output similar to the following:
{
 "StreamDescriptionSummary": {
 "StreamName": "AWSCookbook701",
 "StreamARN": "arn:aws:kinesis:us-east-1:111111111:stream/AWSCookbook701",
 "StreamStatus": "ACTIVE",
 "RetentionPeriodHours": 24,
 "StreamCreationTimestamp": "2021-10-12T17:12:06-04:00",
 "EnhancedMonitoring": [
 {
 "ShardLevelMetrics": []
 }
],
 "EncryptionType": "NONE",
 "OpenShardCount": 1,
 "ConsumerCount": 0
 }
}

Validation checks. Put a record on the Kinesis stream:
aws kinesis put-record --stream-name AWSCookbook701 \
 --partition-key 111 \
 --cli-binary-format raw-in-base64-out \
 --data={\"Data\":\"1\"}

You should see output similar to the following:
{
 "ShardId": "shardId-000000000000",
 "SequenceNumber": "49622914081337086513355510347442886426455090590105206786"
}

Get the record from the Kinesis stream. Get the shard iterator and run the get-
records command:

SHARD_ITERATOR=$(aws kinesis get-shard-iterator \
 --shard-id shardId-000000000000 \
 --shard-iterator-type TRIM_HORIZON \
 --stream-name AWSCookbook701 \
 --query 'ShardIterator' \
 --output text)
aws kinesis get-records --shard-iterator $SHARD_ITERATOR \
 --query Records[0].Data --output text | base64 --decode

You should see output similar to the following:
{"Data":"1"}

7.1 Using a Kinesis Stream for Ingestion of Streaming Data | 243

https://oreil.ly/dFx8m

The data is base64 encoded that you published to the stream. You
queried the command output for the data element within the JSON
object and piped the output to base64 --decode to validate that
the record is what you published.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Streaming data can come from a variety of sources. The sources putting records on
streams are known as producers. Entities getting records from streams are known as
consumers. In the case of streaming data, you are dealing with real-time information,
and you may need to act on it immediately or store it for usage later (see Recipe 7.2).
Some common producer examples to think about are as follows:

• Real-time financial market data
• IoT and sensor data
• End-user clickstream activity from web and mobile applications

You can use the Kinesis Producer Library (KPL) and Kinesis Client Library (KCL)
within your application for your specific needs. When consuming data from Kinesis
streams, you can configure your application to read records from the stream and
respond, invoke Lambda functions directly from the stream, or even use a Kinesis
Data Analytics application (powered by Apache Flink) directly within the Kinesis
service.

The Kinesis service will scale automatically to meet your needs, but
you need to be aware of the quotas and limits to ensure that you do
not exceed capacity with your shard configuration.

Challenge
Automatically trigger a Lambda function to process incoming Kinesis data.

7.2 Streaming Data to Amazon S3 Using Amazon Kinesis
Data Firehose
Problem
You need to deliver incoming streaming data to object storage.

244 | Chapter 7: Big Data

https://github.com/AWSCookbook/BigData
https://oreil.ly/ze6Wd
https://oreil.ly/dzRG2
https://oreil.ly/lyR4E
https://oreil.ly/lyR4E
https://oreil.ly/f7kq3

Solution
Create an S3 bucket, create a Kinesis stream, and configure Kinesis Data Firehose to
deliver the stream data to the S3 bucket. The flow is shown in Figure 7-2.

Figure 7-2. Streaming data to Amazon S3 using Amazon Kinesis Data Firehose

Prerequisites

• Kinesis stream
• S3 Bucket with a CSV file

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Open the Kinesis Data Firehose console and click the “Create delivery stream”
button; choose Amazon Kinesis Data Streams for the source and Amazon S3 for
the destination, as shown in Figure 7-3.

Figure 7-3. Choosing the source and destination in the Kinesis Data Firehose dialog

2. For Source settings, choose the Kinesis stream that you created in the preparation
steps, as shown in Figure 7-4.

7.2 Streaming Data to Amazon S3 Using Amazon Kinesis Data Firehose | 245

https://github.com/AWSCookbook/BigData
https://oreil.ly/GG8yA

Figure 7-4. Choosing a Kinesis data stream

3. Keep the defaults (Disabled) for “Transform and convert records” options. For
Destination settings, browse for and choose the S3 bucket that you created in the
preparation steps as shown in Figure 7-5, and keep the defaults for the other
options (disabled partitioning and no prefixes).

Figure 7-5. Kinesis Data Firehose destination configuration

246 | Chapter 7: Big Data

4. Under the Advanced settings section, confirm that the “Create or update IAM
role” is selected. This will create an IAM role that Kinesis can use to access the
stream and S3 bucket, as shown in Figure 7-6.

Figure 7-6. Creating an IAM role for the Kinesis Data Firehose service

Validation checks. You can test delivery to the stream from within the Kinesis console.
Click the Delivery streams link in the left navigation menu, choose the stream you
created, expand the “Test with demo data” section, and click the “Start sending demo
data” button. This will initiate sending sample data to your stream so you can verify
that it is making it to your S3 bucket. A sample is shown in Figure 7-7.

Figure 7-7. Sending test data through a Kinesis Data Firehose

7.2 Streaming Data to Amazon S3 Using Amazon Kinesis Data Firehose | 247

After a few minutes, you will see a folder structure and a file appear in your S3
bucket, similar to Figure 7-8.

Figure 7-8. S3 destination with Kinesis stream data delivered

If you download and inspect the file, you will see output similar to the following:
{"CHANGE":3.95,"PRICE":79.75,"TICKER_SYMBOL":"SLW","SECTOR":"ENERGY"}
{"CHANGE":7.27,"PRICE":96.37,"TICKER_SYMBOL":"ALY","SECTOR":"ENERGY"}
{"CHANGE":-5,"PRICE":81.74,"TICKER_SYMBOL":"QXZ","SECTOR":"HEALTHCARE"}
{"CHANGE":-0.6,"PRICE":98.4,"TICKER_SYMBOL":"NFLX","SECTOR":"TECHNOLOGY"}
{"CHANGE":-0.46,"PRICE":18.92,"TICKER_SYMBOL":"PLM","SECTOR":"FINANCIAL"}
{"CHANGE":4.09,"PRICE":100.46,"TICKER_SYMBOL":"ALY","SECTOR":"ENERGY"}
{"CHANGE":2.06,"PRICE":32.34,"TICKER_SYMBOL":"PPL","SECTOR":"HEALTHCARE"}
{"CHANGE":-2.99,"PRICE":38.98,"TICKER_SYMBOL":"KFU","SECTOR":"ENERGY"}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
As you begin to ingest data from various sources, your application may be consuming
or reacting to streaming data in real time. In some cases, you may want to store the
data from the stream to query or process it later. You can use Kinesis Data Firehose to
deliver data to object storage (S3), Amazon Redshift, OpenSearch, and many third-
party endpoints. You can also connect multiple delivery streams to a single producer
stream to deliver data if you have to support multiple delivery locations from your
streams.

248 | Chapter 7: Big Data

https://github.com/AWSCookbook/BigData

Kinesis Data Firehose scales automatically to handle the volume of
data you need to deliver, meaning that you do not have to config‐
ure or provision additional resources if your data stream starts to
receive large volumes of data. For more information on Kinesis
Data Firehose features and capabilities, see the AWS documenta‐
tion for Kinesis Data Firehose.

If you need to transform data before it ends up in the destination via Firehose, you
can configure transformations. A transformation will automatically invoke a Lambda
function as your streaming data queues up (see this Firehose article for buffer size
information). This is useful when you have to adjust the schema of a record before
delivery, sanitize data for long-term storage on the fly (e.g., remove personally identi‐
fiable information), or join the data with other sources before delivery. The transfor‐
mation Lambda function you invoke must follow the convention specified by the
Kinesis Data Firehose API. To see some examples of Lambda functions, go to the
AWS Serverless Application Repository and search for “firehose.”

Challenge
Configure a Firehose delivery with transformations to remove a field from the
streaming data before delivery.

7.3 Automatically Discovering Metadata with
AWS Glue Crawlers
Problem
You have CSV data files on object storage, and you would like to discover the schema
and metadata about the files to use in further analysis and query operations.

Solution
Create an AWS Glue database, follow the crawler configuration wizard to configure a
crawler to scan your S3 bucket data, run the crawler, and inspect the resulting table,
as shown in Figure 7-9.

7.3 Automatically Discovering Metadata with AWS Glue Crawlers | 249

https://oreil.ly/9h2Bc
https://oreil.ly/9h2Bc
https://oreil.ly/PW0LN
https://oreil.ly/q7noh

Figure 7-9. Automatically discover metadata with AWS Glue crawlers

Prerequisite

• An S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Log in to the AWS Console and navigate to the AWS Glue console, choose Data‐
bases from the left navigation menu and select “Add database,” as shown in
Figure 7-10.

Figure 7-10. Creating a database in the Glue data catalog

250 | Chapter 7: Big Data

https://github.com/AWSCookbook/BigData

2. Give your database a name (e.g., awscookbook703) and click Create. A sample
dialog box is shown in Figure 7-11.

Figure 7-11. Database name dialog box

3. Select Tables from the left navigation menu and choose “Add tables” → “Add
tables using a crawler,” as shown in Figure 7-12.

Figure 7-12. Adding a table to the Glue Data catalog

4. Follow the “Add crawler” wizard. For the crawler source type, choose “Data
stores,” crawl all folders, S3 as “Data store” (do not define a Connection), choose
your S3 bucket and “data” folder in “Include path,” and do not choose a sample
size. Choose to create an IAM role, and suffix it with AWSCookbook703. For a fre‐
quency, choose “Run on demand,” and select the database you created in step 2.
Confirm the configuration on the “Review all steps” page and click Finish. An
example review page is shown in Figure 7-13.

7.3 Automatically Discovering Metadata with AWS Glue Crawlers | 251

Figure 7-13. Review settings for Glue crawler

5. From the left navigation menu, select Crawlers. Choose the crawler that you cre‐
ated in step 4 and click “Run crawler,” as shown in Figure 7-14.

The Glue crawler will take a few moments to run. Once it is
complete, you can view the table properties of the discovered
schema and metadata.

252 | Chapter 7: Big Data

Figure 7-14. Glue crawler configuration summary

Validation checks. Verify the crawler configuration you created; you can use the AWS
CLI or the Glue console. Note the LastCrawl status of SUCCEEDED:

aws glue get-crawler --name awscookbook703

You should see output similar to this:
{
 "Crawler": {
 "Name": "awscookbook703",
 "Role": "service-role/AWSGlueServiceRole-AWSCookbook703",
 "Targets": {
 "S3Targets": [
 {
 "Path": "s3://awscookbook704-<RANDOM_STRING>/data",
 "Exclusions": []
 }
],
 "JdbcTargets": [],
 "MongoDBTargets": [],
 "DynamoDBTargets": [],
 "CatalogTargets": []
 },
 "DatabaseName": "awscookbook703",
 "Classifiers": [],
 "RecrawlPolicy": {
 "RecrawlBehavior": "CRAWL_EVERYTHING"
 },
 "SchemaChangePolicy": {

7.3 Automatically Discovering Metadata with AWS Glue Crawlers | 253

 "UpdateBehavior": "UPDATE_IN_DATABASE",
 "DeleteBehavior": "DEPRECATE_IN_DATABASE"
 },
 "LineageConfiguration": {
 "CrawlerLineageSettings": "DISABLE"
 },
 "State": "READY",
 "CrawlElapsedTime": 0,
 "CreationTime": "2021-10-12T12:45:18-04:00",
 "LastUpdated": "2021-10-12T12:45:18-04:00",
 "LastCrawl": {
 "Status": "SUCCEEDED",
 "LogGroup": "/aws-glue/crawlers",
 "LogStream": "awscookbook703",
 "MessagePrefix": "16e867b7-e972-4ceb-b318-8e78370949d8",
 "StartTime": "2021-10-12T12:54:19-04:00"
 },
 "Version": 1
 }
}

AWS Glue crawlers log information about their runs to Amazon
CloudWatch logs. If you need to debug your crawlers’ activity, you
can inspect the logs in the /aws-glue/crawlers log group.

In the Glue console, select the table that was created and click “View properties.” You
can also run an AWS CLI command to output the JSON:

aws glue get-table --database-name awscookbook703 --name data

The JSON properties should look similar to this:
{
 "StorageDescriptor": {
 "cols": {
 "FieldSchema": [
 {
 "name": "title",
 "type": "string",
 "comment": ""
 },
 {
 "name": "other titles",
 "type": "string",
 "comment": ""
 },
 {
 "name": "bl record id",
 "type": "bigint",
 "comment": ""
 }...<SNIP>...
]

254 | Chapter 7: Big Data

 },
 "location": "s3://awscookbook703-<RANDOM_STRING>/data/",
 "inputFormat": "org.apache.hadoop.mapred.TextInputFormat",
 "outputFormat": "org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat",
 "compressed": "false",
 "numBuckets": "-1",
 "SerDeInfo": {
 "name": "",
 "serializationLib": "org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe",
 "parameters": {
 "field.delim": ","
 }
 },
 "bucketCols": [],
 "sortCols": [],
 "parameters": {
 "skip.header.line.count": "1",
 "sizeKey": "43017100",
 "objectCount": "1",
 "UPDATED_BY_CRAWLER": "awscookbook703",
 "CrawlerSchemaSerializerVersion": "1.0",
 "recordCount": "79367",
 "averageRecordSize": "542",
 "CrawlerSchemaDeserializerVersion": "1.0",
 "compressionType": "none",
 "classification": "csv",
 "columnsOrdered": "true",
 "areColumnsQuoted": "false",
 "delimiter": ",",
 "typeOfData": "file"
 },
 "SkewedInfo": {},
 "storedAsSubDirectories": "false"
 },
 "parameters": {
 "skip.header.line.count": "1",
 "sizeKey": "43017100",
 "objectCount": "1",
 "UPDATED_BY_CRAWLER": "awscookbook703",
 "CrawlerSchemaSerializerVersion": "1.0",
 "recordCount": "79367",
 "averageRecordSize": "542",
 "CrawlerSchemaDeserializerVersion": "1.0",
 "compressionType": "none",
 "classification": "csv",
 "columnsOrdered": "true",
 "areColumnsQuoted": "false",
 "delimiter": ",",
 "typeOfData": "file"
 }
}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

7.3 Automatically Discovering Metadata with AWS Glue Crawlers | 255

https://github.com/AWSCookbook/BigData

Discussion
When you start to ingest and store large amounts of data from various sources to
object storage like S3, you may want to temporarily query the data in place without
loading into an intermediate database. Since you may not always know the schema or
metadata of the data, you need to know some basics about it, such as where the data
resides, what the files and partitioning look like, whether it’s structured versus
unstructured data, the size of data, and most importantly, the schema of the data. One
specific feature of the AWS Glue service, Glue crawlers, allow you to discover meta‐
data about the variety of data you have in storage. Crawlers connect to your data
source (in this case, S3 bucket), scan the objects in the source, and populate a Glue
Data Catalog database with tables associated with your data’s schema.

In addition to S3 bucket sources, you can use crawlers to scan Java
Database Connectivity (JDBC) data stores and DynamoDB tables.
In the case of a JDBC table, you will need to define a connection to
allow Glue to use a network connection to your JDBC source.

Challenge
Configure your crawler to run on an interval so that your tables and metadata are
automatically updated.

7.4 Querying Files on S3 Using Amazon Athena
Problem
You need to run a SQL query on CSV files stored on object storage without indexing
them.

Solution
Configure an Amazon Athena results S3 bucket location, create a Data Catalog data‐
base and table in the Athena Editor, and run a SQL query on the data in the S3
bucket, as shown in Figure 7-15.

Figure 7-15. Query files on S3 using Amazon Athena

256 | Chapter 7: Big Data

https://oreil.ly/49nom
https://oreil.ly/Gasxy

Prerequisite

• S3 bucket with a CSV file containing data

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Log into the AWS Console and go to the Athena console; you should see some‐
thing similar to Figure 7-16.

