
Ankur A. Patel &
Ajay Uppili Arasanipalai

TM

 Applied Natural
Language Processing
in the Enterprise
Teaching Machines to Read, Write & Understand

Ankur A. Patel and Ajay Uppili Arasanipalai

Applied Natural Language
Processing in the Enterprise

Teaching Machines to Read,
Write, and Understand

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-06257-8

[LSI]

Applied Natural Language Processing in the Enterprise
by Ankur A. Patel and Ajay Uppili Arasanipalai

Copyright © 2021 Human AI Collaboration, Inc. and Taukren, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jonathan Hassell
Development Editor: Melissa Potter
Production Editor: Deborah Baker
Copyeditor: Kim Cofer
Proofreader: Piper Editorial Consulting, LLC

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

June 2021: First Edition

Revision History for the First Edition
2021-05-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492062578 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Applied Natural Language Processing in
the Enterprise, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492062578

Table of Contents

Preface. ix

Part I. Scratching the Surface

1. Introduction to NLP. 3
What Is NLP? 4

Popular Applications 5
History 8
Inflection Points 10
A Final Word 11

Basic NLP 12
Defining NLP Tasks 12
Set Up the Programming Environment 17
spaCy, fast.ai, and Hugging Face 17
Perform NLP Tasks Using spaCy 19

Conclusion 33

2. Transformers and Transfer Learning. 35
Training with fastai 37

Using the fastai Library 37
ULMFiT for Transfer Learning 42
Fine-Tuning a Language Model on IMDb 43
Training a Text Classifier 46

Inference with Hugging Face 48
Loading Models 50
Generating Predictions 52

Conclusion 55

iii

3. NLP Tasks and Applications. 57
Pretrained Language Models 57
Transfer Learning and Fine-Tuning 59
NLP Tasks 60
Natural Language Dataset 62

Explore the AG Dataset 63
NLP Task #1: Named Entity Recognition 67

Perform Inference Using the Original spaCy Model 67
Custom NER 71
Annotate via Prodigy: NER 72
Train the Custom NER Model Using spaCy 76
Custom NER Model Versus Original NER Model 80

NLP Task #2: Text Classification 83
Annotate via Prodigy: Text Classification 83
Train Text Classification Models Using spaCy 88

Conclusion 92

Part II. The Cogs in the Machine

4. Tokenization. 95
A Minimal Tokenizer 96
Hugging Face Tokenizers 98

Subword Tokenization 100
Building Your Own Tokenizer 102
Conclusion 105

5. Embeddings: How Machines “Understand” Words. 107
Understanding Versus Reading Text 107
Word Vectors 111

Word2Vec 115
Embeddings in the Age of Transfer Learning 117

Embeddings in Practice 117
Preprocessing 118
Model 120
Training 121
Validation 122

Embedding Things That Aren’t Words 123
Making Vectorized Music 125
Some General Tips for Making Custom Embeddings 127

Conclusion 129

iv | Table of Contents

6. Recurrent Neural Networks and Other Sequence Models. 131
Recurrent Neural Networks 133

RNNs in PyTorch from Scratch 136
Bidirectional RNN 143
Sequence to Sequence Using RNNs 144

Long Short-Term Memory 145
Gated Recurrent Units 147
Conclusion 148

7. Transformers. 151
Building a Transformer from Scratch 151
Attention Mechanisms 153

Dot Product Attention 154
Scaled Dot Product Attention 159
Multi-Head Self-Attention 160
Adaptive Attention Span 162
Persistent Memory/All-Attention 164
Product-Key Memory 167

Transformers for Computer Vision 170
Conclusion 171

8. BERTology: Putting It All Together. 173
ImageNet 173

The Power of Pretrained Models 174
The Path to NLP’s ImageNet Moment 175
Pretrained Word Embeddings 175

The Limitations of One-Hot Encoding 176
Word2Vec 176
GloVe 178
fastText 178
Context-Aware Pretrained Word Embeddings 179

Sequential Models 179
Sequential Data and the Importance of Sequential Models 181

RNNs 182
Vanilla RNNs 183
LSTM Networks 185
GRUs 187

Attention Mechanisms 188
Transformers 190

Transformer-XL 192
NLP’s ImageNet Moment 193

Universal Language Model Fine-Tuning 193

Table of Contents | v

ELMo 194
BERT 194
BERTology 195
GPT-1, GPT-2, GPT-3 195

Conclusion 196

Part III. Outside the Wall

9. Tools of the Trade. 199
Deep Learning Frameworks 201

PyTorch 201
TensorFlow 203
Jax 204
Julia 205

Visualization and Experiment Tracking 206
TensorBoard 206
Weights & Biases 207
Neptune 207
Comet 208
MLflow 208

AutoML 209
H2O.ai 210
Dataiku 210
DataRobot 211

ML Infrastructure and Compute 212
Paperspace 212
FloydHub 213
Google Colab 213
Kaggle Kernels 214
Lambda GPU Cloud 214

Edge/On-Device Inference 215
ONNX 216
Core ML 216
Edge Accelerators 216

Cloud Inference and Machine Learning as a Service 217
AWS 217
Microsoft Azure 218
Google Cloud Platform 218

Continuous Integration and Delivery 219
Conclusion 220

vi | Table of Contents

10. Visualization. 221
Our First Streamlit App 222

Build the Streamlit App 222
Deploy the Streamlit App 225
Explore the Streamlit Web App 227
Build and Deploy a Streamlit App for Custom NER 229
Build and Deploy a Streamlit App for Text Classification on

AG News Dataset 232
Build and Deploy a Streamlit App for Text Classification on Custom Text 235

Conclusion 236

11. Productionization. 239
Data Scientists, Engineers, and Analysts 239

Prototyping, Deployment, and Maintenance 240
Notebooks and Scripts 241

Databricks: Your Unified Data Analytics Platform 242
Support for Big Data 243
Support for Multiple Programming Languages 244
Support for ML Frameworks 244
Support for Model Repository, Access Control,

Data Lineage, and Versioning 245
Databricks Setup 246

Set Up Access to S3 Bucket 250
Set Up Libraries 252
Create Cluster 254
Create Notebook 258
Enable Init Script and Restart Cluster 259
Run Speed Test: Inference on NER Using spaCy 260

Machine Learning Jobs 263
Production Pipeline Notebook 264
Scheduled Machine Learning Jobs 265
Event-Driven Machine Learning Pipeline 267

MLflow 270
Log and Register Model 270
MLflow Model Serving 273

Alternatives to Databricks 282
Amazon SageMaker 282
Saturn Cloud 283

Conclusion 283

12. Conclusion. 285
Ten Final Lessons 286

Table of Contents | vii

Lesson 1: Start with Simple Approaches First 286
Lesson 2: Leverage the Community 287
Lesson 3: Do Not Create from Scratch, When Possible 288
Lesson 4: Intuition and Experience Trounces Theory 288
Lesson 5: Fight Decision Fatigue 289
Lesson 6: Data Is King 289
Lesson 7: Lean on Humans 290
Lesson 8: Pair Yourself with Really Great Engineers 290
Lesson 9: Ensemble 290
Lesson 10: Have Fun 291

Final Word 291

A. Scaling. 293

B. CUDA. 299

Index. 305

viii | Table of Contents

Preface

What Is Natural Language Processing?
Many of you work with numerical data on a daily basis, either in a spreadsheet pro‐
gram like Microsoft Excel or in a programming environment such as Jupyter Note‐
book. When you work with numbers, you leave the number-crunching up to the
computer. There is almost no reason for you not to.

Computers are fast and precise with number-crunching, whereas the human brain
gets bogged down easily. If asked to calculate 24 × 36 × 48, humans would not hesi‐
tate for a second to pull out a calculator or a computer and let the machines do the
heavy lifting.

But, when it comes to analyzing textual data, the mighty number-crunching
machines have not been so good, historically speaking. Humans use computers to
crunch numbers but rely on the human brain to analyze documents with text. To
date, this inability to work with text has limited the scope of work machines could
handle.

This is about to change. In many ways, this change is already well underway.
Machines are now able to process text and audio in ways that most humans would
have considered magical just two decades ago.

Consider just how much you rely on computers to analyze and make sense of textual
data in the everyday world around you. Here are several examples:

Google Search
Search the entire web and surface relevant search results.

Google Gmail
Auto-complete sentences as you write emails.

Google Translate
Convert text and audio from one language to another.

ix

Amazon Alexa, Apple Siri, Google Assistant, Microsoft Cortana
Give voice commands and control your home devices.

Customer Service Chatbots
Ask account-related questions and get (mostly reasonable) answers.

These technologies have become ingrained in our daily lives so gradually and seam‐
lessly that we almost forget just how much we use them day to day. The story of
machines being able to work with textual data is just getting started. Over the past
few years, there have been pretty dramatic advances in this field, and, over time, we
will see computers handle more and more of the work that only humans were capable
of doing in the past.

Why Should I Read This Book?
Natural language processing (NLP) is one of the hottest topics in AI today. Having
lagged behind other deep learning fields such as computer vision for years, NLP only
recently gained mainstream popularity. Even though Google, Facebook, and OpenAI
have open sourced large pretrained language models to make NLP easier, many
organizations today still struggle with developing and productionizing NLP applica‐
tions. This hands-on guide helps you learn the field quickly.

What Do I Need to Know Already?
This book is not for complete beginners. We are going to assume that you already
know a bit about machine learning and that you have used Python and libraries such
as NumPy, pandas, and matplotlib before.

For more on Python, visit the official Python website, and for more on Jupyter Note‐
book, visit the official Jupyter site. For a refresher on college-level calculus, linear
algebra, probability, and statistics, read Part I of the textbook Deep Learning (MIT
Press) by Ian Goodfellow, Yoshua Bengio, and Aaron Courville. For a refresher on
machine learning, read The Elements of Statistical Learning (Springer) by Jerome H.
Friedman, Robert Tibshirani, and Trevor Hastie.

What Is This Book All About?
If you have basic-to-intermediate understanding of machine learning and program‐
ming experience with Python, you’ll learn how to build and deploy real-world NLP
applications in your organization.

We will walk you through the process without bogging you down in theory.

After reading this book and practicing on your own, you should be able to do the
following:

x | Preface

https://www.python.org
https://jupyter.org

• Understand how state-of-the-art NLP models work.
• Learn the tools of the trade, including the most popular frameworks today.
• Perform NLP tasks such as text classification, semantic search, and reading

comprehension.
• Solve problems using new transformer-based models and techniques such as

transfer learning.
• Develop NLP models with performance comparable or superior to out-of-the-

box systems.
• Deploy models to production and monitor and maintain their performance
• Implement a suite of NLP algorithms using Python and PyTorch.

Our book’s goal is to outline the concepts and tools required for you to develop the
intuition necessary to apply this technology to everyday problems that you work on.
In other words, this is an applied book, one that will allow you to build real-world
applications. This book will not have every bit of theory that is relevant to NLP, and
you will have to supplement your knowledge in the space using other resources over
time, but we will get you started and well underway in this field.

The book will use a hands-on approach, introducing some theory but focusing
mostly on applying natural language techniques to solving real-world problems. The
datasets and code are available online as Jupyter Notebooks on our GitHub repo.

How Is This Book Organized?
This book is organized into three parts.

Part I (Chapters 1–3)
These chapters focus on a high-level overview of NLP, including the history of
NLP, the most popular applications in the field, and how to use pretrained mod‐
els to perform transfer learning and solve real-world problems quickly.

Part II (Chapters 4–8)
In these chapters, we’ll dive into the low-level details of NLP including prepro‐
cessing text, tokenization, and word embeddings. While not the sexiest topics,
these are foundational to the field of NLP. We then explore the most effective
modeling approaches in NLP today such as transformers, attention mechanisms,
vanilla recurrent neural networks, long short-term memory (LSTM), and gated
recurrent units (GRUs). Finally, we tie everything together to present the water‐
shed year in NLP—the so-called ImageNet moment in 2018 when large, pre‐
trained language models shattered previous performance records and became
widely available for use by both researchers and applied engineers.

Preface | xi

https://github.com/nlpbook/nlpbook

Part III (Chapters 9–11)
Here we’ll cover the most important aspect of applied NLP—how to production‐
ize models that have been developed so the models deliver tangible value to
organizations. We discuss the landscape of tools available today, and share our
opinions on them. We also cover special topics that are, strictly speaking, not
related to NLP but may affect how NLP models are productionized.

While we will not be able to cover every NLP topic in this book, including the more
advanced topics for seasoned veterans, we will continue to support our community
with new and updated material (including code) online via our official book website
and GitHub. Please tune in for updates after you finish reading this book!

As a side note, it’s worth mentioning that this book was written entirely in Jupyter
Notebooks. You can find the code for this book on our GitHub repository. We
encourage you to run the experiments in the notebooks as you read to get familiar
with implementing the ideas presented in real code (but also because we have omitted
some outputs in this book due to space constraints).

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

xii | Preface

https://www.appliednlpbook.com

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/nlpbook/nlpbook.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Applied Natural Lan‐
guage Processing in the Enterprise by Ankur A. Patel and Ajay Uppili Arasanipalai
(O’Reilly). Copyright 2021 Human AI Collaboration, Inc. and Taukren, LLC,
978-1-492-06257-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xiii

https://github.com/nlpbook/nlpbook
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can access the web page for this book, where we list errata and any additional
information, at https://oreil.ly/Applied_NLP_in_the_Enterprise.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and more information about our books and courses, visit our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

xiv | Preface

http://oreilly.com
http://oreilly.com
https://oreil.ly/Applied_NLP_in_the_Enterprise
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Acknowledgments
We would like to thank the entire team at O’Reilly for helping make this project pos‐
sible, starting with Jonathan Hassell for championing and green-lighting this book in
the summer of 2019. We want to send a huge shout-out to our editor, Melissa Potter.
She really helped us stay on schedule throughout 2020, despite all the challenges of
COVID-19.

Big thanks to Jeremy Howard for providing valuable advice early on and for sharing
the source code for FastDoc, an incredible tool for converting Jupyter Notebooks to
AsciiDoc that we used throughout the development process. His work with Rachel
Thomas, Sylvain Gugger, Zach Mueller, Hamel Husain, and many fastai contributors
to make deep learning accessible and practical has been a huge source of inspiration
for this book.

Our production editor, Deborah Baker, and the Content Services Manager, Kristen
Brown, helped polish this book to its final form with the help of Kim Cofer, David
Futato, Karen Montgomery, Kate Dullea, and the teams at Piper Editorial Consulting,
LLC, and nSight, Inc. They made the final stretch of the writing process a breeze.

Special thanks to Artiom Tarasiuk, Victor Borges, and Benjamin Muskalla for spend‐
ing countless hours reading and reviewing the book and providing critical feedback
along the way. We are so grateful for their kinship and generosity in making this
project what it is today.

Ajay
First and foremost, I would like to thank my parents, Uppili and Hema, who have
worked tirelessly to support me through a raging pandemic, and my sister, Anika,
who I have the highest hopes for.

There are many others to whom I owe an immeasurable debt of gratitude. Gayathri
Srinivasan, who mentored me all those years ago and was the person kind enough to
give a random high-schooler access to a supercomputer that first introduced me to
the idea that machines can learn. Ganesan Narayanaswamy, for his generosity in pro‐
viding the computational resources and infrastructure needed to support my research
through the OpenPOWER Foundation. Diganta Misra, Trikay Nalamada, Himanshu
Arora, and my other collaborators at Landskape, who have spent countless hours run‐
ning experiments and joining me for the 2 AM discussions about attention mecha‐
nisms out of nothing but a shared passion for deep learning and a desire to
contribute back to the research community. Their encouragement and enthusiasm for
the book and my work in general have been inordinately valuable.

Preface | xv

Ankur
I am so happy to be part of an incredibly generous and supportive family, to whom I
owe everything. I want to thank my parents, Amrat and Ila, for their sacrifices over
the years and for investing in me and my education; I simply would not be here doing
what I’m doing today without them. I want to thank my sister, Bhavini, and my
brother, Jigar, for championing me, always. And, I am so grateful to my beautiful girl‐
friend, Maria Koval, and our golden retriever, Brody, both of whom patiently put up
with many late nights and weekends of writing and coding. Thank you!

I also want to thank my cofounders at Glean, Howard Katzenberg and Alexander Jia,
and my good friend and cofounder at Mellow, Nate Collins, for being incredibly
patient and supportive through the entire writing process. I am truly fortunate to
have such amazing friends and colleagues—they bring happiness to my life every day.

xvi | Preface

PART I

Scratching the Surface

This first section of the book covers NLP at a high level. This is a somewhat subjective
term, so to be more specific, when we say “high level” we mean little to no math and
little to no PyTorch code.

CHAPTER 1

Introduction to NLP

What do you think your computer can do? Show you emails? Edit some files? Spin up
an Excel sheet maybe?

But what if we told you your computer could read?

from transformers import pipeline
classifier = pipeline('sentiment-analysis')
classifier('I am reading the greatest NLP book ever!')

[{'label': 'POSITIVE', 'score': 0.9996862411499023}]

And write:

text_generator = pipeline("text-generation")
text_generator("Welcome to the ", max_length=5, do_sample=False)

And, most impressively, understand:

nlp = pipeline("question-answering")
context = """
Natural language processing (NLP) is a subfield of linguistics,
computer science, and artificial intelligence concerned with the
interactions between computers and human language, in particular
how to program computers to process and analyze large amounts of
natural language data. The result is a computer capable of
"understanding" the contents of documents, including the contextual
nuances of the language within them. The technology can then accurately
extract information and insights contained in the documents as well
as categorize and organize the documents themselves.
"""
nlp(question="What is NLP?", context=context)

{'score': 0.9869255423545837,
 'start': 1,
 'end': 28,
 'answer': 'Natural language processing'}

3

What was once the fantasy of a distant future is not only here but is accessible to any‐
one with a computer and an internet connection. The ability to understand and com‐
municate in natural language, one of the most valuable assets that humanity has
developed over the course of our existence, is now practical to do on machines.

“Of course!” you proclaim. “Technology always gets better, and we’ve had speech rec‐
ognition and Google Translate for ages!”

But even just five years ago, “NLP” was something better suited to TechCrunch arti‐
cles than actual production codebases. In the last three years, we’ve seen an exponen‐
tial growth in progress in the field; models being deployed in production today are
vastly superior to the most obscure research leaderboards from the days past.

But we’re getting ahead of ourselves. Before we delve deeper, let’s start with a high-
level overview of the field. Once we cover the basics, we will introduce more
advanced topics. Our goal is to help you build intuition and experience working with
NLP, chapter by chapter, so that by the end of the book, you’ll be able to build real
applications that add real value to the world.

In the first half of this chapter, we will define NLP, explore some commercial applica‐
tions of the technology, and walk through how the field has evolved since its origins
in the 1950s.

In the second half of the chapter, we will introduce a very performant NLP library
that is popular in the enterprise and use it to perform basic NLP tasks. While these
tasks are elementary, when combined together, they allow computers to process and
analyze natural language data in complex ways that make amazing commercial appli‐
cations such as chatbots and voicebots possible.

In some ways, the process of machines learning how to process language is similar to
how toddlers begin to learn language by mumbling and fumbling over words, only to
later speak in full sentences and paragraphs. As we move through the book, we will
build on the basic NLP tasks covered in this chapter.

What Is NLP?
Let’s begin by defining what natural language processing is. Here is how NLP is
defined on Wikipedia (accessed March 2021):

Natural language processing (NLP) is a subfield of linguistics, computer science, infor‐
mation engineering, and artificial intelligence concerned with the interactions between
computers and human (natural) languages, in particular how to program computers to
process and analyze large amounts of natural language data.
Challenges in natural language processing frequently involve speech recognition, natu‐
ral language understanding, and natural language generation.

4 | Chapter 1: Introduction to NLP

https://oreil.ly/MRzEp

1 One of the major leaps in human history was the formation of a human (aka “natural”) language, which
allowed humans to communicate with one another, form groups, and operate as collective units of people
instead of as solo individuals.

2 For more, read The New York Times Magazine article from 2016 on Google’s neural machine translation.

Let’s unpack this definition. When we say “natural language,” we mean “human lan‐
guage” as opposed to programming languages. Natural language refers to not only
textual data, but also to speech and audio data.

Great, but so what if computers can now work with large amounts of text, speech,
and audio data? Why is this so important?

Imagine for a second the world without language. How would we communicate via
text or speech? How would we read books, listen to music, or comprehend movies
and TV shows? Life as we know it would cease to exist; we would be stuck in cave‐
man days, able to process information visually but unable to share our knowledge
with each other or communicate in any meaningful way.1

Likewise, if machines can work with only numerical and visual data but cannot pro‐
cess natural language, they would be limited in the number and variety of applica‐
tions they would have in the real world. Without the ability to handle natural
language, machines will never be able to approach general artificial intelligence or
anything that resembles human intelligence today.

Fortunately, machines can now finally process natural language data reasonably well.
Let’s explore what commercial applications are possible because of this relatively new‐
found ability of computers to work with natural language data.

Popular Applications
Because of the advances in NLP, machines are able to handle a broad array of natural
language tasks, at least in a rudimentary way. Here are some common applications of
NLP today:

Machine translation
Machine translation is the process of using machines to translate from one lan‐
guage to another without any human intervention. By far the most popular
example of this is Google Translate, which supports over 100 languages and
serves over 500 million people daily. When it was first launched in 2006, the per‐
formance of Google Translate was notably worse than what it is today. Perfor‐
mance today is fast approaching human expert level.2

Speech recognition
It may sound shocking, but voice recognition technology has been around for
over 50 years. None of the voice recognition software had good performance or

What Is NLP? | 5

https://oreil.ly/olGqC

had gone mainstream until very recently, driven by the rise of deep learning.
Today, Amazon Alexa, Apple Siri, Google Assistant, Microsoft Cortana, digital
voice assistants in your car, and other software are now able to recognize speech
with such a high level of accuracy that the software is able to process the infor‐
mation in real time and answer in a mostly reasonable way. Even as little as 15
years ago, the ability of such machines to recognize speech and respond in a
coherent manner was abysmal.

Question answering
For these digital assistants to deliver a delightful experience to humans asking
questions, speech recognition is only the first half of the job. The software needs
to (a) recognize the speech and (b), given the speech recognized, retrieve an
appropriate response. This second half is known as question answering (QA).

Text summarization
One of the most common tasks humans do every day, especially in white collar
desk jobs, is read long-form documents and summarize the contents. Machines
are now able to perform this summarization, creating a shorter summary of a
longer text document. Text summarization reduces the reading time for humans.
Humans who analyze lots of text daily (i.e., lawyers, paralegals, business analysts,
students, etc.) are able to sift through the machine-generated short summaries of
long-form documents and then, based on the summaries, choose the relevant
documents to read more thoroughly.

Chatbots
If you have spent some time perusing websites recently, you may have realized
that more and more sites now have a chatbot that automatically chimes in to
engage the human user. The chatbot usually greets the human in a friendly, non‐
threatening manner and then asks the user questions to gauge the purpose and
intent of the visit to the site. The chatbot then tries to automatically respond to
any questions the user has without human intervention. Such chatbots are now
automating digital customer engagement.

Text-to-speech and speech-to-text
Software is now able to convert text to high-fidelity audio very easily. For exam‐
ple, Google Cloud Text-to-Speech is able to convert text into human-like speech
in more than 180 voices across over 30 languages. Likewise, Google Cloud
Speech-to-Text is able to convert audio to text for over 120 languages, delivering
a truly global offering.

Voicebots
Ten years ago, automated voice agents were clunky. Unless humans responded in
a fairly constrained manner (e.g., with yes or no type responses), the voice agents
on the phone could not process the information. Now, AI voicebots like those

6 | Chapter 1: Introduction to NLP

provided by VOIQ are able to help augment and automate calls for sales, market‐
ing, and customer success teams.

Text and audio generation
Years ago, text generation relied on templates and rules-based systems. This limi‐
ted the scope of application. Now, software is able to generate text and audio
using machine learning, broadening the scope of application considerably. For
example, Gmail is now able to suggest entire sentences based on previous senten‐
ces you’ve drafted, and it’s able to do this on the fly as you type. While natural
language generation is best at short blurbs of text (partial sentences), soon such
systems may be able to produce reasonably good long-form content. A popular
commercial application of natural language generation is data-to-text software,
which generates textual summaries of databases and datasets. Data-to-text soft‐
ware includes data analysis as well as text generation. Firms in this space include
Narrative Science and Automated Insights.

Sentiment analysis
With the explosion of social media content, there is an ever-growing need to
automate customer sentiment analysis, dissecting tweets, posts, and comments
for sentiment such as positive versus negative versus neutral or angry versus sad
versus happy. Such software is also known as emotion AI.

Information extraction
One major challenge in NLP is creating structured data from unstructured
and/or semi-structured documents. For example, named entity recognition soft‐
ware is able to extract people, organizations, locations, dates, and currencies from
long-form texts such as mainstream news. Information extraction also involves
relationship extraction, identifying the relations between entities, if any.

The number of NLP applications in the enterprise has exploded over the past decade,
ranging from speech recognition and question and answering to voicebots and chat‐
bots that are able to generate natural language on their own. This is quite astounding
given where the field was a few decades ago.

To put the current progress in NLP into perspective, let’s walk through how NLP has
progressed, starting from its origins in 1950.