Figure 7-16. Athena console

2. In the Query Editor, click the Settings tab and configure a Query result location
using the S3 bucket that you created and a prefix: s3://bucket/folder/object/.
Click Manage, select the bucket, and click Choose. As an option, you can encrypt
the results. See Figure 7-17 for an example.

Figure 7-17. Athena results destination configuration

3. Back in the Editor tab, run the following SQL statement to create a Data Catalog
database:

CREATE DATABASE `awscookbook704db`

You should see output similar to Figure 7-18.

7.4 Querying Files on S3 Using Amazon Athena | 257

https://github.com/AWSCookbook/BigData

Figure 7-18. Database creation SQL statement

4. Run a new statement in the Query Editor to create a table within the database
that references the S3 bucket location of the data and the schema of the data. Be
sure to replace BUCKET_NAME with the name of the bucket that you created:

CREATE EXTERNAL TABLE IF NOT EXISTS default.`awscookbook704table`(
 `title` string,
 `other titles` string,
 `bl record id` bigint,
 `type of resource` string,
 `content type` string,
 `material type` string,
 `bnb number` string,
 `isbn` string,
 `name` string,
 `dates associated with name` string,
 `type of name` string,
 `role` string,
 `all names` string,
 `series title` string,
 `number within series` string,
 `country of publication` string,
 `place of publication` string,
 `publisher` string,
 `date of publication` string,
 `edition` string,
 `physical description` string,
 `dewey classification` string,
 `bl shelfmark` string,
 `topics` string,
 `genre` string,
 `languages` string,
 `notes` string)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
WITH SERDEPROPERTIES (
 'serialization.format' = ',',
 'field.delim' = ','
) LOCATION 's3://BUCKET_NAME/data/'
TBLPROPERTIES ('has_encrypted_data'='false');

258 | Chapter 7: Big Data

You can use an AWS Glue crawler to crawl your data on S3
and keep databases, tables, and metadata up-to-date automati‐
cally. See Recipe 7.3 for an example of configuring a Glue
crawler with this example dataset.

Validation checks. Open the Query Editor and run a query to list the rows where the
title is “Marvel universe”:

SELECT * FROM awscookbook704table WHERE title='"Marvel universe"' LIMIT 100

You should see output similar to Figure 7-19.

Figure 7-19. Query results in the Athena console

Run a SQL query selecting the top 100 rows for the sample dataset:
SELECT * FROM awscookbook704table LIMIT 100;

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

7.4 Querying Files on S3 Using Amazon Athena | 259

https://github.com/AWSCookbook/BigData

Discussion
You may have had to use an extract, transform, load (ETL) process in the past to facil‐
itate querying large amounts of data on demand. This process could have taken
hours, if not days, if the volume of data was substantial. In the world of big data, the
volume will only increase as time moves on, and you may not know what you need to
query for when you initially start to ingest the data. This makes table schema design
challenging. Chances are, as you ingest and collect data from various sources, you will
be storing it in object storage. This is the data lake concept realized. Being able to
query text-based data in place within your data lake is a powerful concept that you
can use Amazon Athena for. You can use standard SQL to run queries against data
directly on object storage (Amazon S3).

Athena requires knowing some basics about your data before you can run queries.
This includes metadata, schema, and data locations. The concepts of tables, databases,
and the Data Catalog are important to understand so that you can configure the
Athena service to meet your needs. As you saw in Recipe 7.3, the Glue service can
crawl your data to discover this information and keep it up-to-date so that you can
always be ready to run queries against your data while it is stored in your data lake.
You can use a Glue Data Catalog in the Athena service rather than defining your own
schema to save you time.

As you start to increase your usage of S3 as your central data repos‐
itory (or in other words, a data lake), you may need to use several
services together and also start to apply certain levels of permission
to allow other team members to interact with and manage the data.
AWS Lake Formation is a managed service that brings services like
S3, Glue, and Athena together with a robust permissions engine
that can meet your needs.

The Athena service will automatically scale for you, running quer‐
ies in parallel for your large datasets, so you do not have to worry
about provisioning any resources. For more information, see the
Athena documentation.

Challenge
Configure Athena to use the Glue Data Catalog with a Glue crawler for a source data‐
set on S3 that you do not have a predefined schema for.

260 | Chapter 7: Big Data

https://oreil.ly/wLxfa
https://oreil.ly/wLxfa
https://oreil.ly/wStEx
https://oreil.ly/hWrqZ

7.5 Transforming Data with AWS Glue DataBrew
Problem
You have data stored in a CSV and need to convert all characters in a column to
uppercase before further processing can occur.

Solution
Start with a sample project in Glue DataBrew using a sample CSV dataset. Wait for
the session to initiate and apply an uppercase format operation on the name column
of the sample set. Inspect the results (see Figure 7-20).

Figure 7-20. Transforming data with AWS Glue DataBrew

Steps

1. In the AWS Console, search for and navigate to the AWS Glue DataBrew console.
2. Click “Create sample project,” select “Popular names for babies in 2020,” create a

new IAM role, enter a role suffix of your choosing, and then click “Create
project,” as shown in Figure 7-21. Your session will take a few moments to be pre‐
pared, and the status indicator should look similar to Figure 7-22.

7.5 Transforming Data with AWS Glue DataBrew | 261

Figure 7-21. Creating a sample project in Glue DataBrew

Figure 7-22. Preparing a session in Glue DataBrew

262 | Chapter 7: Big Data

3. When your session has been prepared, click FORMAT in the menu. Then from
the drop-down menu, select “Change to uppercase,” as shown in Figure 7-23.

Figure 7-23. Beginning to format a string to uppercase

4. In the righthand menu, set the “Source column” to “name” and then click Apply,
as shown in Figure 7-24.

7.5 Transforming Data with AWS Glue DataBrew | 263

Figure 7-24. Formatting column to uppercase interface

Validation checks. View the updated name column, as shown in Figure 7-25.

Figure 7-25. Results of the uppercase recipe step

264 | Chapter 7: Big Data

From the ACTIONS menu in the top-right corner, select Download CSV, as shown in
Figure 7-26.

Figure 7-26. Downloading CSV action

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When dealing with large amounts of heterogeneous data from various sources, you
will find that you need to manipulate data in various ways to meet your use case. In
the past, you would have to programmatically accomplish this using scripts, compli‐
cated ETL jobs, or third-party tools. You can use AWS DataBrew to streamline the
tasks of formatting, cleaning, and extracting information from your data. You can
perform complex joins and splits, and run custom functions within the DataBrew
service using a visual interface.

DataBrew is an example of a low-code development platform (LCDP) that enables
you to quickly achieve outcomes that otherwise would require knowledge of more
complicated development platforms. You use Glue DataBrew in your web browser to
visually design recipe jobs to process your data, preview results, and automate your
data-processing workflow. Once you have a recipe job saved, you can bring automa‐
tion into your workflow by setting up an S3 trigger for your incoming data to have
DataBrew process it and deliver it back to S3, the Glue Data Catalog, or a JDBC data
source.

Challenge
Upload your own dataset. Create a job from the DataBrew console, configure it to
deliver the results to S3 so you can use the job on demand or automatically with a
trigger.

7.5 Transforming Data with AWS Glue DataBrew | 265

https://github.com/AWSCookbook/BigData
https://oreil.ly/GKEer
https://oreil.ly/fNFFY

CHAPTER 8

AI/ML

8.0 Introduction
Machine learning (ML) and artificial intelligence (AI) are two of the hottest topics
today. Scale provided by cloud computing and improved algorithms have enabled
rapid advances in the abilities of computers to think like humans (aka “provide infer‐
ences”). Many mundane and boring tasks that required human intervention can now
be automated because of AI.

AI and ML can get complex very quickly. Volumes of text have been written about
each. Recipes in this chapter will allow you to explore some of the easy-to-implement
AI services provided by AWS and get started building your own models. While you
are working through the recipes, try to think about other problematic areas in society
that could be well served by these technologies. From supply chain predictive mainte‐
nance to song suggestions, the opportunities are endless.

We could have written 100 pages on this topic, but these recipes are great to get
started, and you can iterate from there. If you are looking to dive deeper, we suggest
you check out Data Science on AWS by Chris Fregly and Antje Barth (O’Reilly, 2021).

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” on page xvii to validate
your configuration and set up the required environment variables. Then, clone the
chapter code repository:

git clone https://github.com/AWSCookbook/ArtificialIntelligence

267

https://learning.oreilly.com/library/view/data-science-on/9781492079385

8.1 Transcribing a Podcast
Problem
You need to create a text transcription of an MP3-based audio, such as a podcast.

Solution
Use Amazon Transcribe to generate an English language transcription and save the
results to an S3 bucket (see Figure 8-1).

Figure 8-1. Using Amazon Transcribe with an MP3 file

Prerequisites

• S3 bucket
• jq CLI JSON processor

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Download a podcast in MP3 format to upload to the S3 bucket:
curl https://d1le29qyzha1u4.cloudfront.net/AWS_Podcast_Episode_453.mp3 \
 -o podcast.mp3

You should see output similar to the following:
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 29.8M 100 29.8M 0 0 4613k 0 0:00:06 0:00:06 --:--:-- 5003k

268 | Chapter 8: AI/ML

https://github.com/AWSCookbook/ArtificialIntelligence

You can find a list of the file formats supported by Amazon
Transcribe in the documentation.

2. Copy the downloaded podcast to your S3 bucket:
aws s3 cp ./podcast.mp3 s3://awscookbook801-$RANDOM_STRING

You should see output similar to the following:
upload: ./podcast.mp3 to s3://awscookbook801-<<unique>>/podcast.mp3

3. Start a Transcribe transcription job using the AWS CLI:
aws transcribe start-transcription-job \
 --language-code 'en-US' \
 --media-format 'mp3' \
 --transcription-job-name 'awscookbook-801' \
 --media MediaFileUri=s3://awscookbook801-${RANDOM_STRING}/podcast.mp3 \
 --output-bucket-name "awscookbook801-${RANDOM_STRING}"

You should see output similar to the following:
{
 "TranscriptionJob": {
 "TranscriptionJobName": "awscookbook-801",
 "TranscriptionJobStatus": "IN_PROGRESS",
 "LanguageCode": "en-US",
 "MediaFormat": "mp3",
 "Media": {
 "MediaFileUri": "s3://awscookbook801-<<unique>>/podcast.mp3"
 },
 "StartTime": "2021-09-21T22:02:13.312000-04:00",
 "CreationTime": "2021-09-21T22:02:13.273000-04:00"
 }
}

Check the status of the transcription job using the AWS CLI. Wait until the Tran‐
scription Job Status is COMPLETED. This should take a few minutes:

aws transcribe get-transcription-job \
 --transcription-job-name awscookbook-801 \
 --output text \
 --query TranscriptionJob.TranscriptionJobStatus

Validation checks. Display the results of the Transcribe transcription job in your
terminal:

aws s3 cp s3://awscookbook801-$RANDOM_STRING/awscookbook-801.json - \
 | jq '.results.transcripts[0].transcript' --raw-output

You should see output similar to the following:
This is episode 453 of the US podcast released on June 11, 2021 podcast confirmed.
Welcome to the official AWS podcast. Yeah. Mhm. Hello everyone and welcome back to
another episode of a W. S. Launch.

8.1 Transcribing a Podcast | 269

https://oreil.ly/eo3LQ

I'm Nicky, I'm your host. And today I am joined by Nathan Peck
...

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Transcribing audio is a great way to allow voice recordings to be processed and ana‐
lyzed in different ways at scale. Having the ability to easily transcribe audio files
without gathering a large dataset and training your own AI model will save you time
and open up many possibilities. Converting audio to text also allows you to easily
perform natural language processing (NLP) to gain additional insights from the piece
of media.

Here are some things to keep in mind when you are using Transcribe:

• Is the language supported?
• Do you need to identify speakers in a recording?
• Do you need to support streaming audio?

Challenge
Automate the process to trigger when new objects are uploaded to your S3 bucket by
using EventBridge.

8.2 Converting Text to Speech
Problem
You need to generate audio files from text descriptions of products. This audio will
be incorporated in advertisements so must be as human-like and high quality as
possible.

Solution
You will use the neural engine of Amazon Polly to generate MP3s from the provided
text (see Figure 8-2).

Figure 8-2. Text to speech with Amazon Polly

270 | Chapter 8: AI/ML

https://github.com/AWSCookbook/ArtificialIntelligence
https://oreil.ly/8NYOB
https://oreil.ly/E38Ch
https://oreil.ly/uhrAr

Steps

1. Create an initial sound file of text that you specify:
aws polly synthesize-speech \
 --output-format mp3 \
 --voice-id Joanna \
 --text 'Acme products are of the very highest quality and lowest price.' \
 products.mp3

You should see output similar to the following:
{
 "ContentType": "audio/mpeg",
 "RequestCharacters": "63"
}

2. Listen to the MP3. Here is an example on macOS CLI:
afplay products.mp3

3. Change to the neural engine:
aws polly synthesize-speech \
 --output-format mp3 \
 --voice-id Joanna \
 --engine neural \
 --text 'Acme products are of the very highest quality and lowest price.' \
 products-neural.mp3

You will see similar output as you did in step 2.
4. Listen to the MP3. Here is an example on macOS CLI:

afplay products-neural.mp3

5. Add some SSML tags to modify the speech speed:
aws polly synthesize-speech \
 --output-format mp3 \
 --voice-id Joanna \
 --engine neural \
 --text-type ssml \
 --text '<speak>Acme products are of the very highest quality and <prosody
rate="slow">lowest price</prosody></speak>' \
 products-neural-ssml.mp3

You will see similar output as you did in steps 2 and 3.
6. Listen to the MP3. Here is an example on macOS CLI:

afplay products-neural-ssml.mp3

A list of SSML tags supported by Polly is shown in this article.

8.2 Converting Text to Speech | 271

https://oreil.ly/sdAQe
https://oreil.ly/q148r

Discussion
Having the ability to easily generate lifelike audio from text allows for many creative
uses. You no longer need voice actors to sit and rehearse recordings. You can now
easily incorporate audio into your application. This can improve your customers’
experience in many ways.

When creating audio with Polly, you should experiment with different voices and
SSML tags (you might even want to create your own voice). Many of Polly’s voices are
available to create Amazon Alexa skills.

Challenge
Create a pronunciation lexicon for Polly to use.

8.3 Computer Vision Analysis of Form Data
Problem
You have a document and need to extract responses from it so that you can digitally
process them.

Solution
You will install and use the Textractor tool provided by AWS to utilize the forms fea‐
ture of Amazon Textract. This will pull the values from the form and associate them
with their keys (e.g., Name). See Figure 8-3.

Figure 8-3. Analyzing a document with Amazon Textract and the textractor tool

Prerequisite

• S3 bucket

272 | Chapter 8: AI/ML

https://oreil.ly/vsIzj
https://oreil.ly/A0xXZ
https://oreil.ly/TQrQS
https://oreil.ly/zPgXy

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. In the root of the Chapter 8 repository, cd to the 803-Computer-Vision-Analysis-
of-Handwritten-Form-Data/ directory and follow the subsequent steps:

cd 803-Computer-Vision-Analysis-of-Handwritten-Form-Data/

2. Copy the provided registration_form.png file (or your own) to the S3 bucket you
created:

aws s3 cp ./registration_form.png s3://awscookbook803-$RANDOM_STRING

You should see output similar to the following:
upload: ./registration_form.png to s3://awscookbook803-<<unique>>/
registration_form.png

3. Analyze the document with Textract and redirect the output to a file:
aws textract analyze-document \
 --document '{"S3Object":{"Bucket":"'"awscookbook803-${RANDOM_STRING}"'",
"Name":"registration_form.png"}}' \
 --feature-types '["FORMS"]' > output.json

4. Get the Textractor tool from the aws-samples repository on GitHub:
wget https://github.com/aws-samples/amazon-textract-textractor/blob/master/zip/
textractor.zip?raw=true -O textractor.zip

Many great AWS samples and tools are available on GitHub. It
is a great place to check often for new ideas and approaches.