What Is NLP? | 7

3 For more, refer to the Wikipedia article about the Turing test.

History
The field of natural language processing has been around for nearly 70 years. Perhaps
most famously, Alan Turing laid the foundation for the field by developing the Turing
test in 1950. The Turing test is a test of a machine’s ability to demonstrate intelligence
that is indistinguishable from that of a human. For the machine to pass the Turing
test, it must generate human-like responses such that a human evaluator would not
be able to tell whether the responses were generated by a human or a machine (i.e.,
the machine’s responses are of human quality).3

The Turing test launched significant debate in the then-nascent artificial intelligence
field and spurred researchers to develop natural langugage processing models that
would serve as building blocks for a machine that someday may pass the Turing test,
a search that continues to this day.

Like the broader field of artificial intelligence, NLP has had many booms and busts,
lurching from hype cycles to AI winters. In 1954, Georgetown University and IBM
successfully built a system that could automatically translate more than 60 Russian
sentences to English. At the time, researchers at Georgetown University thought
machine translation would be a solved problem within three to five years. The success
in the US also spurred the Soviet Union to launch similar efforts. The Georgetown-
IBM success coupled with the Cold War mentality led to increased funding for NLP
in these early years.

However, by 1966, progress had stalled, and the Automatic Language Processing
Advisory Committee (known as ALPAC)—a US government agency set up to evalu‐
ate the progress in computational linguistics—released a sobering report. The report
stated that machine translation was more expensive, less accurate, and slower than
human translation and unlikely to reach human-level performance in the near future.
The report led to a reduction in funding for machine translation research. Following
the report, research in the field nearly died for almost a decade.

Despite these setbacks, the field of NLP reemerged in the 1970s. By the 1980s, com‐
putational power had increased significantly and costs had come down sufficiently,
opening up the field to many more researchers around the world.

In the late 1980s, NLP rose in prominence again with the release of the first statistical
machine translation systems, led by researchers at IBM’s Thomas J. Watson Research
Center. Prior to the rise of statistical machine translation, machine translation relied
on human handcrafted rules for language. These systems were called rules-based
machine translation. The rules would help correct and control mistakes that the
machine translation systems would typically make, but crafting such rules was a

8 | Chapter 1: Introduction to NLP

https://oreil.ly/sN3ch

laborious and painstaking process. The machine translation systems were also brittle
as a result; if the machine translation systems encountered edge-case scenarios for
which rules had not been developed, they would fail, sometimes egregiously.

Statistical machine translation helped reduce the need for human handcrafted rules,
and it relied much more heavily on learning from data. Using a bilingual corpus with
parallel texts as data (i.e., two texts that are identical except for the language they are
written in), such systems would carve sentences into small subsets and translate the
subsets segment-by-segment from the source language to the target language. The
more data (i.e., bilingual text corpuses) the system had, the better the translation.
Statistical machine translation would remain the most widely studied and used
machine translation method until the rise of neural machine translation in the
mid-2010s.

By the 1990s, such successes led researchers to expand beyond text into speech recog‐
nition. Speech recognition, like machine translation, had been around since the early
1950s, spurred by early successes by the likes of Bell Labs and IBM. But speech recog‐
nition systems had severe limitations. In the 1960s, for example, such systems could
take voice commands for playing chess but not do much else.

By the mid-1980s, IBM applied a statistical approach to speech recognition and
launched a voice-activated typewriter called Tangora, which could handle a 20,000-
word vocabulary.

DARPA, Bell Labs, and Carnegie Mellon University also had similar successes by the
late 1980s. Speech recognition software systems by then had larger vocabularies than
the average human and could handle continuous speech recognition, a milestone in
the history of speech recognition.

In the 1990s, several researchers in the space left research labs and universities to
work in industry, which led to more commercial applications of speech recognition
and machine translation.

Today’s NLP heavyweights, such as Google, hired their first speech recognition
employees in 2007. The US government also got involved then; the National Security
Agency began tagging large volumes of recorded conversations for specific keywords,
facilitating the search process for NSA analysts.

By the early 2010s, NLP researchers, both in academia and industry, began experi‐
menting with deep neural networks for NLP tasks. Early deep learning–led successes
came from a deep learning method called long short-term memory (LSTM). In 2015,
Google used such a method to revamp Google Voice.

Deep learning methods led to dramatic performance improvements in NLP tasks,
spurring more dollars into the space. These successes have led to a much deeper inte‐
gration of NLP software in our everyday lives.

What Is NLP? | 9

For example, cars in the early 2010s had voice recognition software that could handle
a limited set of voice commands. Cars now have tech that can handle a much broader
set of natural language commands, inferring context and intent much more clearly.

Looking back today, progress in NLP was slow but steady, moving from rules-based
systems in the early days to statistical machine translation by the 1980s and to neural
network–based systems by the 2010s. While academic research in the space has been
fierce for quite some time, NLP has become a mainstream topic only recently. Let’s
examine the main inflection points over the past several years that have helped NLP
become one of the hottest topics in AI today.

Inflection Points
NLP and computer vision are both subfields of artificial intelligence, but computer
vision has had more commercial successes to date. Computer vision had its inflection
point in 2012 (the so-called “ImageNet” moment) when the deep learning–based sol‐
ution AlexNet decimated the previous error rate of computer vision models.

In the years since 2012, computer vision has powered applications such as auto-
tagging of photos and videos, self-driving cars, cashier-less stores, facial recognition–
powered authentication of devices, radiology diagnoses, and more.

NLP has been a relatively late bloomer by comparison. NLP made waves from 2014
onward with the release of Amazon Alexa, a revamped Apple Siri, Google Assistant,
and Microsoft Cortana. Google also launched a much-improved version of Google
Translate in 2016, and now chatbots and voicebots are much more commonplace.

That being said, it wasn’t until 2018 that NLP had its very own ImageNet moment
with the release of large pretrained language models trained using the Transformer
architecture; the most notable of these was Google’s BERT, which was launched in
November 2018.

In 2019, generative models such as OpenAI’s GPT-2 made splashes, generating new
content on the fly based on previous content, a previously insurmountable feat. In
2020, OpenAI released an even larger and more impressive version, GPT-3, building
on its previous successes.

Heading into 2021 and beyond, NLP is now no longer an experimental subfield of AI.
Along with computer vision, NLP is now poised to have many broad-based applica‐
tions in the enterprise. With this book, we hope to share some concepts and tools that
will help you build some of these applications at your company.

10 | Chapter 1: Introduction to NLP

A Final Word
There is not one single approach to solving NLP tasks. The three dominant
approaches today are rule-based, traditional machine learning (statistical-based), and
neural network–based.

Let’s explore each approach:

Rule-based NLP
Traditional NLP software relies heavily on human-crafted rules of languages;
domain experts, typically linguists, curate these rules using things like regular
expressions and pattern matching. Rule-based NLP performs well in narrowly
scoped-out use cases but typically does not generalize well. More and more rules
are necessary to generalize such a system, and this makes rule-based NLP a
labor-intensive and brittle solution compared to the other NLP approaches. Here
are examples of rules in a rule-based system: words ending in -ing are verbs,
words ending in -er or -est are adjectives, words ending in ’s are possessives, etc.
Think of how many rules we would need to create by hand to make a system that
could analyze and process a large volume of natural language data. Not only
would the creation of rules be a mind-bogglingly difficult and tedious process,
but we would also have to deal with the many errors that would occur from using
such rules. We would have to create rules for rules to address all the corner cases
for each and every rule.

Traditional (or classical) machine learning
Traditional machine learning relies less on rules and more on data. It uses a stat‐
istical approach, drawing probability distributions of words based on a large
annotated corpus. Humans still play a meaningful role; domain experts need to
perform feature engineering to improve the machine learning model’s perfor‐
mance. Features include capitalization, singular versus plural, surrounding
words, etc. After creating these features, you would have to train a traditional ML
model to perform NLP tasks; e.g., text classification. Since traditional ML uses a
statistical approach to determine when to apply certain features or rules to pro‐
cess language, traditional ML-based NLP is easier to build and maintain than a
rule-based system. It also generalizes better than rule-based NLP.

Neural networks
Neural networks address the shortcomings of traditional machine learning.
Instead of requiring humans to perform feature engineering, neural networks
will “learn” the important features via representation learning. To perform well,
these neural networks just need copious amounts of data. The amount of data
required for these neural nets to perform well is substantial, but, in today’s inter‐
net age, data is not too hard to acquire. You can think of neural networks as very
powerful function approximators or “rule” creators; these rules and features are

What Is NLP? | 11

several degrees more nuanced and complex than the rules created by humans,
allowing for more automated learning and more generalization of the system in
processing natural language data.

Of these three, the neural network–based branch of NLP, fueled by the rise of very
deep neural networks (i.e., deep learning), is the most powerful and the one that has
led to many of the mainstream commercial applications of NLP in recent years.

In this book, we will focus mostly on neural network–based approaches to NLP, but
we will also explore traditional machine learning approaches, too. The former has
state-of-the-art performance in many NLP tasks, but traditional machine learning is
still actively used in commercial applications.

We won’t focus much on rule-based NLP, but, since it has been around for decades,
you will not have difficulty finding other resources on that topic. Rule-based NLP
does have a room among the other two approaches, but usually only to deal with edge
cases.

Basic NLP
Now that we’ve defined NLP, explored applications in vogue today, covered its history
and inflection points, and clarified the different approaches to solve NLP tasks, let’s
start our journey by performing the most basic tasks in NLP.

We will leverage one of the most popular open source libraries for use in commercial
applications of NLP to perform these tasks: spacy.

Before we use spacy, let’s discuss these most basic NLP tasks. As we said in the chap‐
ter introduction, they are pretty elementary, akin to teaching a child the basics of lan‐
guage. But, these basic NLP tasks, once combined, help us accomplish more complex
tasks, which ultimately power the major NLP applications today.

Machines, like us, must walk before they run.

Defining NLP Tasks
Earlier in the chapter, we explored several NLP applications in vogue today, including
the following:

• Machine translation
• Speech recognition
• Question answering
• Text summarization
• Chatbots

12 | Chapter 1: Introduction to NLP

• Text-to-speech and speech-to-text conversion
• Voicebots
• Text and audio generation
• Sentiment analysis
• Information extraction

For machines to perform these complex applications, they need to perform several
smaller, more bite-sized NLP tasks. In other words, to build successful commercial
NLP applications, we must master the NLP tasks that serve as building blocks for
those applications.

It is important to note that modern neural network–based NLP models perform these
“tasks” automatically through training the neural network; that is, the neural network
learns on its own how to perform some of these tasks. We, the operators, do not need
to perform these tasks explicitly.

These tasks are a bit outdated for this reason, but they are still relevant today both for
building greater intuition around how machines learn to work with natural language
and for working with non-neural network–based NLP models. Classical, non-neural
network–based NLP is still commonplace in the enterprise even if it is out of favor in
state-of-the-art research today. For these reasons, it is worthwhile to learn these tasks.

Without further ado, here are some of these NLP tasks:

Tokenization
Tokenization is the process of splitting text into minimal meaningful units such
as words, punctuation marks, symbols, etc. For example, the sentence “We live in
Paris” could be tokenized into four tokens: We, live, in, Paris. Tokenization is typ‐
ically the first step of every NLP process. Tokenization is a necessary step because
the machine needs to break down natural language data into the most basic ele‐
ments (or tokens) so that it can analyze each element in context of the other ele‐
ments. Otherwise, it would have to analyze a long piece of text or audio as if it
were one singular element, making the problem intractable for the machine. Just
like a beginner student of a language breaks down a sentence into smaller bits to
learn and process the information word by word, a machine needs to do the
same. Even with complex numerical calculations, machines break down the
problem into basic elements, performing tasks such as addition, subtraction,
multiplication, and division of two sets of numbers. The major advantage that the
machine has is that it can do this at a pace and scale that no human can. After
tokenization breaks down the text into minimal meaningful units, the machine
needs to assign metadata to each unit, providing it more information on how to
process each unit in the context of other units.

Basic NLP | 13

Part-of-speech tagging
Part-of-speech (POS) tagging is the process of assigning word types to tokens,
such as noun, pronoun, verb, adverb, adjective, conjunction, preposition, inter‐
jection, etc. For “We live in Paris,” the parts of speech are: pronoun, verb, prepo‐
sition, and noun. This part-of-speech tagging gives each token a bit more
metadata, making it easier for the machine to assign relationships between each
token and every other token. In the sentence, “I kick the ball,” “I” and “ball” are
both nouns and “kick” is a verb. Using this metadata, we can infer that “kick”
somehow connects “I” and the “ball,” allowing us to form a relationship among
the words. This is why the parts of speech are so important. Without knowing
that some words are nouns and other are verbs, etc., the machine would not be
able to map the relationships among the tokens.

Dependency parsing
Dependency parsing involves labeling the relationships between individual
tokens, assigning a syntactic structure to the sentence. Once the relationships are
labeled, the entire sentence can be structured as a series of relationships among
sets of tokens. It is easier for the machine to process text once it has identified the
inherent structure among the text. Think how difficult it would be for you to
understand a sentence if you had all the words in the sentence presented to you
out of order and you had no prior knowledge of the rules of grammar. In much
the same way, until the machine performs dependency parsing, it has little to no
knowledge of the structure of the text that it has converted into tokens. Once the
structure is apparent, processing the text becomes a little bit easier.

Dependency parsing can get tricky so the best way to understand it is to visualize
the relationships using a parse tree. AllenNLP has a great dependency parsing
demo, which we used to generate the dependency graph in Figure 1-1. This
dependency graph allows us to visualize the relationships among the tokens. As
you can see from the figure, “We” is the personal pronoun (PRP) and the nomi‐
nal subject (NSUBJ) of “live,” which is the non-third person singular present verb
(VBP). “Live” is connected to the prepositional phrase (PREP) “in Paris.” “In” is
the preposition (IN), and “Paris” is the object of the preposition (POBJ) and is
itself a singular proper noun (NNP). These relationships are very complex to
model, and one reason why it is very difficult to be truly fluent in any language.
Most of us apply the rules of grammar on the fly, having learned language
through years of experience. A machine does the same type of analysis, but to
perform natural language processing it has to crunch these operations one after
the other at blazingly fast speeds.

14 | Chapter 1: Introduction to NLP

https://oreil.ly/yAgAZ
https://oreil.ly/yAgAZ

Figure 1-1. Dependency parsing

Chunking
Chunking involves combining related tokens into a single token, creating related
noun groups, related verb groups, etc. For example, “New York City” could be
treated as a single token/chunk instead of as three separate tokens. Chunking is
the process that makes this possible. Chunking is important to perform once the
machine has broken the original text into tokens, identified the parts of speech,
and tagged how each token is related to other tokens in the text. Chunking com‐
bines similar tokens together, making the overall process of analyzing the text a
bit easier to perform. For example, instead of treating “New,” “York,” and “City”
as three separate tokens, we can infer that they are related and group them
together into a single group (or chunk). Then, we can relate the chunk to other
chunks in the text. Once we’ve done this for the entire set of tokens, we will have
a much smaller set of tokens and chunks to work with.

Lemmatization
Lemmatization is the process of converting words into their base forms. For
example, lemmatization converts “horses” to “horse,” “slept” to “sleep,” and “big‐
gest” to “big.” It allows the machine to simplify the text processing work it has to
perform. Instead of working with a variant of the base word, it can work directly
with the base word after it has performed lemmatization.

Basic NLP | 15

Stemming
Stemming is a process related to lemmatization, but simpler. Stemming reduces
words to their word stems. Stemming algorithms are typically rule-based. For
example, the word “biggest” would be reduced to “big,” but the word “slept”
would not be reduced at all. Stemming sometimes results in nonsensical sub‐
words, and we prefer lemmatization to stemming for this reason. Lemmatization
returns a word to its base or canonical form, per the dictionary. But, it is a more
expensive process compared to stemming, because it requires knowing the part
of speech of the word to perform well.

Tokenization, part-of-speech tagging, dependency parsing, chunk‐
ing, and lemmatization and stemming are tasks to process natural
language for downstream NLP applications; in other words, these
tasks are means to an end. Technically, the next two “tasks”—
named entity recognition and entity linking—are not natural lan‐
guage tasks but rather are closer to NLP applications. Named entity
recognition and entity linking can be ends themselves, rather than
just means to an end. But, since they are also used for downstream
NLP applications, we will include them in the “tasks” section here.

Named entity recognition
Named entity recognition (NER), is the process of assigning labels to known
objects (or entities) such as person, organization, location, date, currency, etc. In
“We live in Paris,” “Paris” would be marked as the location. NER is very powerful.
It allows machines to tag the most important tokens with named entity tags, and
this is very important for informational retrieval applications of NLP. For exam‐
ple, if we want to search for former US President George W. Bush in a set of
documents, we would want the machine to tag all persons in all the documents
using named entity recognition, and then we would search within this list of per‐
sons to find the relevant set of documents for us to investigate further.

Entity linking
Entity linking is the process of disambiguating entities to an external database,
linking text in one form to another. This is important both for entity resolution
applications (e.g., deduping datasets) and information retrieval applications. In
the George W. Bush example, we would want to resolve all instances of “George
W. Bush” to “George W. Bush,” but not to “George H. W. Bush,” George W. Bush’s
father and also a former US President. This resolution and linking to the correct
version of President Bush is a tricky, thorny process, but one that a machine is
capable of performing given all the textual context it has. Once a machine has
performed entity recognition and linking, information retrieval becomes a cinch,
which is one of the most commercially relevant applications of NLP today.

16 | Chapter 1: Introduction to NLP

4 For more on GitHub, visit the GitHub website and Google Colab’s instructions on integrating with GitHub.

This is just a quick-and-dirty overview of the most basic NLP tasks. You will want to
research these tasks further; there are ample resources available online. But, for now,
this is plenty of information for us to get started.

Now that you know the basic NLP tasks that serve as building blocks for more ambi‐
tious NLP applications, let’s use the open source NLP library spacy to perform some
of these basic NLP tasks.

Set Up the Programming Environment
To perform the basic NLP tasks, we first will need to set up our programming
environment.

In this book, we will use one of these easiest to use programming environments avail‐
able to data scientists today: Google’s Colaboratory. Google Colab is a free Jupyter
Notebook environment that runs entirely in the cloud. In Chapter 2, we will discuss
Google Colab and alternative programming environments in more detail.

We will use GitHub as our coding repository.4

If you prefer to run the code locally on your machine, we have instructions for setting
up your local environment on our GitHub repo.

With that, let’s get started with coding the basic NLP tasks.

spaCy, fast.ai, and Hugging Face
In this book, we will use open source software libraries offered by three major com‐
panies: spacy, fast.ai, and Hugging Face—to perform NLP. These libraries are high-
level, abstracting away a lot of the low-level work that we would otherwise have to do.
Think of these libraries as beautiful wrappers for us to quickly apply NLP. All three
libraries are performant and commercially viable, and you can pick any of the three
to do your own applied work; you do not have to choose all three. That being said, it
is wise to be well-versed in all three because they do have their respective strengths
and weaknesses, and sometimes one will be quicker at adopting the latest advances in
NLP than the others. Let us quickly introduce each of the three before we move for‐
ward with spacy in this chapter. In Chapter 2, we will work with fast.ai and Hugging
Face.

Basic NLP | 17

https://github.com
https://oreil.ly/wQTjQ
https://oreil.ly/8dJLj

spaCy

First released in 2015, spacy is an open source library for NLP with blazing fast per‐
formance, leveraging both Python and Cython. Prior to spacy, the Natural Language
Toolkit (NLTK) was the leading NLP library among researchers, but NLTK was dated
(it was initially released in 2001) and scaled poorly. spacy was the first modern NLP
library intended for commercial audiences; it was built with scaling in production in
mind. Now one of the go-to libraries for NLP applications in the enterprise, it sup‐
ports more than 64 languages and both TensorFlow and PyTorch.

Prior to 2021, spacy 2.x relied on recurrent neural networks (RNNs), which we will
cover later in the book, rather than the industry-leading transformer-based models.
But, as of January 2021, spacy now supports state-of-the-art transformer-based pipe‐
lines, too, solidifying its positioning among the major NLP libraries in use today.

spacy’s creator and parent company, Explosion AI, also offers an excellent annotation
platform called Prodigy, which we will use in Chapter 3. Among the three libraries,
spacy is the most mature and most extensible given all the integrations its creators
have created and supported over the past six-plus years. It is the one best suited for
production usage today.

fast.ai

fast.ai (the company) released its open source library fastai in 2018, built on top of
PyTorch. fast.ai, the company, built its reputation by offering massive open online
courses (MOOCs) to coders that want a more practical introduction to machine
learning, and the fastai library reflects this ethos. It has high-level components that
allow coders to quickly and easily produce state-of-the-art results. At the same time,
fastai has low-level components for researchers to mix and match to solve custom
problems. The creators of fastai also created ULMFiT, one of the first transfer
learning methods in NLP, which we will use in Chapter 2. For those who would like
course work and videos alongside a fast and easy-to-use library, fastai is a great
option. However, it is less mature and less suited to production work than both spacy
and Hugging Face.

Hugging Face
Founded in 2016, Hugging Face is the newest comer on the block but likely the best
funded and the fastest-growing of the three today; the company just raised a $40 mil‐
lion Series B in March 2021. Hugging Face focuses exclusively on NLP and is built to
help practitioners build NLP applications using state-of-the-art transformers. Its
library, called transformers, is built for PyTorch and TensorFlow and supports over
100 languages. In fact, it is possible to move from PyTorch and TensorFlow for devel‐
opment and deployment pretty seamlessly. Hugging Face also has a pipeline API for
productionizing NLP models. We are most excited for the future of Hugging Face

18 | Chapter 1: Introduction to NLP

https://spacy.io
https://www.nltk.org
https://www.nltk.org
http://explosion.ai
https://prodi.gy
https://www.fast.ai
https://oreil.ly/TJaxc
https://huggingface.co

5 The operation of taking a model developed for one task and using it as a starting point for a model on a sec‐
ond task is known as transfer learning.

among the three libraries and highly recommend you spend sufficient time familiar‐
izing yourself with it.

Perform NLP Tasks Using spaCy
Let’s now use spacy for our NLP tasks.

First, we’ll install spacy. For more on installation, visit the official spaCy website. If
you haven’t installed spacy already, these commands will give you everything you
need (if you’re running them in a notebook, prefix each line with a ! character):

pip install -U spacy[cuda110,transformers,lookups]==3.0.3
pip install -U spacy-lookups-data==1.0.0
pip install cupy-cuda110==8.5.0
python -m spacy download en_core_web_trf

Download pretrained language models

spacy has pretrained language models for out-of-the-box use. Pretrained models are
models that have been trained on lots of data already and are ready for us to perform
inference with.

These pretrained language models will help us solve the basic NLP tasks, but more
advanced users are welcome to fine-tune them on more specific data of your choos‐
ing. This will deliver even better performance for your specific tasks at hand.

Fine-tuning is the process of taking a pretrained model and training it some more
(i.e., fine-tuning the model) on a more specific corpus of text that is relevant to the
domain of the user.5 For example, if we worked in finance, we may decide to fine-tune
a generic pretrained language model on financial documents to generate a finance-
specific language model. This finance-specific language model would have even bet‐
ter performance on finance-related NLP tasks versus the generic pretrained language
model.

spacy breaks out its pretrained language models into two groups: core models and
starter models. The core models are general-purpose models and will help us solve
the basic NLP tasks. The starter models are base models useful for transfer learning;
these models have pretrained weights, which you could use to initialize and fine-tune
for your own models. Think of the core models as ready-to-go models and the base
models as do-it-yourself starter kits.

Basic NLP | 19

https://spacy.io/usage

6 A spacy language model is not the same thing as what we generally refer to in the NLP literature as a language
model. For more information on language modeling, see Chapter 2.

We will use the ready-to-go core models to perform the basic NLP tasks. Let’s first
import the core model:6

Import spacy and download language model
import spacy
nlp = spacy.load("en_core_web_sm")

Now, let’s perform the first of the NLP tasks: tokenization.

Tokenization
Tokenization is where all NLP work begins; before the machine can process any of
the text it sees, it must break the text into bite-sized tokens. Tokenization will seg‐
ment text into words, punctuation marks, etc.

spacy automatically runs the entire NLP pipeline when you run a language model on
the data (i.e., nlp(SENTENCE)), but to isolate just the tokenizer, we will invoke just the
tokenizer using nlp.tokenizer(SENTENCE).

Then, we will print the length of the tokens and the individual tokens:

Tokenization
sentence = nlp.tokenizer("We live in Paris.")

Length of sentence
print("The number of tokens: ", len(sentence))

Print individual words (i.e., tokens)
print("The tokens: ")
for words in sentence:
 print(words)

The number of tokens: 5
The tokens:
We
live
in
Paris
.

The length of tokens is 5, and the individual tokens are "We, live, in, Paris, .". The
period at the end of the sentence is its own token.

Note that the spacy tokenizer will treat new lines (\n), tabs (\t), and whitespace
characters beyond a single space (") as tokens.

Let’s try the tokenizer on a slightly more complex example.

20 | Chapter 1: Introduction to NLP

We will load in publicly available Jeopardy questions and then run the entire spacy
language model on a few of the questions:

import pandas as pd
import os
cwd = os.getcwd()

Import Jeopardy Questions
data = pd.read_csv(cwd+'/data/jeopardy_questions/jeopardy_questions.csv')
data = pd.DataFrame(data=data)

Lowercase, strip whitespace, and view column names
data.columns = map(lambda x: x.lower().strip(), data.columns)

Reduce size of data
data = data[0:1000]

Tokenize Jeopardy Questions
data["question_tokens"] = data["question"].apply(lambda x: nlp(x))

We have now created tokens for each of the 1,000 Jeopardy questions.