5. Unzip the archive:
unzip textractor.zip

6. Create a Python virtual environment (if you don’t already have one created):
test -d .venv || python3 -m venv .venv

7. Activate the newly created Python virtual environment:
source .venv/bin/activate

8. Install the required Python modules for Textractor:
pip install -r requirements.txt

You should see output similar to the following:
Collecting tabulate
 Downloading tabulate-0.8.9-py3-none-any.whl (25 kB)
Installing collected packages: tabulate
Successfully installed tabulate-0.8.9

9. Install the boto3 module:

8.3 Computer Vision Analysis of Form Data | 273

https://github.com/AWSCookbook/ArtificialIntelligence
https://github.com/aws-samples

pip install boto3

10. Use the tool to analyze the registration form and parse the output:
python textractor.py \
 --documents s3://awscookbook803-${RANDOM_STRING}/registration_form.png \
 --text --forms

You should see output similar to the following:
**
Total input documents: 1
**

Textracting Document # 1: registration_form.png
===
Calling Textract...
Received Textract response...
Generating output...
Total Pages in Document: 1
registration_form.png textracted successfully.

**
Successfully textracted documents: 1
**

Validation checks. Check out the form data extracted and confidence values:
cat registration_form-png-page-1-forms.csv | column -t -s,

You should see output similar to the following:
Key KeyConfidence Value ValueConfidence
Average Score 97.0 285 97.0
Name: 96.5 Elwood Blues 96.5
Date 94.5 2/9/2021 94.5
Team Name: 92.0 The Blues Brothers 92.0
Years of Experience 91.5 10 91.5
E-mail Address: 91.0 thebluesbrothers@theawscookbook.com 91.0
Signature 90.5 Elwood Blues 90.5
Date 89.0 2/9/2021 89.0
Number of Team Members 81.0 2 81.0

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Automated document processing opens up many new avenues for innovation and
efficiency for organizations. Instead of having to manually interpret fields and tables
in a document, tools like Textract can be used to digitize and speed up the process.
Now that you are able to associate data values and fields with each other, additional
processing is able to happen effectively.

274 | Chapter 8: AI/ML

https://github.com/AWSCookbook/ArtificialIntelligence

Challenge
Print out the blank form provided in the repo. Fill in responses by hand. Take a
photo/scan of the document and analyze it with Textract.

8.4 Redacting PII from Text Using Comprehend
Problem
You have a document with potential personally identifiable information (PII) in it.
You would like to remove the PII before more processing of the document occurs.

Solution
Create sample data and store it in an S3 bucket. Launch an Amazon Comprehend job
to detect and redact PII entities. Finally, view the results (see Figure 8-4).

Figure 8-4. Redacting PII data from a document with Amazon Comprehend

Prerequisite

• S3 bucket with file for analysis and path for output

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a file named assume-role-policy.json with the following content (file pro‐
vided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "comprehend.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }

8.4 Redacting PII from Text Using Comprehend | 275

https://github.com/AWSCookbook/ArtificialIntelligence

]
}

2. Create a role for the Comprehend job to use to read and write data from S3:
aws iam create-role --role-name AWSCookbook804Comprehend \
 --assume-role-policy-document file://assume-role-policy.json

You should see output similar to the following:
{
 "Role": {
 "Path": "/",
 "RoleName": "AWSCookbook804Comprehend",
 "RoleId": "<<RoldID>>",
 "Arn": "arn:aws:iam::111111111111:role/AWSCookbook804Comprehend",
 "CreateDate": "2021-09-22T13:12:22+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
...

3. Attach the IAM managed policy for AmazonS3FullAccess to the IAM role:
aws iam attach-role-policy --role-name AWSCookbook804Comprehend \
 --policy-arn arn:aws:iam::aws:policy/AmazonS3FullAccess

4. Create some sample PII data using Faker (or by hand):
pip install faker
faker -r=10 profile > sample_data.txt

5. Copy your sample data to the bucket (file provided in the repository)
aws s3 cp ./sample_data.txt s3://awscookbook804-$RANDOM_STRING

You should see output similar to the following:
upload: ./sample_data.txt to s3://awscookbook804-<<unique>>/sample_data.txt

6. Create a start-pii-entities-detection-job with Comprehend:
JOB_ID=$(aws comprehend start-pii-entities-detection-job \
 --input-data-config S3Uri="s3://awscookbook804-$RANDOM_STRING/
sample_data.txt" \
 --output-data-config S3Uri="s3://awscookbook804-$RANDOM_STRING/
redacted_output/" \
 --mode "ONLY_REDACTION" \
 --redaction-config
PiiEntityTypes="BANK_ACCOUNT_NUMBER","BANK_ROUTING","CREDIT_DEBIT_NUMBER",
"CREDIT_DEBIT_CVV",
"CREDIT_DEBIT_EXPIRY","PIN","EMAIL","ADDRESS","NAME","PHONE","SSN",MaskMode="REPL
ACE_WITH_PII_ENTITY_TYPE" \
 --data-access-role-arn "arn:aws:iam::${AWS_ACCOUNT_ID}:role/
AWSCookbook804Comprehend" \
 --job-name "aws cookbook 804" \
 --language-code "en" \
 --output text --query JobId)

276 | Chapter 8: AI/ML

https://faker.readthedocs.io

You can alternatively use the detect-pii-entities command if
you are interested in the location of PII data in a document.
This is helpful if you need to process the PII in a certain way.

7. Monitor the job until it is COMPLETED; this will take a few minutes:
aws comprehend describe-pii-entities-detection-job \
 --job-id $JOB_ID

You should see output similar to the following:
{
 "PiiEntitiesDetectionJobProperties": {
 "JobId": "<<hash>>",
 "JobName": "aws cookbook 804",
 "JobStatus": "COMPLETED",
 "SubmitTime": "2021-06-29T18:35:14.701000-04:00",
 "EndTime": "2021-06-29T18:43:21.200000-04:00",
 "InputDataConfig": {
 "S3Uri": "s3://awscookbook804-<<string>>/sample_data.txt",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://awscookbook804-<<string>>/redacted_output/<<Account Id>>-PII-
<<hash>>/output/"
 },

Validation checks. When the job is complete, get the location of the outputted data in
S3:

S3_LOCATION=$(aws comprehend describe-pii-entities-detection-job \
 --job-id $JOB_ID --output text \
 --query PiiEntitiesDetectionJobProperties.OutputDataConfig.S3Uri)

Get the output file from S3:
aws s3 cp ${S3_LOCATION}sample_data.txt.out .

You should see output similar to the following:
download: s3://awscookbook804-<<unique>>/redacted_output/111111111111-PII-
cb5991dd58105db185a4cc1906e38411/output/sample_data.txt.out to ./sample_data.txt.out

View the output:
cat sample_data.txt.out

You should see output similar to the following. Notice the PII has been redacted:
{'job': 'Arts development officer', 'company': 'Vance Group', 'ssn': '[SSN]',
'residence':
'[ADDRESS]\[ADDRESS]', 'current_location': (Decimal('77.6093685'),
Decimal('-90.497660')), 'blood_group':
'O-', 'website': ['http://cook.com/', 'http://washington.biz/', 'http://owens.net/',
'http://www.benson.com/'], 'username': 'rrobinson', 'name': '[NAME]', 'sex': 'M',

8.4 Redacting PII from Text Using Comprehend | 277

https://oreil.ly/pdrQC

'address':
'[ADDRESS]\[ADDRESS]', 'mail': '[EMAIL]', 'birthdate': datetime.date(1989, 10, 27)}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
PII is closely associated with many security and compliance standards that you may
come across in your career responsibilities. Generally, if you are responsible for han‐
dling PII for your customers, you need to implement security mechanisms to ensure
the safety of that data. Furthermore, you may need to detect and analyze the kind of
PII you store. While Amazon Macie can do this at scale within your S3 buckets or
data lake, you may want to detect PII within your application to implement your own
checks and workflows. For example, you may have a user fill out a form and submit
it, and then detect if they have accidentally disclosed specific types of PII that you are
not allowed to store, and reject the upload.

You can leverage Amazon Comprehend to detect this type of information for you.
When you use Comprehend, the predefined feature detection is backed by detection
models that are trained using large datasets to ensure quality results.

Challenge
Use Comprehend to label the type of PII rather than just redacting it. (This article
provides a hint.)

8.5 Detecting Text in a Video
Problem
You have a video and would like to extract any text from scenes in it for analysis.

Solution
Upload the video file to S3 and start a text detection job in Amazon Rekognition
Video (see Figure 8-5).

Figure 8-5. Using Rekognition Video to detect text in an MP4

278 | Chapter 8: AI/ML

https://github.com/AWSCookbook/ArtificialIntelligence
https://aws.amazon.com/macie
https://oreil.ly/u3kJq

Prerequisite

• S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Copy the provided sample_movie.mp4 file to the S3 bucket you created:
aws s3 cp ./sample_movie.mp4 s3://awscookbook805-$RANDOM_STRING

You should see output similar to the following:
upload: ./sample_movie.mp4 to s3://awscookbook805-utonl0/sample_movie.mp4

Regarding supported video formats, the Amazon Rekognition
FAQs states, “Amazon Rekognition Video supports H.264 files
in MPEG-4 (.mp4) or MOV format. If your video files use a
different codec, you can transcode them into H.264 using
AWS Elemental MediaConvert.”

2. Begin the text detection job:
JOB_ID=$(aws rekognition start-text-detection \
 --video '{"S3Object":{"Bucket":"'"awscookbook805-
$RANDOM_STRING"'","Name":"sample_movie.mp4"}}' \
 --output text --query JobId)

Wait until JobStatus changes from IN_PROGRESS to SUCCEEDED, and then the
results will be displayed:

aws rekognition get-text-detection \
 --job-id $JOB_ID

You should see text similar to the following:
{
 "JobStatus": "SUCCEEDED",
 "VideoMetadata": {
 "Codec": "h264",
 "DurationMillis": 10051,
 "Format": "QuickTime / MOV",
 "FrameRate": 30.046607971191406,
 "FrameHeight": 240,
 "FrameWidth": 320,
 "ColorRange": "LIMITED"
 },
...

Validation checks. Run the command again with this query to get the DetectedText
values:

8.5 Detecting Text in a Video | 279

https://github.com/AWSCookbook/ArtificialIntelligence
https://aws.amazon.com/rekognition/faqs
https://aws.amazon.com/rekognition/faqs
https://aws.amazon.com/mediaconvert

aws rekognition get-text-detection \
 --job-id $JOB_ID \
 --query 'TextDetections[*].TextDetection.DetectedText'

You should see text similar to the following:
[
 "COPYRIGHT, 1901",
 "THOMAB A. EDISON.",
 "PATENTED AuOUST 31ST. 1897",
 "COPYRIGHT,",
 "1901",
 "THOMAB",
 "A.",
 "EDISON.",
 "PATENTED",
 "AuOUST",
 "31ST.",
 "1897",

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You used Rekognition to detect text within a video file and saved the output to a
report accessible within the Rekognition service. The output of the text detection job
contains time markers for the text detected, the detected text itself, and other fea‐
tures. You can also detect text within images, have batch processing jobs run on large
sets of files, and detect other features within videos and images. This fully managed
service allows you to use reliable detection models without having to train your own.

Rekognition supports Custom Labels, a feature of the service that
allows you to train specific models to recognize particular features
in video and images specific to your needs. You can accomplish this
all within the Rekognition service itself for an end-to-end imple‐
mentation. For more information, see the support document.

You can integrate Rekognition directly into your application or hardware by using the
AWS SDK for a reliable feature and text detection mechanism.

Challenge
Configure a text detection job to automatically start when a file is uploaded to a spe‐
cific S3 bucket by using EventBridge.

280 | Chapter 8: AI/ML

https://github.com/AWSCookbook/ArtificialIntelligence
https://oreil.ly/Y3pzt
https://oreil.ly/TDARq

8.6 Physician Dictation Analysis Using Amazon Transcribe
Medical and Comprehend Medical
Problem
You need to build a solution that recognizes medical professional dictation audio
files. The solution needs to be able to categorize things like protected health informa‐
tion (PHI) for further analysis.

Solution
Use Amazon Transcribe Medical to analyze your audio file. Then, use Amazon Com‐
prehend Medical to generate the analysis of the physician’s speech in a medical con‐
text (see Figure 8-6).

Figure 8-6. Using Transcribe Medical and Comprehend Medical with physician
dictations

Prerequisite

• An audio file with speech (human or computer-generated) in it that contains
medical jargon

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a JSON file named awscookbook806-template.json with the parameters
specifying your physician’s specialty, language, S3 bucket, and dictation audio file
(file provided in the repository):

{
 "MedicalTranscriptionJobName": "aws-cookbook-806",
 "LanguageCode": "en-US",
 "Specialty": "PRIMARYCARE",
 "Type": "DICTATION",
 "OutputBucketName":"awscookbook806-RANDOM_STRING",
 "Media": {
 "MediaFileUri": "s3://awscookbook806-RANDOM_STRING/dictation.mp3"

8.6 Physician Dictation Analysis Using Amazon Transcribe Medical and Comprehend Medical | 281

https://github.com/AWSCookbook/ArtificialIntelligence

 }
}

2. Use the sed command to replace the values in the awscookbook806-template.json
file with the RANDOM_STRING value for your S3 bucket:

sed -e "s/RANDOM_STRING/${RANDOM_STRING}/g" \
 awscookbook806-template.json > awscookbook806.json

3. Start a medical transcription job using the JSON file that you created:
aws transcribe start-medical-transcription-job \
 --cli-input-json file://awscookbook806.json

You should see output similar to the following:
{
 "MedicalTranscriptionJob": {
 "MedicalTranscriptionJobName": "aws-cookbook-806",
 "TranscriptionJobStatus": "IN_PROGRESS",
 "LanguageCode": "en-US",
 "Media": {
 "MediaFileUri": "s3://awscookbook806-<<unique>>/dictation.mp3"
 },
 "StartTime": "2021-07-14T20:24:58.012000-04:00",
 "CreationTime": "2021-07-14T20:24:57.979000-04:00",
 "Specialty": "PRIMARYCARE",
 "Type": "DICTATION"
 }
}

Check the status of the Transcribe Medical job. Wait until it is COMPLETED:
aws transcribe get-medical-transcription-job \
 --medical-transcription-job-name aws-cookbook-806 \
 --output text \
 --query MedicalTranscriptionJob.TranscriptionJobStatus

4. Get the output from your previous job by downloading the file from S3:
aws s3 cp s3://awscookbook806-${RANDOM_STRING}/medical/aws-cookbook-806.json \
 ./aws-cookbook-806.json

You should see output similar to the following:
download: s3://awscookbook806-<<unique>>/medical/aws-cookbook-806.json to ./aws-
cookbook-806.json

5. Display the transcribed speech from the downloaded file:
cat aws-cookbook-806.json | jq .results.transcripts

You should see output similar to the following:
[
 {
 "transcript": "patient jane doe experiencing symptoms of headache,
administered 200 mg ibuprofen
twice daily."
 }
]

282 | Chapter 8: AI/ML

The resulting JSON file that you downloaded contains time
markers for each word that was transcribed. You can use this
information within your application to provide additional
context and functionality.

Validation checks. Start an entities detection job using the Comprehend Medical
detect entities API. This will show the location of things like medical conditions and
PHI:

aws comprehendmedical detect-entities-v2 \
 --text "$(cat aws-cookbook-806.json | jq .results.transcripts[0].transcript | tr
-d '"')"

You should see output similar to the following:
{
 "Entities": [
 {
 "Id": 4,
 "BeginOffset": 8,
 "EndOffset": 12,
 "Score": 0.8507962226867676,
 "Text": "jane",
 "Category": "PROTECTED_HEALTH_INFORMATION",
 "Type": "NAME",
 "Traits": []
 },
...