To make sure this worked right, let’s view the first question and the tokens created:

View first question
example_question = data.question[0]
example_question_tokens = data.question_tokens[0]
print("The first questions is:")
print(example_question)

The first questions is:
For the last 8 years of his life, Galileo was under house arrest for espousing
 > this man's theory

Print individual tokens of first question
print("The tokens from the first question are:")
for tokens in example_question_tokens:
 print(tokens)

The tokens from the first question are:
For
the
last
8
years
of
his
life
,
Galileo
was
under
house
arrest

Basic NLP | 21

for
espousing
this
man
's
theory

This is the first basic NLP task that machines perform; now we can move on to the
other NLP tasks. Well done!

Part-of-speech tagging
After tokenization, machines need to tag each token with relevant metadata, such as
the part-of-speech of each token. This is what we will perform now.

Since we applied the entire spacy language model to the Jeopardy questions, the
tokens generated already have a lot of the meaningful attributes/metadata we care
about.

spacy uses preloaded statistical models to predict the part of speech of each token.
We loaded the English language statistical model earlier using this code:
spacy.load("en_core_web_sm").

Let’s take a look at the POS tagging attributes for the tokens in the first question:

Print Part-of-speech tags for tokens in the first question
print("Here are the Part-of-speech tags for each token in the first question:")
for token in example_question_tokens:
 print(token.text,token.pos_, spacy.explain(token.pos_))

Here are the Part-of-speech tags for each token in the first question:
For ADP adposition
the DET determiner
last ADJ adjective
8 NUM numeral
years NOUN noun
of ADP adposition
his PRON pronoun
life NOUN noun
, PUNCT punctuation
Galileo PROPN proper noun
was AUX auxiliary
under ADP adposition
house NOUN noun
arrest NOUN noun
for ADP adposition
espousing VERB verb
this DET determiner
man NOUN noun
's PART particle
theory NOUN noun

22 | Chapter 1: Introduction to NLP

7 Visit the spacy POS documentation for more.

The first token “For” is marked as an adposition (e.g., in, to, during); the second
token “the” is a determiner (e.g., a, an, the); the third token “last” is an adjective, the
fourth token “8” is a numeral; the fifth token “years” is a noun; and so on.

Table 1-1 displays the full list of all possible POS tags, including descriptions and
examples of each.7

Table 1-1. Universal part-of-speech tags

POS Description Example

ADJ Adjective Big, old, green, incomprehensible, first

ADP Adposition In, to, during

ADV Adverb Very, tomorrow, down, where, there

AUX Auxiliary Is, has (done), will (do), should (do)

CONJ Conjunction And, or, but

CCONJ Coordinating conjunction And, or, but

DET Determiner A, an, the

INTJ Interjection Psst, ouch, bravo, hello

NOUN Noun Girl, cat, tree, air, beauty

NUM Numeral 1, 2017, one, seventy-seven, IV, MMXIV

PART Particle ’s, not

PRON Pronoun I, you, he, she, myself, themselves, somebody

PROPN Proper noun Mary, John, London, NATO, HBO

PUNCT Punctuation ., (,), ?

SCONJ Subordinating conjunction If, while, that

SYM Symbol ×, %, §, ©, +, -, ×, ÷, =, :),

VERB Verb Run, runs, running, eat, ate, eating

X Other Sfpksdpsxmsa

SPACE Space

Now that we have used the tokenizer to create tokens for each sentence and part-of-
speech tagging to tag each token with meaningful attributes, let’s label each token’s
relationship with other tokens in the sentence. In other words, let’s find the inherent
structure among the tokens given the part-of-speech metadata we have generated.

Basic NLP | 23

https://oreil.ly/RzTvP

8 Visit the spacy documentation for more.

Dependency parsing
Dependency parsing is the process of finding these relationships among the tokens.
Once we have performed this step, we will be able to visualize the relationships using
a dependency parsing graph.

First, let’s view the dependency parsing tags for each of the tokens in the first
question:

Print Dependency Parsing tags for tokens in the first question
for token in example_question_tokens:
 print(token.text,token.dep_, spacy.explain(token.dep_))

For prep prepositional modifier
the det determiner
last amod adjectival modifier
8 nummod numeric modifier
years pobj object of preposition
of prep prepositional modifier
his poss possession modifier
life pobj object of preposition
, punct punctuation
Galileo nsubj nominal subject
was ROOT None
under prep prepositional modifier
house compound compound
arrest pobj object of preposition
for prep prepositional modifier
espousing pcomp complement of preposition
this det determiner
man poss possession modifier
's case case marking
theory dobj direct object

The first token “For” is marked as a prepositional modifier; the second token “the” is
a determiner; the third token “last” is an adjectival modifier; the fourth token “8” is a
numeric modifier; the fifth token “years” is the object of preposition; and so on.

Table 1-2 lists all the possible syntactic dependency tags, including descriptions and
examples of each.8

Table 1-2. Universal dependency labels

Label Description

ac1 Clausal modifier of noun (adjectival clause)

advc1 Adverbial clause modifier

advmod Adverbial modifier

24 | Chapter 1: Introduction to NLP

https://oreil.ly/EJ2Mg

Label Description

amod Adjectival modifier

appos Appositional modifier

aux Auxiliary

case Case marking

cc Coordinating conjunction

ccomp Clausal complement

clf Classifier

compound Compound

conj Conjunction

cop Copula

csubj Clausal subject

dep Unspecified dependency

det Determiner

discourse Discourse element

dislocated Dislocated element

expl Expletive

fixed Fixed multiword expression

flat Flat multiword expression

goeswith Goes with

iobj Indirect object

list List

mark Marker

nmod Nominal modifier

nsubj Nominal subject

nummod Numeric modifier

obj Object

obl Oblique nominal

orphan Orphan

parataxis Parataxis

punct Punctuation

reparandum Overridden disfluency

root Root

vocative Vocative

xcomp Open clausal complement

Basic NLP | 25

These tags help define the relationships among the tokens; using these tags, we can
understand the relationship structure among the tokens that make up the sentence.

Dependency parsing is hard to unpack, so let’s use spacy’s built-in visualizer to get a
better sense of the dependencies across the tokens:

Visualize the dependency parse
from spacy import displacy

displacy.render(example_question_tokens, style='dep',
 jupyter=True, options={'distance': 120})

Figure 1-2 displays the first part of the sentence parsed.

Figure 1-2. Dependency parsing example, part 1

Notice the importance of “For” and “years” in the prepositional phrase—multiple
tokens map to these two.

Figure 1-3 displays the second part of the sentence parsed.

Figure 1-3. Dependency parsing example, part 2

The token “was” connects to the nominal subject “Galileo” and two prepositional
phrases: “under house arrest” and “for espousing this man’s theory.”

These figures show how certain tokens can be grouped together and how the groups
of tokens are related to one another. This is an essential step in NLP. First, the

26 | Chapter 1: Introduction to NLP

machine breaks the sentence apart into tokens. Then it assigns metadata to each
token (e.g., part of speech), and then it connects the tokens based on their relation‐
ship to one another.

Let’s move on to chunking, which is another form of grouping of related tokens.

Chunking
Let’s perform chunking on the sentence “My parents live in New York City”:

Print tokens for example sentence without chunking
for token in nlp("My parents live in New York City."):
 print(token.text)

My
parents
live
in
New
York
City
.

Chunking combines related tokens into a single token.

With chunking, the spacy language model will identify “My parents” and “New York
City” as noun chunks, much like a human would when parsing a sentence:

Print chunks for example sentence
for chunk in nlp("My parents live in New York City.").noun_chunks:
 print(chunk.text)

My parents
New York City

By grouping related tokens into chunks, the machine will have an easier time process‐
ing the sentence. Instead of viewing each token in isolation, the machine now recog‐
nizes that certain tokens are related to others, a necessary step in NLP.

Lemmatization
Now, let’s go a step further and perform lemmatization. If you recall, lemmatization is
the process of converting words into their base (or canonical) forms; for example,
“horses” to “horse,” “slept” to “sleep,” and “biggest” to “big.” Just like part-of-speech
tagging, dependency parsing, and chunking, lemmatization helps the machine “pro‐
cess” the tokens. With lemmatization, the machine is able to simplify the tokens by
converting some of them into their most basic forms.

Stemming is a related concept, but stemming is simpler. Stemming reduces words to
their word stems, often using a rule-based approach.

Basic NLP | 27

Lemmatization is a more difficult process but generally results in better outputs;
stemming sometimes creates outputs that are nonsensical (nonwords). In fact, spacy
does not even support stemming; it supports only lemmatization.

We will create a DataFrame to store and view the original and lemmatized versions of
tokens side-by-side:

Print lemmatization for tokens in the first question
lemmatization = pd.DataFrame(data=[], \
 columns=["original","lemmatized"])
i = 0
for token in example_question_tokens:
 lemmatization.loc[i,"original"] = token.text
 lemmatization.loc[i,"lemmatized"] = token.lemma_
 i = i+1

lemmatization

Original Lemmatized

0 For for

1 the the

2 last last

3 8 8

4 years year

5 of of

6 his his

7 life life

8 , ,

9 Galileo Galileo

10 was be

11 under under

12 house house

13 arrest arrest

14 for for

15 espousing espouse

16 this this

17 man man

18 ’s ’s

19 theory theory

As you can see, words such as “years,” “was,” and “espousing” are lemmatized to their
base forms. The other tokens are already their base forms, so the lemmatized output

28 | Chapter 1: Introduction to NLP

is the same as the original. Lemmatization simplifies tokens into their simplest forms,
where possible, to simplify the process for the machine to parse sentences.

Named entity recognition
When combined together, everything we’ve done so far—tokenization, part-of-speech
tagging, dependency parsing, chunking, and lemmatization—makes it possible for
machines to perform more complex NLP tasks. One example of a complex NLP task
is named entity recognition (also known as “NER”), which parses notable entities in
natural language and labels them with their appropriate class label. For example, NER
labels names of people with the label “Person” and names of cities with the label
“Location.”

NER is possible only because the machine is able to perform text classification using
the metadata generated by the earlier NLP tasks we’ve covered. Without the metadata
from the earlier NLP tasks, the machine would have a very difficult time performing
NER because it would not have enough features to classify names of people as “Per‐
son,” names of cities as “Location,” etc.

NER is a valuable NLP task because many organizations need to process lots and lots
of documents in volume, and the simple act of labeling notable entities with the
appropriate class label is a meaningful first step in analyzing the textual information,
particularly for information retrieval tasks (e.g., finding information that you need as
quickly as possible).

These documents include contracts, leases, real estate purchase agreements, financial
reports, news articles, etc. Before named entity recognition, humans would have had
to label such entities by hand (at many companies, they still do). Now, named entity
recognition provides an algorithmic way to perform this task.

spacy’s NER model is able to label many types of notable entities (“real-world
objects”). Table 1-3 displays the current set of entity types the spacy model is able to
recognize.

Table 1-3. spaCy NER entity types

Type Description

PERSON People, including fictional

NORP Nationalities or religious or political groups

FAC Buildings, airports, highways, bridges, etc.

ORG Companies, agencies, institutions, etc.

GPE Countries, cities, states

LOC Non-GPE locations, mountain ranges, bodies of water

PRODUCT Objects, vehicles, foods, etc. (not services)

Basic NLP | 29

Type Description

EVENT Named hurricanes, battles, wars, sports events, etc.

WORK_OF_ART Titles of books, songs, etc.

LAW Named documents made into laws

LANGUAGE Any named language

DATE Absolute or relative dates or periods

TIME Times smaller than a day

PERCENT Percentage, including %

MONEY Monetary values, including unit

QUANTITY Measurements, as of weight or distance

ORDINAL “First,” “second,” etc.

CARDINAL Numerals that do not fall under another type

It’s very important to note that NER is, at its very core, a classification model. Using
the context around the token of interest, the NER model predicts the entity type of
the token of interest. NER is a statistical model, and the corpus of data the model has
trained on matters a lot. For better performance, developers of these models in the
enterprise will fine-tune the base NER models on their particular corpus of docu‐
ments to achieve better performance versus the base NER model.

Let’s try the spacy NER model. We will perform NER on the first sentence of the
Wikipedia article (accessed March 2021) describing George Washington, the first
president of the United States. Here’s the sentence:

George Washington was an American political leader, military general, statesman, and
Founding Father who served as the first president of the United States from 1789 to
1797.

As you can see, there are several real-world objects to recognize here, including
“George Washington” and “the United States”:

Print NER results
example_sentence = "George Washington was an American political leader, \
military general, statesman, and Founding Father who served as the \
first president of the United States from 1789 to 1797.\n"

print(example_sentence)

print("Text Start End Label")
doc = nlp(example_sentence)
for token in doc.ents:
 print(token.text, token.start_char, token.end_char, token.label_)

George Washington was an American political leader, military general, statesman,
 > and Founding Father who served as the first president of the United States
 > from 1789 to 1797.

30 | Chapter 1: Introduction to NLP

https://oreil.ly/SmNV2

Text Start End Label
George Washington 0 17 PERSON
American 25 33 NORP
first 119 124 ORDINAL
the United States 138 155 GPE
1789 to 1797 161 173 DATE

There are four elements to the output. First, the text that comprises the entity; note
that the text could be a single token or a set of tokens that makes up the entire entity.
Second, the start position of the text in the sentence. Third, the end position of the
text in the sentence. Fourth, the label of the entity.

To make the value of NER even more apparent, let’s use spacy’s built-in visualizer to
visualize this sentence with the relevant entity labels:

Visualize NER results
displacy.render(doc, style='ent', jupyter=True, options={'distance': 120})

As you can see in Figure 1-4, the spacy NER model does a great job labeling the enti‐
ties. “George Washington” is a person, and the text starts at index 0 and ends at index
17. His nationality is “American.” “First” is labeled as an ordinal number, “the United
States” is a geopolitical entity, and “1789 to 1797” is a date.

Figure 1-4. Visualize NER results

The sentence is beautifully rendered with color-coded labels based on the entity type.
This is a powerful and meaningful NLP task; you can see how doing this machine-
driven labeling at scale without humans could add a lot of value to enterprises that
work with a lot of textual data. Of course, to train such a model in the first place, you
do need to have a lot of humans that annotate textual data. And you may need
humans in the loop to deal with edge cases in production. You are never really
human-free, but perhaps you could ultimately get to a mostly human-free process.

Named entity linking
Another complex yet very useful NLP task in the enterprise is named entity linking
(NEL). NEL resolves a textual entity to a unique identifier in a knowledge base. In
other words, NEL resolves the entity in your source text to a canonical version in a
knowledge database. Let’s try to link all entities that are named persons to Google’s

Basic NLP | 31

9 You’ll need your own Google Knowledge Graph API key to perform this API call on your machine. We will
perform this using our own API key for illustrative purposes.

Knowledge Graph. We will make a Google Knowledge Graph API call to perform this
named entity linking.9

Here is the function to perform this API call:

Import libraries
import requests

Define Google Knowledge Graph API Result function
def returnGraphResult(query, key, entityType):
 if entityType=="PERSON":
 google = f"https://kgsearch.googleapis.com/v1/entities:search\
 ?query={query}&key={key}"
 resp = requests.get(google)
 url = resp.json()['itemListElement'][0]['result']\
 ['detailedDescription']['url']
 description = resp.json()['itemListElement'][0]['result']\
 ['detailedDescription']['articleBody']
 return url, description
 else:
 return "no_match", "no_match"

Let’s perform entity linking on our George Washington example:

Print Wikipedia descriptions and URLs for entities
for token in doc.ents:
 url, description = returnGraphResult(token.text, key, token.label_)
 print(token.text, token.label_, url, description)

Here is the output:

George Washington
PERSON https://en.wikipedia.org/wiki/George_Washington George Wash

ington was an American political leader, military general, states

man, and Founding Father, who also served as the first President of

the United States from 1789 to 1797.

American
NORP no_match no_match

first
ORDINAL no_match no_match

the United States
GPE no_match no_match

32 | Chapter 1: Introduction to NLP

https://oreil.ly/Juu8j
https://en.wikipedia.org/wiki/George_Washington

1789 to 1797
DATE no_match no_match

As you can see, George Washington is a PERSON and is linked successfully to the
“George Washington” Wikipedia URL and description. The rest are not of entity type
PERSON and are not linked. If desired, we could link the other named entities, such as
the United States, to relevant Wikipedia articles, too.

NEL has many use cases in the enterprise, especially since the need to link informa‐
tion to a taxonomy comes up over and over again (e.g., linking stock tickers, pharma‐
ceutical drugs, publicly traded companies, consumer products, etc., to canonical
versions in a taxonomy or knowledge base).

Conclusion
In this chapter, we defined NLP and covered its origins, including some of the com‐
mercial applications that are popular in the enterprise today. Then, we defined some
basic NLP tasks and performed them using the very performant NLP library known
as spacy. You should spend more time using spacy, including reviewing documenta‐
tion that is available online, to hone what you have learned in this chapter.

While the tasks we performed are very basic, when combined, NLP tasks such as
tokenization, part-of-speech tagging, dependency parsing, chunking, and lemmatiza‐
tion make it possible for machines to perform even more complex NLP tasks such as
NER and entity linking. We hope our walkthrough of these tasks helped you build
some intuition on just how machines are able to unpack and process natural lan‐
guage, demystifying some of the space.

Today, most complex NLP applications do not require practitioners to perform these
tasks manually; rather, neural networks learn to perform these tasks on their own. In
the next chapter, we will dive into some of the state-of-the-art approaches using the
Transformer architecture and large, pretrained language models from fast.ai and
Hugging Face to show just how easy it is to get up and running with NLP today. Later
in the book, we will return to the basics (which we just teased you with briefly in this
chapter) and help you build more of your foundational knowledge of NLP.

Conclusion | 33

CHAPTER 2

Transformers and Transfer Learning

Now that you’ve been introduced to the field of natural language processing, there’s
something important you need to understand. It’s not actually a very long journey
from where you start to state of the art.

Eventually, we will return to the basics, discuss the fundamentals, and understand all
the details, of course. But we’re going to show you the promised land before we ven‐
ture on the long and hard journey to get there.

One of the most important ideas to implement if you want to get deep learning work‐
ing in the real world is transfer learning, which is the process of taking a model that
has already been trained on another dataset and fine-tuning it to fit your new dataset.
For example, if you’re training a language model to generate compelling short stories
in the style of Hemingway, you could fine-tune a model trained on a wide variety of
books instead of training on just the text samples of Hemingway, of which there may
not be many.

A nice analogy in object-oriented programming is the concept of inheritance in
classes. Suppose we’re making some sort of zoo management video game, where each
animal is represented by a class. The animals have properties like weight and height,
as well as functions like eat and sleep. In theory, we could just create a new class for
each animal and replicate those shared functions, but in practice, we usually refactor
our code so that we have a superclass for a generic animal and a subclass for each
species to avoid duplication in our code, making it easier to read.

35

1 Assuming that the original dataset you’re transferring from is much larger than the dataset you’re using for
fine-tuning. If your fine-tuning dataset is larger, perhaps you should be applying transfer learning the other
way around! But in practice, it’s very hard to prepare natural language text datasets that are of comparable size
to the ones used for pretraining.

Who’s That Pokémon? Language Models

A language model is a function that takes in a sequence of words
and returns a probability distribution over all the possible next
words in that sequence. This task is considered one of the most
important in NLP because, as the reasoning goes, to predict the
next word in a sentence, you must have a good understanding of
the language. Language models learn the features and characteris‐
tics of language to guess what the next word should be after any
given phrase or sentence. They are the backbone of NLP today
because they do not require explicit annotations (labels) and can be
trained on massive corpuses without material data preparation.
Once they learn the properties of language well, language models
can be fine-tuned to perform more specific NLP tasks such as text
classification, which is what we’re going to do in this chapter.

By training on the larger dataset, the model essentially inherits a large amount of
extra knowledge, which it can use to perform better on the task you care about. From
a practical standpoint, transfer learning helps you get better performing models faster
since fine-tuning, if done correctly, is often computationally cheaper than training
from scratch.1

The other big advancement we’ll discuss is the use of a new kind of model architec‐
ture called the transformer. Training transformers can be complicated and does not
always work well without some fine-tuning. So, instead of training a transformer
from scratch, we’ll show you the pretraining technique on another architecture, and
use a popular pretrained transformer to perform inference.

When we refer to pretrained models throughout this book, we are
generally referring to large, pretrained language models that have
been trained to perform language modeling on large corpuses.

For this chapter, it’s important that you have your compute environment set up since
we’ll be training models. Check out our GitHub page for more information on how to
do this.

36 | Chapter 2: Transformers and Transfer Learning

https://oreil.ly/UHmBF

Training with fastai
First, we’ll use fastai for transfer learning. We’re going to fine-tune a language
model and then transform it into a text classifier that categorizes text based on senti‐
ment. We’ll start with the simplest working implementation, and progressively train
our network using the ULMFiT technique. The following example is adapted from
the official fastai documentation, and is a great demonstation of how the library
makes it easy to great results very quickly.

The dataset we’re going to use here is the IMDb movie review dataset. It’s not very
fun, but it’s simple and small, which is what we want when starting off:

Using the fastai Library
fastai is more than your standard deep learning library. It includes tools that help
you solve the problem at hand end-to-end as fast as possible. One of those tools is a
built-in set of common datasets that can be easily downloaded:

from fastai.text.all import *
path = untar_data(URLs.IMDB)

We can set up our dataset and prepare for training by using the TextDataLoad
ers.from_folder method built into fastai:

dls = TextDataLoaders.from_folder(path, valid='test')

Another useful method is show_batch, which lets us take a quick glimpse at our data
to make sure everything looks OK:

dls.show_batch()

Text Category

0 xxbos xxmaj match 1 : xxmaj tag xxmaj team xxmaj table xxmaj match xxmaj bubba xxmaj ray and xxmaj
spike xxmaj dudley vs xxmaj eddie xxmaj guerrero and xxmaj chris xxmaj benoit xxmaj bubba xxmaj ray and
xxmaj spike xxmaj dudley started things off with a xxmaj tag xxmaj team xxmaj table xxmaj match against
xxmaj eddie xxmaj guerrero and xxmaj chris xxmaj benoit . xxmaj according to the rules of the match , both
opponents have to go through tables in order to get the win . xxmaj benoit and xxmaj guerrero heated up
early on by taking turns hammering first xxmaj spike and then xxmaj bubba xxmaj ray . a xxmaj german
xxunk by xxmaj benoit to xxmaj bubba took the wind out of the xxmaj dudley brother . xxmaj spike tried to
help his brother , but the referee restrained him while xxmaj benoit and xxmaj guerrero

pos

1 xxbos xxmaj titanic directed by xxmaj james xxmaj cameron presents a fictional love story on the historical
setting of the xxmaj titanic . xxmaj the plot is simple , xxunk , or not for those who love plots that twist and
turn and keep you in suspense . xxmaj the end of the movie can be figured out within minutes of the start of
the film , but the love story is an interesting one , however . xxmaj kate xxmaj winslett is wonderful as xxmaj
rose , an aristocratic young lady betrothed by xxmaj cal (billy xxmaj zane) . xxmaj early on the voyage xxmaj
rose meets xxmaj jack (leonardo dicaprio) , a lower class artist on his way to xxmaj america after winning
his ticket aboard xxmaj titanic in a poker game . xxmaj if he wants something , he goes and gets it

pos

Training with fastai | 37

https://oreil.ly/luXdk

Text Category

2 xxbos xxmaj warning : xxmaj does contain spoilers . \n\n xxmaj open xxmaj your xxmaj eyes \n\n xxmaj if
you have not seen this film and plan on doing so , just stop reading here and take my word for it . xxmaj you
have to see this film . i have seen it four times so far and i still have n’t made up my mind as to what exactly
happened in the film . xxmaj that is all i am going to say because if you have not seen this film , then stop
reading right now . \n\n xxmaj if you are still reading then i am going to pose some questions to you and
maybe if anyone has any answers you can email me and let me know what you think . \n\n i remember my
xxmaj grade 11 xxmaj english teacher quite well . xxmaj

pos

3 xxbos i thought that xxup rotj was clearly the best out of the three xxmaj star xxmaj wars movies . i find it
surprising that xxup rotj is considered the weakest installment in the xxmaj trilogy by many who have
voted . xxmaj to me it seemed like xxup rotj was the best because it had the most profound plot , the most
suspense , surprises , most xxunk the ending) and definitely the most episodic movie . i personally like the
xxmaj empire xxmaj strikes xxmaj back a lot also but i think it is slightly less good than than xxup rotj since it
was slower - moving , was not as episodic , and i just did not feel as much suspense or emotion as i did with
the third movie . \n\n xxmaj it also seems like to me that after reading these surprising reviews that

pos

4 xxbos xxup myra xxup breckinridge is one of those rare films that established its place in film history
immediately . xxmaj praise for the film was absolutely nonexistent , even from the people involved in
making it . xxmaj this film was loathed from day one . xxmaj while every now and then one will come across
some maverick who will praise the film on philosophical grounds (aggressive feminism or the courage to
tackle the issue of xxunk) , the film has not developed a cult following like some notorious flops do . xxmaj
it ’s not hailed as a misunderstood masterpiece like xxup scarface , or trotted out to be ridiculed as a camp
classic like xxup showgirls . \n\n xxmaj undoubtedly the reason is that the film , though outrageously awful ,
is not lovable , or even likable . xxup myra xxup breckinridge is just