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You were able to use Amazon Transcribe Medical and Amazon Comprehend Medical
to take a physician’s dictation audio file, turn it into text, and then detect the medical-
context entities within the audio file. The final result provided patient data, symp‐
toms, and medication and dosage information, which can be extremely useful in
building medical applications for patients and medical professionals. Comprehend
Medical also provides batch analysis and feature detection for multiple types of PHI
and can determine dictation versus patient/physician conversation. With the advent
of telemedicine, these powerful features can be used to provide immediate transcrip‐
tions to patients using app-based medical services to receive healthcare from medical
professionals.

8.6 Physician Dictation Analysis Using Amazon Transcribe Medical and Comprehend Medical | 283

https://github.com/AWSCookbook/ArtificialIntelligence

Both of these services you used for the solution are HIPAA compli‐
ant. You can confidently build solutions with these services for
medical use cases that need to conform with HIPAA compliance.
For more information on AWS services that conform to compli‐
ance standards, see the Services in Scope web page.

Challenge
Use EventBridge to automate the processing of new objects uploaded to your S3
bucket.

8.7 Determining Location of Text in an Image
Problem
You need to determine in which quadrant of an image the text “AWS” appears.

Solution
We’ll use Textract to analyze the image from an S3 bucket and then parse the output
to calculate the location of the text (see Figure 8-7).

Figure 8-7. Using Textractor to analyze output from Amazon Textract

Prerequisite

• S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Copy the provided book_cover.png file to the S3 bucket you created:
aws s3 cp ./book_cover.png s3://awscookbook807-$RANDOM_STRING

You should see output similar to the following:
upload: ./book_cover.png to s3://awscookbook807-<<unique>>/book_cover.png

2. Analyze the file with Textract and output the results to a file called output.json:

284 | Chapter 8: AI/ML

https://oreil.ly/DJi29
https://github.com/AWSCookbook/ArtificialIntelligence

aws textract analyze-document \
 --document '{"S3Object":{"Bucket":"'"awscookbook807-
$RANDOM_STRING"'","Name":"book_cover.png"}}' \
 --feature-types '["TABLES","FORMS"]' > output.json

Validation checks. Examine the BoundingBox values for the Practical text to find the
location:

jq '.Blocks[] | select(.Text == "Practical") | select(.BlockType == "WORD")
| .Geometry.BoundingBox' output.json

If the left and top values are both less than 0.5, the word Practical is located in the top
left of the page (see Figure 8-8).

You should see output similar to the following:
{
 "Width": 0.15338942408561707,
 "Height": 0.03961481899023056,
 "Left": 0.06334125995635986,
 "Top": 0.39024031162261963
}

Figure 8-8. Reference BoundingBox coordinate diagram

Per the Textract Developer Guide, each BoundingBox property has
a value between 0 and 1. The value is a ratio of the overall image
width (applies to left and width) or height (applies to height and
top). For example, if the input image is 700 × 200 pixels, and the
top-left coordinate of the bounding box is (350,50) pixels, the API
returns a left value of 0.5 (350/700) and a top value of 0.25
(50/200).

8.7 Determining Location of Text in an Image | 285

https://oreil.ly/Xh9Bk

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You may have used traditional optical character recognition (OCR) software in the
past when you have scanned physical documents and used the OCR output to get
text-based output of the content. Amazon Textract takes this a step further using ML
models for even more accurate text recognition with additional feature and context
information you can use in your applications. You were able to determine the loca‐
tion of a string of text within an image by using this recipe. You could use similar
functionality in Textract to forward certain portions of text from images (or scanned
forms) to different teams for human review or automating sending certain parts of
forms to different microservices in your application for processing or persisting.
Application developers do not need to train a model before using Textract; Textract
comes pretrained with many datasets to provide highly accurate character recogni‐
tion.

Challenge
Determine the location of two different words in an image and calculate the distance
between them.

286 | Chapter 8: AI/ML

https://github.com/AWSCookbook/ArtificialIntelligence
https://aws.amazon.com/textract
https://oreil.ly/X07aq

CHAPTER 9

Account Management

9.0 Introduction
While the previous chapters have focused on deploying and configuring resources
inside your AWS account, we want to provide some recipes that show examples of
what you can do at the whole account level.

As you continue to scale your AWS usage, you will find it useful to have tools and
services available to ease the burden of management, especially if you start to add
additional AWS accounts to your environment. We are seeing more and more people
choose to use AWS accounts as “containers” for their specific applications. Some
companies provide individual accounts for production and nonproduction work‐
loads to business units within a company; some even set up “shared services”
accounts to provide internal services to business units within a company to share
common resources across the many accounts they may be managing. Your AWS
account spans Regions to give you global capabilities, as shown in Figure 9-1.

Figure 9-1. AWS account perspective

We like to think of the tools and services that AWS provides as building blocks that
you can use to customize your cloud environment to meet your specific needs. Some

287

https://oreil.ly/INVpe

of these can be used at an account level to give you more management capabilities
over your environments as you scale (i.e., adding additional team members or adding
additional AWS accounts). You can organize and consolidate billing for many
accounts by using AWS Organizations and provide centralized access management
through AWS Single Sign-On, both of which you will explore in the recipes in this
chapter, in addition to some recipes to help you configure and maintain a secure
environment at the account level.

You should always keep an eye on the AWS Prescriptive Guidance
website for the most up-to-date guidance on account-level capabili‐
ties and recommendations.

Workstation Configuration
You will need a few things installed to be ready for the recipes in this chapter.

General setup
Follow the “General workstation setup steps for CLI recipes” on page xvii to validate
your configuration and set up the required environment variables. Then, clone the
chapter code repository:

git clone https://github.com/AWSCookbook/AccountManagement

9.1 Using EC2 Global View for Account Resource Analysis
Problem
You have been presented with an AWS account for a client. You need to export a CSV
file containing all provisioned compute instances, disk volumes, and network
resources across all Regions within an AWS account.

Solution
Navigate to EC2 Global View in the AWS Console. Export a CSV of resources in your
account (see Figure 9-2).

Figure 9-2. Generating a CSV of resources with EC2 Global View

288 | Chapter 9: Account Management

https://aws.amazon.com/organizations
https://aws.amazon.com/single-sign-on
https://aws.amazon.com/prescriptive-guidance

Prerequisite

• AWS account with resources deployed

Steps

1. In the AWS Console, search for and then click EC2 Global View, as shown in
Figure 9-3.

Figure 9-3. Searching for Global View

2. Navigate to the “Global search” menu and click Download CSV (see Figure 9-4).

Figure 9-4. Downloading a CSV from Global View

Validation checks. Open the downloaded CSV file in your favorite editor on your
workstation. From there, you should be able to scroll through resources in your AWS
account.

Discussion
You may find yourself often working in new AWS accounts as part of your job. If you
are in a lab environment or a hackathon, using Global View is a great way for you to
get an idea of what an AWS account contains. Before you begin to make changes in
an account, it is important to take stock of what is already deployed across all
Regions. Having this knowledge will allow you to ensure that you don’t mistakenly
cause any outages.

9.1 Using EC2 Global View for Account Resource Analysis | 289

While you should use tools like AWS Config and the AWS Billing console for inspect‐
ing the configuration of resources inside your AWS account and keeping an eye on
your bill, respectively, it is good to know that you can easily generate a list of EC2 and
VPC resources. Routine CSV exports at different times can be used to provide a
point-in-time snapshot.

Challenge
Use the Global search functionality to list all default VPC security groups. You can
then double-check inbound rules for extraneous permissions.

9.2 Modifying Tags for Many Resources at One Time with
Tag Editor
Problem
You need to add a tag to multiple resources in your AWS account where it doesn’t
already exist.

Solution
Launch the Tag Editor in the AWS Console. Find all resources that have an Environ‐
ment key with nonexisting value. Add the tag (see Figure 9-5).

Figure 9-5. Adding a tag to multiple resources

Prerequisite

• AWS account with resources deployed and tagged

Steps

1. In the AWS Console, search for Tag Editor and then click Resource Groups &
Tag Editor, as shown in Figure 9-6.

290 | Chapter 9: Account Management

https://aws.amazon.com/config

Figure 9-6. Searching for Tag Editor in the AWS Console

2. From the lefthand menu, click Tag Editor under the Tagging heading (see
Figure 9-7).

Figure 9-7. Launching Tag Editor

3. Set “Resource types” to “All supported resource types,” enter a Tag key named
Environment, use the drop-down menu to select “(not tagged)” for the value, and
then click “Search resources” (see Figure 9-8).

9.2 Modifying Tags for Many Resources at One Time with Tag Editor | 291

Figure 9-8. Launching Tag Editor

4. Wait a few moments for the search to complete. Then view the results, select the
resources that you wish to tag, and click “Manage tags of selected resources” (see
Figure 9-9).

Figure 9-9. Viewing search results in Tag Editor

5. Enter a “Tag key” named Environment, enter a “Tag value” Dev, and click “Review
and apply tag changes” (see Figure 9-10).

292 | Chapter 9: Account Management

Figure 9-10. Tagging multiple resources with Tag Editor

6. In the pop-up window, confirm your selection by clicking “Apply changes to all
selected” (see Figure 9-11).

Figure 9-11. Confirming changes to apply to resources in Tag Editor

Validation checks. Use the CLI to confirm that all EC2 instances have an Environment
tag:

aws ec2 describe-instances \
 --output text \
 --query 'Reservations[].Instances[?!not_null(Tags[?Key == `Environment`].Value)] |
[].[InstanceId]'

You should see no output. You can also repeat step 3 to confirm that all resources
now have an Environment tag.

Discussion
A tag consists of a key and a value and can be applied to many resources at the time
of creation and almost all resources after creation. You should implement your own
tagging strategy as early as possible in your cloud journey. This ensures that you can
identify the growing number of resources you deploy over the lifespan of your AWS
account. Tags are useful for auditing, billing, scheduling updates, delegating access to
resources with specific tags, and so on.

9.2 Modifying Tags for Many Resources at One Time with Tag Editor | 293

Cost allocation tags can help you make sense of your AWS bill, to see exactly which
resources are contributing to certain portions of your bill. In addition to the cost allo‐
cation report, you can filter by tags interactively via Cost Explorer in the AWS Billing
console to analyze and visualize your costs.

The Tag Editor can help you search and perform batch updates for tags across your
AWS resources. Say you might have deployed many resources but forgot to tag them
all, or you have historically not used tags and would like to start. You can batch select
many resources within the Tag Editor (across all Regions or within a selected set of
Regions) and perform these updates to ease the burden of implementing a tagging
strategy.

While not an exhaustive list, here are some good tags to include as part of a tagging
baseline:

CreatedBy

The User or Identity that created the resource

Application

The service or application of which the resource is a component

CostCenter

Useful for billing identification and to help implement a chargeback model for
shared AWS account usage

CreationDate

The date the resource was created

Contact

An email address for the team or individual in case of any issues with the
resource (also helpful for configuring automated alerts)

MaintenanceWindow

Useful for defining a window of time that the resource is allowed to not be avail‐
able in case of patching, updates, or maintenance

DeletionDate

Useful for development or sandbox environments so that you know when it may
be safe to delete a resource

Challenge
Apply a baseline set of tags to your AWS resources and begin to enforce the tags with
a tag policy by enabling AWS Organizations.

294 | Chapter 9: Account Management

https://oreil.ly/YvgIT
https://oreil.ly/7UePx
https://oreil.ly/Dg3I6

9.3 Enabling CloudTrail Logging for Your AWS Account
Problem
You just set up your AWS account and want to retain an audit log of all activity for all
Regions in your account.

Solution
Configure an S3 bucket with a bucket policy allowing CloudTrail to write events.
Enable CloudTrail for all Regions in your account and configure CloudTrail to log all
audit events to the S3 bucket, as shown in Figure 9-12.

Figure 9-12. Turning on logging for CloudTrail

Prerequisite

• S3 bucket for logging

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

1. Create a file called cloudtrail-s3policy-template.json (file provided in the
repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3CloudTrail",

9.3 Enabling CloudTrail Logging for Your AWS Account | 295

https://github.com/AWSCookbook/BigData

 "Effect": "Allow",
 "Principal": {"Service": "cloudtrail.amazonaws.com"},
 "Action": "s3:GetBucketAcl",
 "Resource": "arn:aws:s3:::BUCKET_NAME"
 },
 {
 "Sid": "S3CloudTrail",
 "Effect": "Allow",
 "Principal": {"Service": "cloudtrail.amazonaws.com"},
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::BUCKET_NAME/AWSLogs/AWS_ACCOUNT_ID/*",
 "Condition": {"StringEquals": {"s3:x-amz-acl": "bucket-owner-full-
control"}}
 }
]
}

2. Replace the values in the cloudtrail-s3policy-template.json file with values from
your deployment. Here is a way to do it quickly with sed:

sed -e "s/BUCKET_NAME/awscookbook903-$RANDOM_STRING/g" \
 -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 cloudtrail-s3policy-template.json > cloudtrail-s3policy.json

3. Add the S3 bucket policy to your S3 bucket:
aws s3api put-bucket-policy \
 --bucket awscookbook903-$RANDOM_STRING \
 --policy file://cloudtrail-s3policy.json

4. Enable CloudTrail for all AWS Regions and configure the S3 bucket to send logs
to the following:

aws cloudtrail create-trail --name AWSCookbook903Trail \
 --s3-bucket-name awscookbook903-$RANDOM_STRING \
 --is-multi-region-trail

5. Start the logging of your CloudTrail trail:
aws cloudtrail start-logging --name AWSCookbook903Trail

More information can be found on AWS for the required S3
bucket policy for CloudTrail logging.

Validation checks. Describe the trail:
aws cloudtrail describe-trails --trail-name-list AWSCookbook903Trail

You should see output similar to the following:
{
 "trailList": [
 {
 "Name": "AWSCookbook903Trail",
 "S3BucketName": "awscookbook903-<<string>>",

296 | Chapter 9: Account Management

https://oreil.ly/jhcXQ
https://oreil.ly/jhcXQ

 "IncludeGlobalServiceEvents": true,
 "IsMultiRegionTrail": true,
 "HomeRegion": "us-east-1",
 "TrailARN": "arn:aws:cloudtrail:us-east-1:<<Account Id>>:trail/
AWSCookbook903Trail",
 "LogFileValidationEnabled": false,
 "HasCustomEventSelectors": false,
 "HasInsightSelectors": false,
 "IsOrganizationTrail": false
 }
]
}

Get the trail status:
aws cloudtrail get-trail-status --name AWSCookbook903Trail

You should see output similar to the following:
{
 "IsLogging": true,
 "StartLoggingTime": "2021-06-28T21:22:56.308000-04:00",
 "LatestDeliveryAttemptTime": "",
 "LatestNotificationAttemptTime": "",
 "LatestNotificationAttemptSucceeded": "",
 "LatestDeliveryAttemptSucceeded": "",
 "TimeLoggingStarted": "2021-06-29T01:22:56Z",
 "TimeLoggingStopped": ""
}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You can use CloudTrail to log and continuously monitor all events in your AWS
account. Specifically, events refer to all API activity against the AWS APIs. These
include actions that you (and all authenticated entities) take in the console, via the
command line, API activity from your applications, and other AWS services perform‐
ing actions (automatic actions like autoscaling, EventBridge triggers, replication, etc.).

You can query your logs in place on S3 using Amazon Athena if
you are looking for specific events, and you can index your logs
with Amazon OpenSearch to perform complex queries against
your historical data.