neg

5 xxbos xxmaj my xxmaj comments for xxup vivah : - xxmaj its a charming , idealistic love story starring xxmaj
shahid xxmaj kapoor and xxmaj amrita xxmaj rao . xxmaj the film takes us back to small pleasures like the
bride and bridegroom ’s families sleeping on the floor , playing games together , their friendly banter and
mutual respect . xxmaj vivah is about the sanctity of marriage and the importance of commitment between
two individuals . xxmaj yes , the central romance is naively visualized . xxmaj but the sneaked - in romantic
moments between the to - be - married couple and their stubborn resistance to modern courtship games
makes you crave for the idealism . xxmaj the film predictably concludes with the marriage and the groom ,
on the wedding night , tells his new bride who suffers from burn injuries : " come let me

pos

6 xxbos xxmaj that word ' true ' in this film ’s title got my alarm bells ringing . xxmaj they rang louder when a
title card referred to xxmaj america ’s xxmaj civil xxmaj war as the ' war xxmaj between the xxmaj states
' (the xxunk preferred by die - hard southerners) . xxmaj jesse xxmaj james -- thief , slave - holder and
murderer -- is described as a quiet , gentle farm boy . \n\n xxmaj how dishonest is this movie ? xxmaj there
is xxup no mention of slavery , far less of the documented fact that xxmaj jesse xxmaj james ’s poor xxunk
mother owned slaves before the war , and that xxmaj jesse and his brother xxmaj frank actively fought to
preserve slavery . xxmaj according to this movie , all those xxmaj civil xxmaj war soldiers were really fighting
to decide

neg

7 xxbos " fever xxmaj pitch " is n’t a bad film ; it ’s a terrible film . \n\n xxmaj is it possible xxmaj american
movie audiences and critics are so numbed and lobotomized by the excrement that xxmaj hollywood churns
out that they ‘ll praise to the skies even a mediocre film with barely any laughs ? xxmaj that ’s the only
reason i can think of why this horrible romantic comedy (and i use that term loosely because there ’s
nothing funny in this film) is getting good reviews . \n\n i sat through this film stunned that screenwriters
xxmaj lowell xxmaj ganz and xxmaj babaloo xxmaj mandel would even for an instant think their script was
funny . \n\n xxmaj the brilliant xxmaj nick xxmaj hornby usually translates well to film . xxmaj he adapted "
fever xxmaj pitch " for a xxmaj british film

neg

38 | Chapter 2: Transformers and Transfer Learning

Text Category

8 xxbos xxmaj to be a xxmaj buster xxmaj keaton fan is to have your heart broken on a regular basis . xxmaj
most of us first encounter xxmaj keaton in one of the brilliant feature films from his great period of
independent production : ' the xxmaj general ' , ' the xxmaj navigator ' , ' sherlock xxmaj jnr ' . xxmaj we
recognise him as the greatest figure in the entire history of film comedy , and we want to see more of his
movies . xxmaj here the heartbreak begins . xxmaj after ' steamboat xxmaj bill xxmaj jnr ' , xxmaj keaton ’s
brother - in - law xxmaj joseph xxmaj xxunk pressured him into signing a contract that put xxmaj keaton
under the control of xxup mgm . xxmaj keaton became just one more actor for hire , performing someone
else ’s scripts . xxmaj

neg

If you looked closely, you might have noticed a bunch of strange words like “xxmaj”
and “xxbos” interspersed throughout the text samples. These are not actually part of
the original samples, but were added in through a process called tokenization, which
we’ll discuss in Chapter 4. These tokens represent special words that are designed to
be interpreted by the language model. For example, “xxmaj” indicates that the next
word should start with a capitalized character.

fastai uses an object called a Learner for doing pretty much everything. We can
construct one for text classification in one line of code:

learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)

Instead of the transformer model that we’ve been raving about so far in this book
(and will continue to discuss), we’re going to use the AWD-LSTM architecture for
now, since it’s easier and faster to train.

There are a few other details: drop_mult is a hyperparameter that controls the magni‐
tude of all dropouts in that model, and we use accuracy to track down how well we
are doing. But you don’t need to worry too much about these parameters just yet.

With the Learner defined, we can now fine-tune our pretrained model, using a
method with an unsurprising name:

learn.fine_tune(4, 1e-2)

epoch train_loss valid_loss accuracy time

0 0.587251 0.386230 0.828960 01:35

epoch train_loss valid_loss accuracy time

0 0.307347 0.263843 0.892800 03:03

1 0.215867 0.226208 0.911800 02:55

2 0.155399 0.231144 0.913960 03:12

3 0.129277 0.200941 0.925920 03:01

learn.fine_tune(4, 1e-2)

Training with fastai | 39

https://oreil.ly/K2a6J

epoch train_loss valid_loss accuracy time

0 0.594912 0.407416 0.823640 01:35

epoch train_loss valid_loss accuracy time

0 0.268259 0.316242 0.876000 03:03

1 0.184861 0.246242 0.898080 03:10

2 0.136392 0.220086 0.918200 03:16

3 0.106423 0.191092 0.931360 03:15

Ninety-three percent accuracy looks good! But let’s see how well it’s actually doing:

learn.show_results()

text category category_

0 xxbos xxmaj there ’s a sign on xxmaj the xxmaj lost xxmaj highway that says : \n\n * major
xxup spoilers xxup ahead * \n\n (but you already knew that , did n’t you ?) \n\n xxmaj since
there ’s a great deal of people that apparently did not get the point of this movie , xxmaj i ‘d
like to contribute my interpretation of why the plot makes perfect sense . xxmaj as others have
pointed out , one single viewing of this movie is not sufficient . xxmaj if you have the xxup dvd
of xxup md , you can " cheat " by looking at xxmaj david xxmaj lynch ’s " top 10 xxmaj hints to
xxmaj unlocking xxup md " (but only upon second or third viewing , please .) ;) \n\n xxmaj
first of all , xxmaj mulholland xxmaj drive is

pos pos

1 xxbos (some spoilers included :) \n\n xxmaj although , many commentators have called this
film surreal , the term fits poorly here . xxmaj to quote from xxmaj encyclopedia xxmaj
xxunk ’s , surreal means : \n\n " fantastic or incongruous imagery " : xxmaj one need n’t explain
to the unimaginative how many ways a plucky ten - year - old boy at large and seeking his
fortune in the driver ’s seat of a red xxmaj mustang could be fantastic : those curious might
read xxmaj james xxmaj kincaid ; but if you asked said lad how he were incongruous behind the
wheel of a sports car , he ‘d surely protest , " no way ! " xxmaj what fantasies and incongruities
the film offers mostly appear within the first fifteen minutes . xxmaj thereafter we get more
iterations of the same , in an

pos neg

2 xxbos xxmaj hearkening back to those " good xxmaj old xxmaj days " of 1971 , we can vividly
recall when we were treated with a whole xxmaj season of xxmaj charles xxmaj chaplin at the
xxmaj cinema . xxmaj that ’s what the promotional guy called it when we saw him on
somebody ’s old talk show . (we ca n’t recall just whose it was ; either xxup merv xxup griffin
or xxup woody xxup woodbury , one or the other !) xxmaj the guest talked about xxmaj sir
xxmaj charles ' career and how his films had been out of circulation ever since the 1952
exclusion of the former " little xxmaj tramp ' from xxmaj los xxmaj xxunk xxmaj xxunk on the
grounds of his being an " undesirable xxmaj alien " . (no xxmaj schultz , he ’s xxup not from
another

pos pos

40 | Chapter 2: Transformers and Transfer Learning

text category category_

3 xxbos " buffalo xxmaj bill , xxmaj hero of the xxmaj far xxmaj west " director xxmaj mario
xxmaj costa ’s unsavory xxmaj spaghetti western " the xxmaj beast " with xxmaj klaus xxmaj
kinski could only have been produced in xxmaj europe . xxmaj hollywood would never dared to
have made a western about a sexual predator on the prowl as the protagonist of a movie .
xxmaj never mind that xxmaj kinski is ideally suited to the role of ' crazy ' xxmaj johnny . xxmaj
he plays an individual entirely without sympathy who is ironically dressed from head to toe in a
white suit , pants , and hat . xxmaj this low - budget oater has nothing appetizing about it .
xxmaj the typically breathtaking xxmaj spanish scenery around xxmaj almeria is nowhere in
evidence . xxmaj instead , xxmaj costa and his director of photography

pos pos

4 xxbos xxmaj if you ‘ve seen the trailer for this movie , you pretty much know what to expect ,
because what you see here is what you get . xxmaj and even if you have n’t seen the previews ,
it wo n’t take you long to pick up on what you ‘re in for-- specifically , a good time and plenty
of xxunk from this clever satire of ` reality xxup tv ' shows and ` buddy xxmaj cop ' movies , `
showtime , ' directed by xxmaj tom xxmaj dey , starring xxmaj robert xxmaj de xxmaj niro and
xxmaj eddie xxmaj murphy . \n\n\t xxmaj mitch xxmaj preston (de xxmaj niro) is a detective
with the xxup l.a.p.d . , and he ’s good at what he does ; but working a case one night , things
suddenly go south when another cop

pos pos

5 xxbos * xxmaj some spoilers * \n\n xxmaj this movie is sometimes subtitled " life xxmaj
everlasting . " xxmaj that ’s often taken as reference to the final scene , but more accurately
describes how dead and buried this once - estimable series is after this sloppy and illogical send
- off . \n\n xxmaj there ’s a " hey kids , let ’s put on a show air " about this telemovie , which
can be endearing in spots . xxmaj some fans will feel like insiders as they enjoy picking out all
the various cameo appearances . xxmaj co - writer , co - producer xxmaj tom xxmaj fontana and
his pals pack the goings - on with friends and favorites from other shows , as well as real xxmaj
baltimore personages . \n\n xxmaj that ’s on top of the returns of virtually all the members

neg neg

6 xxbos (caution : several spoilers) \n\n xxmaj someday , somewhere , there ’s going to be a
post - apocalyptic movie made that does n’t stink . xxmaj unfortunately , xxup the xxup
postman is not that movie , though i have to give it credit for trying . \n\n xxmaj kevin xxmaj
costner plays somebody credited only as " the xxmaj postman . " xxmaj he ’s not actually a
postman , just a wanderer with a mule in the wasteland of a western xxmaj america devastated
by some unspecified catastrophe . xxmaj he trades with isolated villages by performing xxmaj
shakespeare . xxmaj suddenly a pack of bandits called the xxmaj holnists , the self - declared
warlords of the xxmaj west , descend upon a village that xxmaj costner ’s visiting , and their
evil leader xxmaj gen . xxmaj bethlehem (will xxmaj patton

neg neg

7 xxbos xxmaj in a style reminiscent of the best of xxmaj david xxmaj lean , this romantic love
story sweeps across the screen with epic proportions equal to the vast desert regions against
which it is set . xxmaj it ’s a film which purports that one does not choose love , but rather that
it ’s love that does the choosing , regardless of who , where or when ; and furthermore , that
it ’s a matter of the heart often contingent upon prevailing conditions and circumstances .
xxmaj and thus is the situation in ` the xxmaj english xxmaj patient , ' directed by xxmaj
anthony xxmaj minghella , the story of two people who discover passion and true love in the
most inopportune of places and times , proving that when it is predestined , love will find a
way . \n\n xxmaj it ’s xxup

pos pos

Training with fastai | 41

2 See, we said it right here. Please don’t eat us, robot overlords in the future.

text category category_

8 xxbos xxmaj no one is going to mistake xxup the xxup squall for a good movie , but it sure is a
memorable one . xxmaj once you ‘ve taken in xxmaj myrna xxmaj loy ’s performance as xxmaj
nubi the hot - blooded gypsy girl you ‘re not likely to forget the experience . xxmaj when this
film was made the exotically beautiful xxmaj miss xxmaj loy was still being cast as foreign
vixens , often xxmaj asian and usually sinister . xxmaj she ’s certainly an eyeful here . xxmaj it
appears that her skin was darkened and her hair was curled . xxmaj in most scenes she ’s
barefoot and wearing little more than a skirt and a loose - fitting peasant blouse , while in one
scene she wears nothing but a patterned towel . i suppose xxmaj i ‘m focusing on xxmaj miss
xxmaj loy

neg neg

We can also run prediction on individual sentences one at a time:

learn.predict("That movie was wicked cool!")

('pos', tensor(1), tensor([0.0092, 0.9908]))

Our model predicts that the review is positive, as expected.

fastai also has another way to load datasets and run this pipeline
—the data block API. This can be very useful if your data is not in a
standard format like IMDb was, in the preceding example. For
more information on the data block, data loaders, and more, see
the fastai documentation.