You should use CloudTrail from a security standpoint, but you can also use it from an
application debugging standpoint. Say you have an event-driven application that trig‐
gers a Lambda function when you upload files to an S3 bucket (see Recipe 5.7). If

9.3 Enabling CloudTrail Logging for Your AWS Account | 297

https://github.com/AWSCookbook/Security
https://oreil.ly/gdkRW

your IAM policy is incorrect for the Lambda function invocation, you will be able to
see the Deny in the CloudTrail logs. This is helpful for application developers and
architects who are building and designing event-driven applications powered by
Amazon EventBridge.

Challenge
Configure an organizational trail if you have an AWS Organization with multiple
accounts. (See Recipe 9.6 to set up an AWS Organization.)

9.4 Setting Up Email Alerts for Root Login
Problem
You want to be notified by email when the root user logs into an AWS account.

Solution
Create an SNS topic and subscribe to it. Then create an Amazon EventBridge rule
with a pattern that searches for root logins and triggers the SNS topic, as shown in
Figure 9-13.

Figure 9-13. Logging and alerting for root logins

Prerequisite

• AWS account with CloudTrail enabled (see Recipe 9.3)

Steps

1. Create an SNS topic:
TOPIC_ARN=$(aws sns create-topic \
 --name root-login-notify-topic \
 --output text --query TopicArn)

298 | Chapter 9: Account Management

https://oreil.ly/4qAbK

2. Subscribe to the SNS topic. This will send a confirmation email to the address
you specify:

aws sns subscribe \
 --topic-arn $TOPIC_ARN \
 --protocol email \
 --notification-endpoint your-email@example.com

3. Locate the confirmation email in your inbox that AWS sent and click “Confirm
subscription.”

In the root of this chapter’s repository, cd to the 904-Setting-Up-Email-Alerts-for-
Root-Login directory and follow the subsequent steps.

4. Now create an assume-role policy JSON statement called assume-role-policy.json
to use in the next step (this file is provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

5. Create the role and specify the assume-role-policy.json file:
aws iam create-role --role-name AWSCookbook904RuleRole \
 --assume-role-policy-document \
 file://assume-role-policy.json

6. Now attach the managed AmazonSNSFullAccess IAM policy to the IAM role:
aws iam attach-role-policy \
 --policy-arn arn:aws:iam::aws:policy/AmazonSNSFullAccess \
 --role-name AWSCookbook904RuleRole

7. Create a file called event-pattern.json for AWS Console sign-in events (file pro‐
vided in the repository):

{
 "detail-type": [
 "AWS API Call via CloudTrail",
 "AWS Console Sign In via CloudTrail"
],
 "detail": {
 "userIdentity": {
 "type": [
 "Root"
]
 }
 }
}

9.4 Setting Up Email Alerts for Root Login | 299

mailto:your-email@example.com

8. Create an EventBridge rule that monitors the trail for root login activity:
aws events put-rule --name "AWSCookbook904Rule" \
 --role-arn "arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook904RuleRole" --
event-pattern file://event-
pattern.json

9. Set the target for your EventBridge rule to your SNS topic:
aws events put-targets --rule AWSCookbook904Rule \
 --targets "Id"="1","Arn"="$TOPIC_ARN"

Validation checks. Log in to your AWS account using your root account, wait a few
minutes, and check your email for a message from SNS.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Setting up an alert to notify you on root user sign-ins is a detective mechanism you
can layer into your security strategy to keep aware of unwelcome activity within your
account. This method is a cost-effective solution to monitor your AWS account for
unintended access via the root user. Since the root user is the most powerful and priv‐
ileged identity (and should be used only for specific infrequent tasks), it is important
to know when it is accessed.

In some cases, the root user is needed to perform specific privi‐
leged actions and tasks within an AWS account. For a list of these
actions requiring the root user, refer to the AWS support docu‐
ment.

Challenge
Add another EventBridge rule that notifies the same SNS topic when the root pass‐
word is changed (here is a hint).

9.5 Setting Up Multi-Factor Authentication for a Root User
Problem
You need to enable multi-factor authentication for the root user of your AWS
account.

300 | Chapter 9: Account Management

https://github.com/AWSCookbook/Security
https://oreil.ly/NvidX
https://oreil.ly/NvidX
https://oreil.ly/vzvwz

Solution
Log in to your AWS account with your root user credentials. Navigate to the IAM
console and enable multi-factor authentication using a U2F-compatible hardware
device or a Time-Based One-Time Password (TOTP)–compliant virtual device (see
Figure 9-14).

Figure 9-14. Enabling MFA for the root user in your AWS account

Steps

1. Log in to the AWS Console by using the email address associated with your root
user. You can reset the password for the root user by using the “Forgot password”
link displayed after you enter the root user email address; click Next. The login
dialog you should see is shown in Figure 9-15.

Figure 9-15. Selecting the root user login option

9.5 Setting Up Multi-Factor Authentication for a Root User | 301

https://oreil.ly/TtQtd
https://console.aws.amazon.com

Since you will log in with the root user infrequently, you do
not need to store the password for the user once you enable
MFA. You can reset the password each time you need to access
the account; take care to secure access to the mailbox associ‐
ated with your root user.

2. Once you are logged in to the AWS Console, select My Security Credentials from
the top right of the user interface, as shown in Figure 9-16.

Figure 9-16. Navigating to the My Security Credentials menu

3. Expand the “Multi-factor authentication” pane on the Your Security Credentials
page within the IAM console and click the Activate MFA button. Choose the type
of device you will use and click Continue (see Figure 9-17).

If you use a software-based password manager utility to store
your virtual MFA device information, do not store your root
user password in that same password manager. If your pass‐
word manager utility or vault is compromised, your second
factor and password together give the ability to access your
AWS account. Similarly, the password information for your
email account should not be stored in the same place as your
virtual MFA device, since the root user password-reset proce‐
dure can be performed successfully with access to the mailbox
associated with your root user.

302 | Chapter 9: Account Management

https://oreil.ly/ar0H9
https://oreil.ly/z5xsh
https://oreil.ly/VVL9g
https://oreil.ly/VVL9g

Figure 9-17. Selecting a virtual MFA device

4. Follow the prompts to either display a QR code that you can scan with your vir‐
tual device or plug in your hardware token and follow the prompts. Once you
enter the code, you will see a window indicating that you have completed the
MFA setup (see Figure 9-18).

Figure 9-18. Confirmation of MFA device setup

You can print out a copy of the QR code displayed and keep
this in a physically secure location as a backup in case you lose
access to your virtual MFA device.

9.5 Setting Up Multi-Factor Authentication for a Root User | 303

Validation checks. Sign out of your AWS account and sign back in with the root user.
Enter the code generated by your virtual device (or plug in your hardware token) and
complete the login process.

Cleanup
You should always keep MFA enabled for your root user. If you would like to disable
the MFA device associated with your root user, follow the steps for deactivating the
device.

Discussion
The root user is the most powerful and privileged identity of an AWS account. The
username is an email address that you configure when you first establish your AWS
account, and password-reset requests can be made from the AWS Console or by con‐
tacting AWS support. If your email account is compromised, a malicious actor could
request a reset of your root account password and gain access to your account. The
root user should always be protected with a second factor of authentication to prevent
unauthorized access to your account. Since the root user is needed on only rare occa‐
sions, you should never use it for routine tasks.

You need to enable IAM user and role access to the Billing console.
You can follow the AWS steps to perform that action and further
reduce your dependency on using the root user for tasks.

It is extremely important to configure an IAM user (or set up federated access using
ADFS with IAM, SAML with IAM, or AWS Single Sign-On) rather than use the root
user to log in to your AWS account for your routine usage. AWS recommends imme‐
diately creating an administrative IAM user as one of the first things you do when
you open an AWS account, shortly after you enable MFA for the root user. For a scal‐
able approach, you can follow Recipe 9.6 to enable and use AWS Single Sign-On for
your own (and delegated) access requirements.

Challenge
Configure MFA protection for other IAM roles (using trust policies) in your account
(here is a hint).

304 | Chapter 9: Account Management

https://oreil.ly/pvpVw
https://oreil.ly/pvpVw
https://oreil.ly/qNtiE
https://oreil.ly/Em4TW
https://oreil.ly/Em4TW
https://oreil.ly/DVPbZ
https://oreil.ly/MuSdE
https://oreil.ly/MuSdE
https://oreil.ly/e8YMQ

9.6 Setting Up AWS Organizations
and AWS Single Sign-On
Problem
You need a scalable way to centrally manage usernames and passwords to access your
AWS accounts.

Solution
Enable AWS Organizations, configure AWS Single Sign-On, create a group, create a
permission set, and create a user in the AWS SSO directory for you to use, as shown
in Figure 9-19.

Figure 9-19. AWS SSO view of permissions and users

Steps

1. Navigate to AWS Organizations in the AWS Console and click “Create an
organization.”

AWS Organizations provides many features that enable you to
work with multiple AWS accounts at scale. For more informa‐
tion, see the AWS Organizations documentation.

9.6 Setting Up AWS Organizations and AWS Single Sign-On | 305

https://console.aws.amazon.com/organizations
https://oreil.ly/Wdaa4

2. The organization creation will trigger an email to be sent to the email address
associated with the root user of your account. Confirm the creation of the organi‐
zation by clicking the “Verify your email address” button.

3. Navigate to the AWS SSO console in your Region and click the Enable SSO but‐
ton.

The initial configuration of AWS SSO uses a local directory for
your users. You can federate to an existing user directory you
may have, like Active Directory or a SAML provider. For
information on configuring federation, the user guide for AWS
SSO provides details.

4. Go to the Groups portion of the SSO console and click “Create group.” Enter the
required Group name and click Create, as shown in Figure 9-20.

Figure 9-20. Creating a group in AWS SSO

5. Go to the Users portion of the SSO console and select “Add user.” Enter the infor‐
mation required in the fields, add the user to the group you created, and select
Create. You can have the AWS SSO console generate the initial password for you
or send an email to the address provided in the required “Email address” field.

306 | Chapter 9: Account Management

https://console.aws.amazon.com/singlesignon
https://oreil.ly/PeusI
https://oreil.ly/PeusI

Assign the user to the group that you created in step 4 on the second page of the
“Add user” wizard (see Figure 9-21).

Figure 9-21. Creating a user in AWS SSO

6. Go to the AWS Accounts portion of the SSO console (in the left navigation menu
of the console), choose the “Permission sets” tab, and select “Create permission
set.” Choose the “Use an existing job function policy” option and select PowerU
serAccess (see Figure 9-22).

Figure 9-22. Creating a permission set in AWS SSO

9.6 Setting Up AWS Organizations and AWS Single Sign-On | 307

7. To assign the permission set to the group you created for your AWS account,
click the AWS accounts link in the left navigation menu, choose the “AWS organi‐
zation” tab, select your AWS account from the list of accounts, and click “Assign
users.” Click the Groups tab and choose the group that you added your user to in
step 4, as shown in Figure 9-23. Click “Next: Permission sets.”

Figure 9-23. Adding a group to an assignment

8. Select the permission set you created in step 6 and click Finish (see Figure 9-24).

Figure 9-24. Assigning a permission set in AWS SSO

When you click Finish, members of this group can access the
AWS account you specified using with permissions of the Pow
erUserAccess IAM policy. AWS SSO provisions a role that can
be assumed in your AWS account for this purpose. Do not
modify this role via IAM in your AWS account, or the permis‐
sion set will not be able to be used through AWS SSO.

308 | Chapter 9: Account Management

Validation checks. Go to the URL provided on the AWS SSO console dashboard page
and log in with the username and password of the user that you created in step 5.
Choose either “Management console” or “Command line or programmatic access” to
gain PowerUserAccess to your AWS account.

The default URL is generated when you first enable AWS SSO. You
can create a customized URL for your own purposes by clicking the
Customize link next to the default URL in the SSO console.

Cleanup
Go to the AWS SSO console and select Settings from the left navigation menu. Scroll
down to the bottom of the settings page and select “Delete AWS SSO Configuration.”
Confirm the deletion by selecting the checkboxes and clicking “Delete AWS SSO.”

Go to AWS Organizations, select your organization, open the settings for your orga‐
nization, and select “Delete organization.” You will need to verify the organization ID
and confirm the deletion of the organization from the email address associated with
the root user of your AWS account.

Discussion
When you enable AWS Organizations, the account where you initially create your
organization is known as the management account. While you enabled AWS Organi‐
zations so that you could use AWS Single Sign-On in this recipe, it primarily exists for
governing, organizing, and managing AWS accounts at scale. Some account manage‐
ment capabilities that you might be interested in include, but are not limited to, these:

• Consolidating billing for multiple AWS accounts
• Managing group accounts using organizational units (OUs)
• Applying service control policies (SCPs) to individual accounts or OUs
• Centralizing policies for tagging and backups for all accounts within your organi‐

zation
• Sharing resources across accounts using Resource Access Manager (RAM)

AWS Organizations and AWS SSO are free to enable and provide a scalable way for
you to begin to manage AWS accounts and user access to your entire AWS environ‐
ment. As a best practice, using the management account for management functions
only (and not running workloads) is a pattern you should adopt. Creating specific
AWS accounts for your production and nonproduction workloads that are members
of your AWS Organization helps you isolate your workloads and reduce blast radius,
delegate access, manage your billing, and so on.

9.6 Setting Up AWS Organizations and AWS Single Sign-On | 309

https://oreil.ly/UTrvA
https://oreil.ly/ZLn6v
https://oreil.ly/DeR3h
https://oreil.ly/4s2Nx
https://oreil.ly/eiNlp
https://oreil.ly/rZ02g

These concepts begin to define the concept of a landing zone.
Rather than build your own, you can use AWS Control Tower to
configure a fully managed landing zone. There are advantages of
using Control Tower when you plan to scale your AWS usage
beyond just a few accounts.

AWS Single Sign-On provides a secure and scalable way to manage user access to
your AWS accounts. You can integrate with an external identity provider (IdP) or use
the built-in directory within AWS SSO, depending on how many users you need to
manage and if you already have an external user directory.

When you successfully authenticate with AWS SSO, you are presented with a choice
of access levels defined by permission sets. Permission sets use an IAM policy defini‐
tion that SSO uses to manage a role, which you can assume upon successful login.
AWS provides permission sets within SSO that align with common job functions, but
you can also create your own custom permission sets by writing IAM policy state‐
ments and saving them as a permission set. A temporary session is created once you
choose your access level into an account. You can use the session within the AWS
Console, or via the command line with the temporary access key ID, secret access key,
and session token variables, or by using the AWS CLI v2 to authenticate with SSO
from the command line. You can adjust the length of the session duration within the
AWS SSO console.

Security around the access to your AWS environments should be your top priority,
and as you scale the number of users and accounts, and level of access delegated, this
becomes a challenge. AWS SSO gives you a mechanism to implement security at scale
for your AWS environments. Since the session you initiate with your account via
AWS SSO is temporary, you do not need to create long-lived IAM access keys to use
in your command-line environment, which is one less secret to have to rotate and
manage. You can also use multi-factor authentication with AWS SSO and require
MFA for login.

Challenge 1
Connect AWS SSO to an external identity provider for an existing IdP-like Active
Directory or Okta.

Challenge 2
Apply a service control policy (SCP) to limit the Regions you can use within your
AWS account.

310 | Chapter 9: Account Management

https://oreil.ly/X9vg1
https://oreil.ly/DzWXI
https://oreil.ly/t3wOC
https://oreil.ly/Uz8BT
https://oreil.ly/Uz8BT
https://oreil.ly/qLcUl
https://oreil.ly/qLcUl
https://oreil.ly/nXfAi
https://oreil.ly/bk0L7
https://oreil.ly/Ra2r6
https://oreil.ly/6KWR4

APPENDIX

Fast Fixes

These useful small bits of code will help you save time and get the most out of AWS.

Set your AWS_ACCOUNT_ID to a bash variable:
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity \
--query Account --output text)

Get the most recently created CloudWatch log group name:
aws logs describe-log-groups --output=yaml \
--query 'reverse(sort_by(logGroups,&creationTime))[:1].{Name:logGroupName}'

Tail the logs for the CloudWatch group:
aws logs tail <<LOGGROUPNAME>> --follow --since 10s

Delete all log groups that match a text pattern and prompt yes/no for confirmation:
aws logs describe-log-groups | \
jq ".logGroups[].logGroupName" | grep -i <<pattern>> | \
xargs -p -I % aws logs delete-log-group --log-group-name %

Stop all running instances for your current working Region (H/T: Curtis Rissi):
aws ec2 stop-instances \
--instance-ids $(aws ec2 describe-instances \
--filters "Name=instance-state-name,Values=running" --query
"Reservations[].Instances[].[InstanceId]"
--output text | tr '\n' ' ')

Determine the user making CLI calls:
aws sts get-caller-identity --query UserId --output text

Generate YAML input for your CLI command and use it:
aws ec2 create-vpc --generate-cli-skeleton yaml-input > input.yaml
#Edit input.yaml - at a minimum modify CidrBlock, DryRun, ResourceType, and Tags
aws ec2 create-vpc --cli-input-yaml file://input.yaml

311

List the AWS Region names and endpoints in a table format:
aws ec2 describe-regions --output table

Find interface VPC endpoints for the Region you are currently using:
aws ec2 describe-vpc-endpoint-services \
--query ServiceDetails[*].ServiceName

Populate data into a DynamoDB table:
aws ddb put table_name '[{key1: value1}, {key2: value2}]'

Determine the current supported versions for a particular database engine (e.g.,
aurora-postgresql):

aws rds describe-db-engine-versions --engine aurora-postgresql \
--query "DBEngineVersions[].EngineVersion"

Delete network interfaces associated with a security group and prompt for each delete
(answer yes/no to delete or skip):

aws ec2 describe-network-interfaces \
--filters Name=group-id,Values=$SecurityGroup \
--query NetworkInterfaces[*].NetworkInterfaceId \
--output text | tr '\t' '\n' | xargs -p -I % \
aws ec2 delete-network-interface --network-interface-id %

Find your default VPC (if you have one) for a Region:
aws ec2 describe-vpcs --vpc-ids \
--query 'Vpcs[?IsDefault==`true`]'

Enable encryption by default for new EBS volumes in a Region:
aws ec2 enable-ebs-encryption-by-default

List all AWS Regions:
aws ssm get-parameters-by-path \
--path /aws/service/global-infrastructure/regions \
--output text --query Parameters[*].Name | tr "\t" "\n"

List all AWS services:
aws ssm get-parameters-by-path \
--path /aws/service/global-infrastructure/services \
--output text --query Parameters[*].Name \
| tr "\t" "\n" | awk -F "/" '{ print $6 }'

List all services available in a region (e.g., us-east-1):
aws ssm get-parameters-by-path \
--path /aws/service/global-infrastructure/regions/us-east-1/services \
--output text --query Parameters[*].Name | tr "\t" "\n" \
| awk -F "/" '{ print $8 }'

312 | Appendix: Fast Fixes

List all Regions that have a particular service available (e.g., SNS):
aws ssm get-parameters-by-path \
--path /aws/service/global-infrastructure/services/sns/regions \
--output text --query Parameters[*].Value | tr "\t" "\n"

Create a presigned URL for an object in S3 that expires in a week:
aws s3 presign s3://<<BucketName>>/<<FileName>> \
--expires-in 604800

Find Availability Zone IDs for a Region that are consistent across accounts:
aws ec2 describe-availability-zones --region $AWS_REGION

Set the Region by grabbing the value from an EC2 instance’s metadata:
export AWS_DEFAULT_REGION=$(curl --silent http://169.254.169.254/latest/dynamic/
instance-
identity/document \
| awk -F'"' ' /region/ {print $4}')

Fast Fixes | 313

Index

A
Access Analyzer

list of services supported, 9
using to generate IAM policy based on

CloudTrail activity, 6
access points (S3), configuring application-

specific access to buckets with, 110-114
access policies for common job functions, 4

creating policy for secret access, 34
account management, 287-310

enabling CloudTrail logging for AWS
account, 295-298

modifying tags for many resources at one
time with Tag Editor, 290-294

setting AWS ACCOUNT ID to bash vari‐
able, 311

setting up AWS Organization and AWS Sin‐
gle Sign-On, 305-310

setting up email alerts for root login,
298-300

setting up multi-factor authentication for
root user in, 300-304

using EC2 Global View for account resource
analysis, 288-290

administrative access for routine development
tasks, not recommended, 5

administrative capabilities, delegating for IAM
using permissions boundaries, 17-25

administrative IAM user, 304
AI/ML, 267-286

computer vision analysis of form data,
272-275

converting text to speech, 270-272
detecting text in a video, 278-280

determining location of text in an image,
284-286

physician dictation analysis, 281-284
redacting PII from text using Comprehend,

275-278
transcribing a podcast, 268-270

ALBs (see Application Load Balancers)
alerts (email) for root login, setting up, 298-300
Amazon Certificate Manager (ACM), 42
Amazon Cloud Watch (see Cloud Watch)
Amazon Comprehend, using to redact PII from

text, 275
Amazon ECS (see ECS)
Amazon Elastic Cloud Compute (see EC2)
Amazon Elastic Kubernetes Service (Amazon

EKS), 207
(see also EKS)

Amazon Lightsail (see Lightsail, deploying con‐
tainers with)

Amazon Machine Image (AMI), AWS Backup
handling process of building, 124

Amazon Managed Service for Prometheus, 208
Amazon OpenSearch, 297
Amazon Polly, converting text to speech,

270-272
Amazon Rekognition Video, using to detect

text in a video, 278-280
Amazon Textract and textractor tool

determining location of text in an image,
284-286

using for computer vision analysis of form
data, 272-275

315

Amazon Transcribe Medical and Amazon
Comprehend Medical, using to analyze
physician dictation, 281-284

Amazon Transcribe, using with MP3 file,
268-270

AmazonDynamoDBFullAccess policy, 23, 199
AmazonEC2ReadOnlyAccess policy, 14
AmazonS3ReadOnlyAccess policy, 199
AmazonSSMManagedInstanceCore policy, 26,

27
Application Load Balancers (ALBs)

configuring ALB to invoke Lambda func‐
tion, 179-181

creating new ALB target group to use as
Green target with CodeDeploy, 224

redirecting HTTP traffic to HTTPS with,
67-73

Archive Access storage tier, 99
ARN (Amazon Resource Names)

finding for ECS task, 237
retrieving ARN for user, 3

artificial intelligence (see AI/ML)
AssumeRole API, 4
AssumeRole policy, 4
assuming a role, 4
Athena service

querying files on S3 with, 256-260
querying logs in place on S3 with, 297

audio, transcribing to text, 268-270
auditing session activity, 30
Aurora Serverless

creating PostgreSQL database, 134-140
enabling REST access to, using RDS Data

API, 171-176
authentication

IAM, using with RDS database, 140-146
multi-factor, 13

requiring in AssumeRole policies, 5
setting up for root user, 300-304

authorization tokens, 212
AutoPause, 137
Availability Zones (AZs), 46

ENI in, 50
finding AZ IDs for Region that is consistent

across accounts, 313
NAT gateways in, 58
subnets in a VPC, spreading across AZs, 50

available state for VPC, verifying, 45

AWS ACCOUNT ID, setting to bash variable,
311

AWS account management (see account man‐
agement)

AWS Backup, 127
creating and restoring EC2 backups to

another Region using, 117-125
AWS Backup Managed Policy, 119
AWS CLI

automating process of token retrieval, 36
configuring credentials for, 4
determining user making calls, 311
generating Yaml input for command, 311
installing Lightsail Control plugin for, 217
starting Transcribe transcription job, 269

AWS Cloud Map, 208
AWS CodeDeploy, using to orchestrate applica‐

tion deployments to ECS, 223-227
AWS Config, 290
AWS Control Tower, 310
AWS Copilot, deploying containers with,

220-223
AWS Database Migration Service (AWS DMS),

139
AWS Glue crawlers, automatically discovering

metadata with, 249-256
AWS KMS CMK, configuring S3 buckets to use

keys referencing, 114
AWS Lake Formation, 260
AWS Organizations, 288
AWS Organizations and Single Sign-On, setting

up, 305-310
AWS Policy Generator, 16
AWS Schema Conversion Tool, 171
AWS SDK, 36

using specific access points with, 112
AWS Security Token Service (see Security

Token Service)
AWS security topics, resources for, 1
AWS services, listing all, 312
AWS Signer, using to run trusted code in

Lambda function, 191-194
AWS Single Sign-On, 10, 288, 304

setting up AWS Organizations and, 305-310
AWS SSM Session Manager

connecting to EC2 instance in subnet of
VPC via, 53

connecting to EC2 instances with, 25-30
AWS Systems Manager (SSM) API, 29

316 | Index

AWS-managed (aws/ebs) KMS keys, 32
AWSLambdaBasicExecutionRole policy, 178,

199
AWSLambdaVPCAccess IAM policy, 160

B
backups

automated in Aurora Serverless, 140
creating and restoring EC2 backups to

another Region using AWS Backup,
117-125

big data, 241-265
automatically discovering metadata with

AWS Glue crawlers, 249-256
querying files on S3 using Amazon Athena,

256-260
streaming data to S3 using Kinesis Data

Firehose, 244-249
transforming data with AWS Glue Data‐

Brew, 261-265
using Kinesis Stream for ingestion of

streaming data, 242-244
workstation configuration, 242

Block Public Access feature (S3), 36
blue/green deployments, updating containers

with, 223-227
Border Gateway Protocol (BGP), 88
bucket policy template to enforce encryption

on all objects, 116

C
capacity for databases, 137

Aurora Serverless scaling measured in
capacity units, 139

automatically scaling capacity targets, 137
autoscaling DynamoDB table provisioned

capacity, 163-167
checking for RDS cluster, 138
DynamoDB provisioned capacity , use of

capacity units, 165
scaled down to 0, 137
setting at upper limit, 139
when database activity resumes, 137

CDNs (content delivery networks), 39
certificate authority (CA), RDS Root CA, 144
certificates

CloudFront HTTPS certificate on default
hostname , 42

creating for HTTPS, 69

SSL, 146
CI/CD pipelines

AWS Copilot commands embedded in, 223
blue/green deployments pattern, 227

CIDR (classless inter-domain routing) blocks,
44
choosing carefully for your VPC, 46
creating VPC with IPv6 CIDR block, 46
nonoverlapping ranges when connecting

VPCs, 91
quotas for IPv4 and IPv6, 46
simplifying management of CIDRs in secu‐

rity groups with prefix lists, 74-78
specifying CIDR notation for authoriza‐

tions, 63
CLI (see AWS CLI)
Cloud Map, 208
CloudFront, 39

serving web content securely from S3 with,
39-42

CloudTrail logging, 6
configuring to log events on S3 bucket, 232
enabling, 7
enabling for your AWS account, 295-298

CloudWatch, 22
configuring alarm and scaling policy for

ECS service, 227
getting most recently created log group

name, 311
Glue crawlers logging information to, 254
metrics service, 231
streaming container logs to, 235-239
tailing log group to observe Lambda func‐

tion invoked, 186
tailing logs for CloudWatch group, 311

CloudWatch Events (see EventBridge)
CloudWatchFullAccess policy, 23
clusters

creating database cluster with engine mode
of serverless, 136

database, checking capacity of, 138
deleting RDS cluster, 139

CMK (see customer-managed KMS key)
code signing configuration, 192
CodeDeploy, using to orchestrate application

deployments to ECS, 223-227
CodeDeployRoleForECS policy, 224
CodeSigningPolicies, changing, 194

Index | 317

Common Vulnerabilities Scoring System
(CVSS), 216

Comprehend, using to redact PII from text,
275-278

computer vision analysis of form data, 272-275
concurrency (provisioned), reducing Lambda

startup times with, 201-204
connection pooling, leveraging RDS Proxy for

database connections from Lambda,
146-152

consumers and producers (streaming data), 244
containers, 207-239

autoscaling container workloads on ECS,
227-231

building, tagging and pushing container
image to Amazon ECR, 209-214

capturing logs from containers running on
ECS, 235-239

deploying using Amazon Lightsail, 217-220
deploying using AWS Copilot, 220-223
launching Fargate container task in

response to an event, 231-234
networked together, 43
orchestrators, 207
packaging Lambda code in container image,

194
prerequisite, installing Docker, 208
scanning images for security vulnerabilities

on push to ECR, 214-217
updating with blue/green deployments,

223-227
Control Tower, 310
Copilot, deploying containers with, 220-223
cost allocation tags, 294
CreateInternetGateway action (EC2), testing,

14
credentials

temporary, for a role, returned by AssumeR‐
ole API, 4

temporary, from AWS STS instead of IAM
user, 5

cross-account access to AWS resources, 5
Cross-Region Replication (CRR), 104
CSV files

generating and exporting CSV of resources
with EC2 Global View, 288-290

transforming data in, using Glue DataBrew,
261-265

customer-managed KMS key, 30, 114, 116

CVSS (Common Vulnerability Scoring System),
216

D
dashboard, creating for S3 Storage Lens,

106-109
data, 241

(see also big data)
Data Catalog

creating in Athena, 257
using Glue Data Catalog in Athena service,

260
data lakes, 260
Data Lifecycle Manager, 124

automating EBS snapshots with, 127
database engines, determining current sup‐

ported versions for, 312
Database Migration Service (see DMS)
databases, 133-176, 260

automating password rotation for RDS
databases, 157-163

autoscaling DynamoDB table provisioned
capacity, 163-167

AWS managed database services, 133
creating Amazon Aurora serverless Post‐

greSQL database, 134-140
enabling REST access to Aurora Serverless

using RDS Data API, 171-176
encrypting storage of existing RDS for

MySQL database, 153-156
leveraging RDS Proxy for database connec‐

tions from Lambda, 146-152
migrating to Amazon RDS using DMS,

167-171
using IAM authentication with RDS data‐

base, 140-146
DataSync, replicating data between EFS and S3

with, 128-131
Days in Transition action, 96
db-connect action, 145
DBAppFunction Lambda function’s role, 149
DBInstanceStatus, 154
DBProxyTargets, 150
Deep Archive Access storage tier, 99
deploying containers

updating containers with blue/green
deployments, 223-227

using Amazon Lightsail, 217-220
using AWS Copilot, 220-223

318 | Index

DescribeInstances action (EC2), testing, 15
Destination S3 bucket, 101
DHCP server (AWS-managed), options set, 50
DMS (Database Migration Service), 139

migrating databases to Amazon RDS using
DMS, 167-171

dms.t2.medium replication instance size, 169
Docker

creating a Dockerfile, 211
installation and validation, 208

Docker container image, pushing to ECR
repository, 194-197

Docker Desktop, 208
Docker Linux Engine, 208
Docker Swarm, 207
DynamoDB

automating CSV import from S3 with
Lambda, 198-201

autoscaling DynamoDB table provisioned
capacity, 163-167

populating data into a table, 312
using Glue crawlers to scan tables, 256

E
EBS snapshots, 124

restoring a file from, 125-127
EBS volumes

enabling encryption by default for new vol‐
umes in Region, 312

encrypting using KMS keys, 30-32
ebs-encryption-by-default option, 32
EC2, 207

connecting to instances using AWS SSM
Session Manager, 25-30

creating and restoring EC2 backups to
another Region using AWS Backup,
117-125

granting instance the ability to access a
secret, 35

instance in subnet of a VPC, connecting to
the internet, 51

retrieving secret from Secrets Manager, 35
storing, encrypting, and accessing pass‐

words with Secrets Manager, 33-36
using EC2 Global View for account resource

analysis, 288-290
ECR (Elastic Container Registry), 208

container images supported, 214
deleting repositories containing images, 216

Docker Credential Helper, 212
pushing container image to, 194-197,

209-214
scanning container images for vulnerabili‐

ties on push to ECR, 214-217
storage of container images on, 197

ECS (Elastic Container Service), 207
autoscaling container workloads on,

227-231
capturing logs from containers running on,

235-239
Copilot requirement for ECS service-linked

role, 221
using EventBridge to trigger launch of con‐

tainer tasks on Fargate, 231-234
ECSRunTaskPermissionsForEvents policy, 233
EFS

configuring Lambda function to access,
188-191

replicating data between EFS and S3 with
DataSync, 128-131

EIP (Elastic IP address), 53
associated with NAT gatway, 58
creating and associating to EC2 instance, 51
creating for use with NAT gateway, 56

Elastic Cloud Compute (see EC2)
Elastic Container Registry (see ECR)
Elastic Container Service (Amazon ECS) (see

ECS)
Elastic Load Balancing (ELB) service, 208

giving permission to invoke Lambda func‐
tions, 179

elastic network interfaces (see ENIs)
ElastiCache, accessing cluster having endpoint

on a VPC, 204-206
email alerts for root login, setting up, 298-300
encryption

enabling by default for new EBS volumes in
a Region, 312

encrypting EBS volumes using KMS keys,
30-32

encrypting storage of existing RDS for
MySQL database, 153-156

SSL encryption in transit, support by RDS
Proxy, 152

traffic in transit and at rest using TLS with
DataSync, 130

using S3 bucket keys with KMS to encrypt
objects, 114-117

Index | 319

endpoint policies (S3 VPC), 80
engine-mode of serverless, 136
ENIs (elastic network interfaces)

database subnet groups simplifying palce‐
ment of RDS ENIs, 135

of two EC2 instances, security group associ‐
ated with, 59

security group acting as stateful virtual fire‐
wall for, 63

subnets used for placement of, 50
EvalDecision, 14
event-driven applications, 201, 234
EventBridge

invoking a Lambda function on a schedule,
185-188

rule searching for root logins and triggering
SNS topic, 298-300

using to trigger launch of ECS container
tasks on Fargate, 231-234

events in your AWS account, monitoring with
CloudTrail, 297

F
Fargate, 68, 208

launching Fargate container task in
response to an event, 231-234

fast fixes, 311-313
federation

AWS accounts leveraging, 5
identity, 10

form data, computer vision analysis of, 272-275
Frequent Access storage tier, 99
full-load-and-cdc, 170

G
gateway endpoint in your VPC, creating and

associating with route tables, 80
Gateway Load Balancers, 73
Gateway VPC endpoints, 82
get-secret-value API call, 36
Glacier archive (S3), automating archival of S3

objects to, 97
global condition context keys (IAM), 14
Glue service

automatically discovering metadata with
Glue crawlers, 249-256
crawler configuration summary, 252
creating Glue Data Catalog database, 250

transforming data with Glue DataBrew,
261-265

groups (IAM), 10

H
HIPAA compliance for PHI, 284
HTTP

HTTP 301 response, 72
security group rules allowing HTTP traffic,

70
HTTPS

redirecting HTTP traffic to with application
load balancer, 67-73

Session Manager, communicating with AWS
Systems Manager (SSM) via, 29

I
IAM (Identity and Access Management)

access keys, AWS SSO and, 310
access point policies, 111, 114
creating and assuming role for developer

access, 2-5
creating policy for secret access, 34, 34
creating role for Kinesis Data Firehose, 247
creating role for RDS Proxy, 147
delegating administrative capabilities using

permissions boundaries, 17-25
enabling IAM user and role access to Billing

console, 304
generating least privilege IAM policy based

on access patterns, 6-9
role allowing S3 to copy objects from source

to destination bucket, 101
role for Lambda function execution, 178
service-linked roles, 222
setting up multi-factor authentication for

root user in AWS account, 302
testing policies with IAM Policy Simulator,

13-16
user password policies, enforcing in AWS

account, 9-13
using IAM authentication with RDS data‐

base, 140-146
IAM Access Analyzer (see Access Analyzer)
identity federation, using to access AWS

accounts, 10
IGW (see internet gateway)
Infrequent Access storage class, 94, 96, 99
instance metadata (EC2), 28

320 | Index

instance profiles (EC2), 27
creating and associating profile allowing

access to secret, 33
Intelligent-Tiering archive policies, using to

automatically archive S3 objects, 97-99
internet gateway

egress-only, for private subnets on VPC
with IPv6 capability, 58

using to connect VPC to the internet, 51-55
internet, using NAT gateway for outbound

access from private subnets, 55-58
IP addresses

AWS-provided ranges list, 74
Elastic IP address in IPv4, 53
for ENIs, 50
option to auto-assign on newly launched

EC2 instances in a subnet, 54
retrieving public IP from EC2 instance's

metadata, 54
IPv4 CIDR blocks, 45

additional, associating with your VPC, 46
quota for, 46

IPv6 CIDR blocks
configuring for Amazon VPC , 46
quota, 46

J
Java Database Connectivity (JDBC) data stores,

using Glue crawlers to scan, 256
jq utility, 75, 268

K
Key Management Service (KMS), 208

creating KMS key to encrypt database snap‐
shot, 153

encrypting EBS volumes using KMS keys,
30-32

specifying key for encyrypting RDS data‐
base snapshot, 155

using with S3 bucket keys to encrypt
objects, 114-117

key rotation, automatic, on KMS service, 32
Kinesis Client Library (KCL), 244
Kinesis Data Analytics, 244
Kinesis Data Firehose, streaming data to S3

with, 244-249
Kinesis Producer Library (KPL), 244
Kinesis Stream, using for ingestion of stream‐

ing data, 242-244

KMS (see Key Management Service)
KMS.NotFoundException error, 116
Kubernetes, 207

L
Lambda functions

accessing VPC resources with, 204-206
configuring application load balancer to

invoke, 179-181
configuring to access EFS file system,

188-191
connection to RDS database, leveraging

RDS Proxy for, 146-152
IAM role for execution, 178
integrating function with Secrets Manager

to rotate RDS database passwords,
157-163

invoking on a schedule, 185-188
packaging Lambda code in container image,

194-197
packaging libraries with Lambda Layers,

181-185
reducing startup times with provisioned

concurrency, 201
running trusted code in, using AWS Signer,

191-194
time out after 900 seconds, 201
transforming data with, 249
using EventBridge instead of for long-

running jobs, 234
landing zone, 310
least privilege access

implementing based on access patterns, 6-9
principle of least privilege, 5

libraries, packaging with Lambda Layers,
181-185

lifecycle policies (S3), using to reduce storage
costs, 94-97

Lightsail, deploying containers with, 217-220
Linux, installing Docker on, 209
load balancers

redirecting HTTP traffic to HTTPS with
application load balancer, 67-73

types other than ALB offered by AWS, 73
logging

capturing logs from containers running on
ECS, 235-239

CloudTrail, enabling for your account, 6

Index | 321

deleting all log groups matching text pat‐
tern, 311

enabling CloudTrail logging for AWS
account, 295-298

Glue crawlers automatically logging infor‐
mation to CloudWatch Logs, 254

login profile, creating for a user, 11
low-code development platforms (LCDPs), 265

M
machine learning (ML) (see AI/ML)
MacOS, installing Docke Desktop on, 209
management account, 309
metadata, 260

automatically discovering with AWS Glue
crawlers, 249-256

EC2 instance, retrieving public IP from, 54
EC2 instances, 28

metrics
autoscaling metrics on CloudWatch, 231
ECS service, on AWS Console, 230
observing for S3 storage using Storage Lens,

109
migration of databases

migrating databases to Amazon RDS using
DMS, 167-171

provisioned capacity type on RDS to Aurora
Serverless, 139

mounting and unmounting EBS volumes, 126
MP3-based audio, transcribing to text, 268-270
multi-factor authentication (MFA), 5, 13

setting up for root user in your AWS
account, 300-304

MySQL
RDS instance, encrypting storage of,

153-156
RDS instance, leveraging RDS Proxy for

database connections from Lambda, 146
RDS instance, using IAM authentication

with, 140-146

N
NAT gateway

sharing of, enabled by Transit Gateway, 85
using for outbound internet access from

private subnets, 55-58
Ncat utility, 66
network insights path, creating for EC2 instan‐

ces, 64

Network Load Balancers, 73
networking, 43-92

AWS services providing, 208
connecting VPC to the internet using inter‐

net gateway, 51-55
controlling network access to S3 from VPC

using VPC endpoints, 78-82
creating network tier with subnets and route

table in a VPC, 47-51
defining private virtual network in the cloud

with Amazon VPC, 44-47
deleting network interfaces associated with

a security group, 312
enabling transitive cross-VPC connections

using Transit Gateway, 82-88
granting dynamic access by referencing

security groups, 59-63
innovations at AWS, resources on, 43
peering VPCs together for inter-VPC net‐

work communication, 88-92
redirecting HTTP traffic to HTTPS with

application load balancer, 67-73
simplifying management of CIDRs in secu‐

rity groups with prefix lists, 74-78
using NAT gateway for outbound internet

access from private subnets, 55-58
using VPC Reachability Analyzer to verify

and troubleshoot network paths, 63-67
NGINX containers

deploying using Amazon Lightsail, 217-220
nginx:latest image, 212

notifications (S3), 199

O
OpenSearch, 297
OpenSSL CLI, generating self-signed certificate

with, 69
orchestrators (container), 207
Organizations (AWS), setting up, 288, 305-310
origin access identity (OAI)

configuring to require S3bucket to be acces‐
sible only from CloudFront, 40

creating for CloudFront to reference S3
bucket polity, 40

OS X CLI, listening to MP3 file on, 271

P
passwords

322 | Index

automating rotation for RDS databases,
157-163

complex, generating with Secrets Manager,
135

enforcing IAM user password policies in
AWS account, 9-13

storing, encrypting, and accessing with
Secrets Manager, 33-36

peering VPCs for inter-VPC network commu‐
nication, 88-92

permissions
locking down for SSM users, 30
permission sets, 310

permissions boundaries, using to delegate IAM
administrative capabilities, 17-25

PHI (protected health information), categoriz‐
ing for further analysis, 281-284

physician dictation analysis using Transcribe
Medical and Comprehend Medical, 281-284

PII (personally identifiable information),
redacting from text using Comprehend,
275-278

Policy Simulator (IAM), testing IAM policies
with, 13-16

Polly service, converting text to speech, 270-272
PostgreSQL

Aurora Serverless database, allowing REST
access using RDS Data API, 171-176

creating Amazon Aurora serverless Post‐
greSQL database, 134-140

PostgreSQL package, installing, 138
PowerUserAccess IAM policy, 2, 5

attaching to role, 4
prefix lists in security groups, managing CIDRs

with, 74-78
principle of least privilege, 5, 9

(see also least privilege access)
privilege escalation, IAM service mitigating risk

of, 3
producers and consumers (streaming data), 244
Prometheus, Amazon Managed Service for, 208
protected health information (PHI), categoriz‐

ing for further analysis, 281-284
provisioned capacity for DynamoDB table,

autoscaling, 163-167
provisioned concurrency, reducing Lambda

startup times with, 201-204
Proxy ID, 148
public access, blocking for S3 bucket, 36-39

Q
Query Editor in RDS Console, 173, 176
quotas and limits (Kinesis service), 244

R
RDS Data API

short-lived database connections, 152
using to enable REST access to Aurora Ser‐

verless, 171-176
rds-data:CommitTransaction permission, 176
rds-data:RollbackTransaction permission, 176
Reachability Analyzer (VPC), using to verify

and troubleshoot network paths, 63-67
ReadCapacityUnits scaling target, 164
recovery point (backup), 120
recovery point objectives, replicating S3 buck‐

ets to meet, 100-105
recovery time objective (RTO), decreasing for

EC2 instance using AWS Backups, 125
redirect response for all HTTP traffic to

HTTPS, 72
Redis Python package, installing, 205
Redis, Lambda function with Redis client,

accessing VPC resources, 204-206
Regions

creating and restoring EC2 backups to
another Region using AWS Backup,
117-125

creating VPC in, spreading subnets across
Availability Zones, 50

listing all, 312
listing all that have a particular service, 313
listing Region names and endpoints in table,

312
setting by grabbing value from EC2 instance

metadata, 313
stopping all running instances for current

working Region, 311
for VPCs, 46

Rekognition Video, using to detect text in a
video, 278

Relational Database Service (RDS), 133
automating password rotation for RDS

databases, 157-163
deleting RDS cluster, 139
leveraging RDS Proxy for database connec‐

tions from Lambda, 146-152
migrating databases to, using DMS, 167-171
naming constraints, 135

Index | 323

using IAM authentication with RDS data‐
base, 140-146

replication
Aurora Serverless databases, 140
DMS replication tasks, 167-171
replicating data between EFS and S3 with

DataSync, 128-131
replicating S3 buckets to meet recovery

point objectives, 100-105
ReplicationStatus, 104
Resource Access Manager, 309
REST

enabling REST access to Aurora Serverless
using RDS Data API, 171-176

REST API exposed by RDS, 152
restores

restoring a file from an EBS snapshot, 125
restoring EC2 backups to another Region

using AWS Backup, 123
roles

creating, 4
retrieving for a user, 3

root user
email alerts for root login, setting up,

298-300
setting up multi-factor authentication for,

300-304
rotate-secret command (Secrets Manager), 162
Route 53 DNS records, 156
route tables

associated with each subnet, route to direct
traffic for peered VPCs to peering con‐
nection, 90

associating gateway endpoint in VPC with,
80

creating network tier with subnets and route
table in a VPC, 47-51

prefix lists associated wtih, 78
priority given to most specific route, 54

routing, 44
(see also CIDR blocks)
for Transit Gateway, 85

runtime interface client, 197

S
S3

automatically archiving S3 objects using
Intelligent-Tiering, 97-99

AWS support for S3 interface endpoints, 81

blocking public access for a bucket, 36-39
configuring application-specific access to

buckets with S3 access points, 110-114
controlling network access to S3 from VPC

using VPC endpoints, 78-82
creating presigned URL for object that

expires in a week, 313
CSV import into DynamoDB from S3 with

Lambda, 198-201
lifecycle policies, using to reduce storage

costs, 94-97
observing storage and access metrics using

Storage Lens, 105-110
querying files using Amazon Athena,

256-260
replicating buckets to meet recovery point

objectives, 100-105
replicating files from S3 to EFS using Data‐

Sync, 128-131
serving web content securely from using

CloudFront, 39-42
streaming data to, using Kinesis Data Fire‐

hose, 244-249
using bucket keys with KMS to encrypt

objects, 114-117
S3:GetObject action, 110
S3:PutObject action, 110
Same-Region Replication (SRR), 104
scaling

autoscaling by Kinesis Data Firehose, 249
autoscaling capacity for database, 137
autoscaling container workloads on ECS,

227-231
autoscaling DynamoDB table provisioned

capacity, 163-167
Schema Conversion Tool (SCT), 171
schemas, 260
secrets

creating using AWS CLI, 33
SECRET_ARN role, replacing, 34
storing, encrypting, and accessing pass‐

words with Secrets Manager, 33-36
Secrets Manager

creating and storing passwork in, 33
generating passwords with, 11
using to generate complex password, 135
using with Lambda function to automati‐

cally rotate RDS database passwords,
157-163

324 | Index

SecretsManagerReadWrite policy, 149, 160
security, 1-42

administrative access, 5
blocking public access for S3 bucket, 36-39
encryption at rest, 156
endpoint policy to restrict access to S3

buckets, 81
fine-grained security capabilities on AWS,

208
IAM role, creating and assuming for devel‐

oper access, 2-5
scanning container images for vulnerabili‐

ties on push to ECR, 214-217
security topics on AWS, 1
serving web content securely from S3 with

CloudFront, 39-42
trusted code, running in Lambda, 194
workstation configuration, 2

security groups
CIDR management using prefix lists, 74-78
creating VPC security group for database,

136
deleting network interfaces associated with,

312
EC2 instances's security group allowing

ingress traffic from ALB, 70
granting dynamic access to EC2 instances

by referencing, 59-63
for RDS Proxy, 147

rule allowing access on TCP port 3306
for Lambda APP function security
group, 151

RDS MySQL database instance, ingress rule
allowing access on TCP port 3306, 149

referencing in peered VPCs, 91
referencing other security groups, 150
rules to allow HTTP and HTTPS traffic, 70
updating rule to allow access SSH access

between instances, 65
Security Token Service (STS), 4, 5
self-referencing rule (security group), 62
serverless, 177-206

accessing VPC resources with Lambda,
204-206

automating CSV import into DynamoDB
from S3 with Lambda, 198-201

benefits of, on AWS, 177
configuring ALB to invoke Lambda func‐

tion, 179-181

configuring Lambda function to access EFS,
188-191

packaging Lambda code in container image,
194-197

packaging libraries with Lambda Layers,
181-185

prerequisite, IAM role for Lambda function
execution, 178

reducing Lambda startup times with provi‐
sioned concurrency, 201-204

running trusted code in Lambda using AWS
Signer, 191-194

services available on AWS, 177
Session Manager (see SSM Session Manager)
shards, 242
signing process for Lambda function code, 191
Single Sign-On (SSO), 10, 288, 304

setting up AWS Organizations and SSO,
305-310

snapshots
encrypting storage of RDS database using,

153-156
skipping final snapshot when deleting RDS

cluster, 139
SNS topic, creating and subscribing to it,

298-300
Source S3 bucket, configuring replication pol‐

icy for, 103
SQL query, running on files stored in S3,

256-260
SSH, allowing between EC2 instances, 59-63
SSL

certificate, creating, 69
OpenSSL, 68

SSM Session Manager
connecting to EC2 instance in subnet of

VPC via, 53
connecting to EC2 instances with, 25-30

SSML (Speech Synthesis Markup Language)
tags, 271

SSO (see Single Sign-On)
Standard storage class, 96
storage, 93-131

creating and restoring EC2 backups to
another Region using AWS Backup,
117-125

ElastiCache service implementing redis or
memcached for, 206

Index | 325

encrypting storage of existing RDS for
MySQL database, 153-156

restoring a file from an EBS snapshot,
125-127

using Intelligent-Tiering archive policies to
automatically archive S3 objects, 97-99

using S3 lifecycle policies to reduce storage
costs, 94-97

Storage Lens, observing S3 storage and access
metrics with, 105-110

streaming data
to S3 using Kinesis Data Firehose, 244-249
using Kinesis Stream for ingestion of,

242-244
subnets

creating database subnet group, 135
creating network tier with subnets and route

table in a VPC, 47-51
outbound-only internet access for an EC2

instance in private subnets, 55-58
Switch Role feature, 4

T
tables, 260
Tag Editor, using to modify tags for many

resources at one time, 290-294
tagging containers, 212, 214
tags for AWS resources, 293
target groups for Load Balancer, 70
text in an image, determining location of,

284-286
text to speech conversion, 270-272
text, detecting in a video, 278
Textractor tool

analyzing output from Amazon Textract to
determine location of text in an image,
284-286

using for computer vision analysis of form
data, 272-275

tokens (authentication), 145
IAM policy allowing Lambda function to

generate, 148
tokens (authorization), 212
Transcribe Medical and Comprehend Medical,

using for physician dictation analysis,
281-284

transcribing a podcast, 268-270
transformations

Lambda functions for, 249
transforming data with AWS Glue Data‐

Brew, 261-265
Transit Gateway, enabling transitive cross-VPC

connections, 82-88

U
universally unique identifiers (UUIDs), 127
user password policies, enforcing in AWS

account, 9-13

V
video, detecting text in, 278-280
VPC (Virtual Private Cloud), 208

accessing VPC resources with Lambda,
204-206

connecting to internet using internet gate‐
way, 51-55

controlling network access to S3 from VPC
using VPC endpoints, 78-82

creating, 44-47
creating network tier with subnets and route

table in a VPC, 47
default, finding for a Region, 312
enabling transitive cross-VPC connections

using Transit Gateway, 82-88
finding interface VPC endpoints for current

Region, 312
peering two VPCs together for inter-VPC

network communication, 88-92
Reachability Analyzer, using to verify and

troubleshoot network paths, 63-67
using NAT gateway for outbound internet

access from private subnets, 55-58
VPN Endpoints for Session Manager, 29

W
Windows, installing Docker Desktop on, 209
WorkSpaces gateways, list of CIDR ranges for,

74

Y
Yaml input for CLI command, 311

326 | Index

About the Authors
John Culkin is a senior solutions architect at AWS. He holds all current AWS certifi‐
cations. Previously, he was a principal cloud architect lead at Cloudreach, where he
led the delivery of cloud solutions aligned with organizational needs. A lifelong stu‐
dent of technology, he now focuses on creating transformative business solutions that
utilize cloud services.

Mike Zazon is a senior cloud architect at AWS, focused on helping enterprise cus‐
tomers modernize their businesses. He previously held roles as a cloud software
developer, software engineer, software architect, IT manager, and data center archi‐
tect. His passion for technology education blossomed while serving in some of these
roles within an engineering research university setting.

Colophon
The animal on the cover of AWS Cookbook is the northern goshawk (Accipiter genti‐
lis). A powerful predator, the northern goshawk belongs to the Accipitridae family
(part of the “true hawk” subfamily) and can be found in the temperate parts of the
Northern Hemisphere. The northern goshawk is the only species in the genus Acci‐
piter living in coniferous and mixed forests in both Eurasia and North America, gen‐
erally restricting itself to relatively open wooded areas or along the edges of a forest.
It’s a migratory bird that ventures south during the winter.

The northern goshawk has relatively short, broad wings and a long tail to enable
maneuverability within its forest habitat. For its species, it has a comparatively sizable
beak, robust and fairly short legs, and thick talons. It has a blue-gray back and a
brownish-gray or white underside with dark barring. These birds tend to show clinal
variation in color, which means that goshawks further north are paler than those in
warmer areas.

The northern goshawk is amazingly fast, and catches its prey by putting on short
bursts of flight, often twisting among branches and crashing through thickets in its
intensity. It’s a quiet predator that hunts by perching at mid-level heights and attack‐
ing quickly when it spots prey. The diet often consists of medium-sized birds, small
mammals including squirrels and rabbits, small rodents, snakes, and insects.

This hawk lays around 2–4 bluish white eggs and is very territorial and protective of
its nest, diving at intruders (including humans) and sometimes drawing blood. Young
goshawks are usually looked after by the female, who remains with them most of the
time while the male’s primary responsibility is to bring food to the nest. Goshawks
typically mate for life and hence they function as a partnership with most things.

Goshawks have a long and noble history. In the Middle Ages, only the nobility were
permitted to fly goshawks for falconry. Ancient European falconry literature refers to
goshawks as a yeoman’s bird or the cook’s bird because of their utility as a hunting
partner catching edible prey. Currently, the northern goshawk’s conservation status is
that of least concern as the population remains stable. However, it may falter with
increased deforestation, which is a loss of habitat for these mighty birds. Many of the
animals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Cover
	DoiT International
	Copyright
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	What You Will Learn
	The Recipes
	What You Will Need
	Getting Started
	Setups
	Techniques and Approaches Used in This Book

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Security
	1.0 Introduction
	Workstation Configuration

	1.1 Creating and Assuming an IAM Role for Developer Access
	Problem
	Solution
	Discussion

	1.2 Generating a Least Privilege IAM Policy Based on Access Patterns
	Problem
	Solution
	Discussion

	1.3 Enforcing IAM User Password Policies in Your AWS Account
	Problem
	Solution
	Discussion

	1.4 Testing IAM Policies with the IAM Policy Simulator
	Problem
	Solution
	Discussion

	1.5 Delegating IAM Administrative Capabilities Using Permissions Boundaries
	Problem
	Solution
	Discussion

	1.6 Connecting to EC2 Instances Using AWS SSM Session Manager
	Problem
	Solution
	Discussion

	1.7 Encrypting EBS Volumes Using KMS Keys
	Problem
	Solution
	Discussion

	1.8 Storing, Encrypting, and Accessing Passwords Using Secrets Manager
	Problem
	Solution
	Discussion

	1.9 Blocking Public Access for an S3 Bucket
	Problem
	Solution
	Discussion

	1.10 Serving Web Content Securely from S3 with CloudFront
	Problem
	Solution
	Discussion

	Chapter 2. Networking
	2.0 Introduction
	Workstation Configuration

	2.1 Defining Your Private Virtual Network in the Cloud by Creating an Amazon VPC
	Problem
	Solution
	Discussion

	2.2 Creating a Network Tier with Subnets and a Route Table in a VPC
	Problem
	Solution
	Discussion

	2.3 Connecting Your VPC to the Internet Using an Internet Gateway
	Problem
	Solution
	Discussion

	2.4 Using a NAT Gateway for Outbound Internet Access from Private Subnets
	Problem
	Solution
	Discussion

	2.5 Granting Dynamic Access by Referencing Security Groups
	Problem
	Solution
	Discussion

	2.6 Using VPC Reachability Analyzer to Verify and Troubleshoot Network Paths
	Problem
	Solution
	Discussion

	2.7 Redirecting HTTP Traffic to HTTPS with an Application Load Balancer
	Problem
	Solution
	Discussion

	2.8 Simplifying Management of CIDRs in Security Groups with Prefix Lists
	Problem
	Solution
	Discussion

	2.9 Controlling Network Access to S3 from Your VPC Using VPC Endpoints
	Problem
	Solution
	Discussion

	2.10 Enabling Transitive Cross-VPC Connections Using Transit Gateway
	Problem
	Solution
	Discussion

	2.11 Peering Two VPCs Together for Inter-VPC Network Communication
	Problem
	Solution
	Discussion

	Chapter 3. Storage
	3.0 Introduction
	Workstation Configuration

	3.1 Using S3 Lifecycle Policies to Reduce Storage Costs
	Problem
	Solution
	Discussion

	3.2 Using S3 Intelligent-Tiering Archive Policies to Automatically Archive S3 Objects
	Problem
	Solution
	Discussion

	3.3 Replicating S3 Buckets to Meet Recovery Point Objectives
	Problem
	Solution
	Discussion

	3.4 Observing S3 Storage and Access Metrics Using Storage Lens
	Problem
	Solution
	Discussion

	3.5 Configuring Application-Specific Access to S3 Buckets with S3 Access Points
	Problem
	Solution
	Discussion

	3.6 Using Amazon S3 Bucket Keys with KMS to Encrypt Objects
	Problem
	Solution
	Discussion

	3.7 Creating and Restoring EC2 Backups to Another Region Using AWS Backup
	Problem
	Solution
	Discussion

	3.8 Restoring a File from an EBS Snapshot
	Problem
	Solution
	Discussion

	3.9 Replicating Data Between EFS and S3 with DataSync
	Problem
	Solution
	Discussion

	Chapter 4. Databases
	4.0 Introduction
	Workstation Configuration

	4.1 Creating an Amazon Aurora Serverless PostgreSQL Database
	Problem
	Solution
	Discussion
	See Also

	4.2 Using IAM Authentication with an RDS Database
	Problem
	Solution
	Discussion

	4.3 Leveraging RDS Proxy for Database Connections from Lambda
	Problem
	Solution
	Discussion

	4.4 Encrypting the Storage of an Existing Amazon RDS for MySQL Database
	Problem
	Solution
	Discussion

	4.5 Automating Password Rotation for RDS Databases
	Problem
	Solution
	Discussion
	See Also

	4.6 Autoscaling DynamoDB Table Provisioned Capacity
	Problem
	Solution
	Discussion

	4.7 Migrating Databases to Amazon RDS Using AWS DMS
	Problem
	Solution
	Discussion

	4.8 Enabling REST Access to Aurora Serverless Using RDS Data API
	Problem
	Solution
	Discussion

	Chapter 5. Serverless
	5.0 Introduction
	Workstation Configuration
	Chapter Prerequisites

	5.1 Configuring an ALB to Invoke a Lambda Function
	Problem
	Solution
	Discussion

	5.2 Packaging Libraries with Lambda Layers
	Problem
	Solution
	Discussion

	5.3 Invoking Lambda Functions on a Schedule
	Problem
	Solution
	Discussion

	5.4 Configuring a Lambda Function to Access an EFS File System
	Problem
	Solution
	Discussion
	See Also

	5.5 Running Trusted Code in Lambda Using AWS Signer
	Problem
	Solution
	Discussion

	5.6 Packaging Lambda Code in a Container Image
	Problem
	Solution
	Discussion

	5.7 Automating CSV Import into DynamoDB from S3 with Lambda
	Problem
	Solution
	Discussion

	5.8 Reducing Lambda Startup Times with Provisioned Concurrency
	Problem
	Solution
	Discussion

	5.9 Accessing VPC Resources with Lambda
	Problem
	Solution
	Discussion

	Chapter 6. Containers
	6.0 Introduction
	Workstation Configuration
	Chapter Prerequisites

	6.1 Building, Tagging, and Pushing a Container Image to Amazon ECR
	Problem
	Solution
	Discussion

	6.2 Scanning Images for Security Vulnerabilities on Push to Amazon ECR
	Problem
	Solution
	Discussion

	6.3 Deploying a Container Using Amazon Lightsail
	Problem
	Solution
	Discussion

	6.4 Deploying Containers Using AWS Copilot
	Problem
	Solution
	Discussion

	6.5 Updating Containers with Blue/Green Deployments
	Problem
	Solution
	Discussion

	6.6 Autoscaling Container Workloads on Amazon ECS
	Problem
	Solution
	Discussion

	6.7 Launching a Fargate Container Task in Response to an Event
	Problem
	Solution
	Discussion

	6.8 Capturing Logs from Containers Running on Amazon ECS
	Problem
	Solution
	Discussion

	Chapter 7. Big Data
	7.0 Introduction
	Workstation Configuration

	7.1 Using a Kinesis Stream for Ingestion of Streaming Data
	Problem
	Solution
	Discussion

	7.2 Streaming Data to Amazon S3 Using Amazon Kinesis Data Firehose
	Problem
	Solution
	Discussion

	7.3 Automatically Discovering Metadata with AWS Glue Crawlers
	Problem
	Solution
	Discussion

	7.4 Querying Files on S3 Using Amazon Athena
	Problem
	Solution
	Discussion

	7.5 Transforming Data with AWS Glue DataBrew
	Problem
	Solution
	Discussion

	Chapter 8. AI/ML
	8.0 Introduction
	Workstation Configuration

	8.1 Transcribing a Podcast
	Problem
	Solution
	Discussion

	8.2 Converting Text to Speech
	Problem
	Solution
	Discussion

	8.3 Computer Vision Analysis of Form Data
	Problem
	Solution
	Discussion

	8.4 Redacting PII from Text Using Comprehend
	Problem
	Solution
	Discussion

	8.5 Detecting Text in a Video
	Problem
	Solution
	Discussion

	8.6 Physician Dictation Analysis Using Amazon Transcribe Medical and Comprehend Medical
	Problem
	Solution
	Discussion

	8.7 Determining Location of Text in an Image
	Problem
	Solution
	Discussion

	Chapter 9. Account Management
	9.0 Introduction
	Workstation Configuration

	9.1 Using EC2 Global View for Account Resource Analysis
	Problem
	Solution
	Discussion

	9.2 Modifying Tags for Many Resources at One Time with Tag Editor
	Problem
	Solution
	Discussion

	9.3 Enabling CloudTrail Logging for Your AWS Account
	Problem
	Solution
	Discussion

	9.4 Setting Up Email Alerts for Root Login
	Problem
	Solution
	Discussion

	9.5 Setting Up Multi-Factor Authentication for a Root User
	Problem
	Solution
	Discussion

	9.6 Setting Up AWS Organizations and AWS Single Sign-On
	Problem
	Solution
	Discussion

	Appendix A. Fast Fixes
	Index
	About the Authors
	Blank Page

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