ULMFiT for Transfer Learning
The language model we used in the previous section was trained to guess the next
word on a set of Wikipedia articles after reading all the words before. We got great
results by directly fine-tuning this language model to a movie review classifier, but
with one extra step, we can do even better.

Wikipedia English is slightly different from IMDb English. So instead of jumping
directly to the classifier, we could fine-tune our pretrained language model to the
IMDb dataset and then use that as the base for our classifier instead of the Wikipedia
language model.

This intuitively makes sense—if you, as a literate human being, get some context on
what movie reviews generally sound like, you’d probably do a better job of classifying
them. It’s kind of like getting access to the SAT reading passages a few days before you
actually take the test. Only here, we won’t call the language model out for cheating,
since we’re friends.2

42 | Chapter 2: Transformers and Transfer Learning

https://docs.fast.ai

3 Who also happens to be the creator of fastai!

But beyond that, another very important reason why this is useful is that we often
have more raw data than we have labeled text data. Labeling is expensive and gener‐
ally requires human time and effort, so it’s not uncommon to have a large database of
text records where only a small subset of them are used for, say, document tagging.
But with this fine-tuning approach, we can still use the unlabeled data to fine-tune
the language model even before we train the classifier.

At the risk of dragging on a flawed analogy, this is almost like getting access to years
of previous SAT passages. None of them will show up on the test exactly, but practic‐
ing them will help get a sense of what the SAT is like.

This approach is called ULMFiT, introducted by Jeremy Howard3 and Sebastian
Ruder in 2018. The process is summarized in Figure 2-1.

Figure 2-1. ULMFiT

Arrows and boxes make everything so much simpler, don’t they?

Since we already have the pretrained Wikipedia language model, we can start with
step 2 of the pipeline in Figure 2-1—fine-tuning the IMDb language model.

Fine-Tuning a Language Model on IMDb
We can get our text data in a DataLoaders suitable for language modeling very easily:

dls_lm = TextDataLoaders.from_folder(path, is_lm=True, valid_pct=0.1)
dls_lm.show_batch(max_n=5)

text text_

0 xxbos xxmaj about thirty minutes into the film , i thought
this was one of the weakest " xxunk ever because it had
the usual beginning (a murder happening , then xxmaj
columbo coming , inspecting everything and interrogating
the main suspect) squared ! xxmaj it was boring because i
thought i knew everything already . \n\n xxmaj but then
there was a surprising twist that turned this episode into

xxmaj about thirty minutes into the film , i thought this
was one of the weakest " xxunk ever because it had the
usual beginning (a murder happening , then xxmaj
columbo coming , inspecting everything and interrogating
the main suspect) squared ! xxmaj it was boring because i
thought i knew everything already . \n\n xxmaj but then
there was a surprising twist that turned this episode into a

Training with fastai | 43

text text_

1 yeon . xxmaj these two girls were magical on the screen . i
will certainly be looking into their other films . xxmaj
xxunk xxmaj jeong - ah is xxunk cheerful and hauntingly
evil as the stepmother . xxmaj finally , xxmaj xxunk - su
xxmaj kim gives an excellent performance as the weary ,
broken father . \n\n i truly love this film . xxmaj if you have
yet to see

. xxmaj these two girls were magical on the screen . i will
certainly be looking into their other films . xxmaj xxunk
xxmaj jeong - ah is xxunk cheerful and hauntingly evil as
the stepmother . xxmaj finally , xxmaj xxunk - su xxmaj
kim gives an excellent performance as the weary , broken
father . \n\n i truly love this film . xxmaj if you have yet to
see '

2 tends to be tedious whenever there are n’t any hideous
monsters on display . xxmaj luckily the gutsy killings and
eerie set designs (by no less than xxmaj bill xxmaj paxton !
) compensate for a lot ! a nine - headed expedition is send
(at hyper speed) to the unexplored regions of space to
find out what happened to a previously vanished spaceship
and its crew . xxmaj

to be tedious whenever there are n’t any hideous monsters
on display . xxmaj luckily the gutsy killings and eerie set
designs (by no less than xxmaj bill xxmaj paxton !)
compensate for a lot ! a nine - headed expedition is send
(at hyper speed) to the unexplored regions of space to
find out what happened to a previously vanished spaceship
and its crew . xxmaj bad

3 movie just sort of meanders around and nothing happens
(i do n’t mean in terms of plot - no plot is fine , but no
action ? xxmaj come on .) xxmaj in hindsight , i should
have expected this - after all , how much can really happen
between 4 teens and a bear ? xxmaj so although special
effects , acting , etc are more or less on

just sort of meanders around and nothing happens (i do
n’t mean in terms of plot - no plot is fine , but no action ?
xxmaj come on .) xxmaj in hindsight , i should have
expected this - after all , how much can really happen
between 4 teens and a bear ? xxmaj so although special
effects , acting , etc are more or less on par

4 greetings again from the darkness . xxmaj writer / xxmaj
director (and xxmaj wes xxmaj anderson collaborator)
xxmaj noah xxmaj baumbach presents a semi -
autobiographical therapy session where he unleashes the
anguish and turmoil that has carried over from his
childhood . xxmaj the result is an amazing insight into
what many people go through in a desperate attempt to
try and make their family work . \n\n xxmaj

again from the darkness . xxmaj writer / xxmaj director
(and xxmaj wes xxmaj anderson collaborator) xxmaj noah
xxmaj baumbach presents a semi - autobiographical
therapy session where he unleashes the anguish and
turmoil that has carried over from his childhood . xxmaj
the result is an amazing insight into what many people go
through in a desperate attempt to try and make their
family work . \n\n xxmaj the

Then we have a convenience method to directly grab a Learner from it, using the
AWD_LSTM architecture like before. We use accuracy and perplexity as metrics (the lat‐
ter is the exponential of the loss), and we set a default weight decay of 0.1. to_fp16
puts the Learner in mixed precision, which is going to help speed up training on
GPUs that have Tensor Cores:

learn = language_model_learner(
 dls_lm, AWD_LSTM, metrics=[accuracy, Perplexity()],
 path=path, wd=0.1).to_fp16()

44 | Chapter 2: Transformers and Transfer Learning

By default, a pretrained Learner is in a frozen state, meaning that only the head of the
model will train while the body stays frozen. We show you what is behind the
fine_tune method here and use a fit_one_cycle method to fit the model:

learn.fit_one_cycle(1, 1e-2)

epoch train_loss valid_loss accuracy perplexity time

0 4.120048 3.912788 0.299565 50.038246 11:39

This model takes a while to train, so it’s a good opportunity to talk about saving inter‐
mediary results.

You can easily save the state of your model like so:

learn.save('1epoch')

This will create a file in learn.path/models/ named 1epoch.pth. If you want to load
your model on another machine after creating your Learner the same way, or resume
training later, you can load the content of this file with:

learn = learn.load('1epoch')

We can then fine-tune the model after unfreezing:

learn.unfreeze()
learn.fit_one_cycle(10, 1e-3)

epoch train_loss valid_loss accuracy perplexity time

0 3.893486 3.772820 0.317104 43.502548 12:37

1 3.820479 3.717197 0.323790 41.148880 12:30

2 3.735622 3.659760 0.330321 38.851997 12:09

3 3.677086 3.624794 0.333960 37.516987 12:12

4 3.636646 3.601300 0.337017 36.645859 12:05

5 3.553636 3.584241 0.339355 36.026001 12:04

6 3.507634 3.571892 0.341353 35.583862 12:08

7 3.444101 3.565988 0.342194 35.374371 12:08

8 3.398597 3.566283 0.342647 35.384815 12:11

9 3.375563 3.568166 0.342528 35.451500 12:05

Once this is done, we save all of our model except the final layer that converts activa‐
tions to probabilities of picking each token in our vocabulary. The model, not includ‐
ing the final layer, is called the encoder. We can save it with save_encoder:

learn.save_encoder('finetuned')

Training with fastai | 45

Who’s That Pokémon? The Encoder

The encoder is the portion of the NLP model that maps input text
to some tensors that we use to solve NLP tasks. The encoder itself
is not specific to any task, and typically is used in conjunction with
a “decoder” or “head” that is used to map the vectors onto some
task-specific data structure.

Before using this to fine-tune a classifier on the reviews, we can use our model to
generate random reviews—since it’s trained to guess what the next word of the sen‐
tence is, we can use it to write new reviews:

TEXT = "I liked this movie because"
N_WORDS = 40
N_SENTENCES = 2
preds = [learn.predict(TEXT, N_WORDS, temperature=0.75)
 for _ in range(N_SENTENCES)]

print("\n".join(preds))

i liked this movie because of its story and characters . The story line was very
 > strong , very good for a sci - fi film . The main character , Alucard , was
 > very well developed and brought the whole story
i liked this movie because i like the idea of the premise of the movie , the (
 > very) convenient virus (which , when you have to kill a few people , the "
 > evil " machine has to be used to protect

With the language model fine-tuned on movie reviews, we can now modify it to clas‐
sify them. The idea is that at this point, if the model is “smart enough” to predict the
next word, it must be able to perform a simple positive/negative classification.

Training a Text Classifier
Using the same method as before, we can load the IMDb dataset again, but this time,
we’ll be using it for text classification. Note that we pass in the vocabulary as a param‐
eter. This is to make sure that the text classifier understands the same set of words
that the language model was trained on:

dls_clas = TextDataLoaders.from_folder(
 untar_data(URLs.IMDB), valid='test',
 text_vocab=dls_lm.vocab)

Then we can define our text classifier like before:

learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)

The difference is that before training it, we load the previous encoder:

learn = learn.load_encoder('finetuned')

46 | Chapter 2: Transformers and Transfer Learning

The last step is to train with discriminative learning rates and gradual unfreezing. In
computer vision, we often unfreeze the model all at once, but for NLP classifiers, we
find that unfreezing a few layers at a time makes a real difference:

learn.fit_one_cycle(1, 2e-2)

epoch train_loss valid_loss accuracy time

0 0.347427 0.184480 0.929320 00:33

In just one epoch we get the same result as our training in the first section—not too
bad! We can pass -2 to freeze_to to freeze all except the last two parameter groups:

learn.freeze_to(-2)
learn.fit_one_cycle(1, slice(1e-2/(2.6**4),1e-2))

epoch train_loss valid_loss accuracy time

0 0.247763 0.171683 0.934640 00:37

Then we can unfreeze a bit more, and continue training:

learn.freeze_to(-3)
learn.fit_one_cycle(1, slice(5e-3/(2.6**4),5e-3))

epoch train_loss valid_loss accuracy time

0 0.193377 0.156696 0.941200 00:45

Finally, we can unfreeze the entire model, and let it train all the layers to get a final
boost in accuracy:

learn.unfreeze()
learn.fit_one_cycle(2, slice(1e-3/(2.6**4),1e-3))

epoch train_loss valid_loss accuracy time

0 0.172888 0.153770 0.943120 01:01

1 0.161492 0.155567 0.942640 00:57

Now, you have a text classification model that can accurately predict if a movie review
has positive or negative sentiment based on the raw text content of the review alone.
With an understanding of the fastai APIs, you should now be able to implement
your own text classifier on a dataset of your choice.

Training with fastai | 47

4 To do this well, you need a powerful tokenizer that can recognize text encoding in many languages.

While the IMDb dataset was fairly simple, many real-world NLP problems today can
be formulated as text classification problems. Some of the things you can do with text
classification include:

• Predicting the programming language of some source code
• Building a simple email spam classifier
• Improving the functionality of an automated content moderation bot for online

chats or forums
• Categorizing documents based on their language4

One of the best parts about text classification is that there’s a single, simple, interpret‐
able metric to optimize—accuracy. So not only can you solve these tasks, but you can
also know how well you’re doing using statistics that many people are familiar with.

While the IMDb model we built just now does a wonderful job, it’s perhaps not super
impressive. We’ve had pretty good spam classifiers since the dawn of the dinosaurs, so
binary predictions on text is not something you might associate with the glorious
future we had previously sold you on. But it turns out that this idea of a language
model is so powerful that it has become the poster child for NLP today.

To illustrate this, let’s give a language model on its own, with no additional training or
fine-tuning, a chance to flex its muscles.

Inference with Hugging Face
Now that we know how to train language models, we could conceptually train a very
large one on a lot of data and get it to produce quite accurate-sounding text. Here,
we’ll use the Hugging Face library to get prediction samples from a language model
trained using a procedure similar to the one we used in the previous section:

import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel

Load pretrained model tokenizer (vocabulary)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

Encode a text inputs
text = "With great power comes great "
indexed_tokens = tokenizer.encode(text)

Convert indexed tokens in a PyTorch tensor
tokens_tensor = torch.tensor([indexed_tokens])

48 | Chapter 2: Transformers and Transfer Learning

This code snippet initializes a tokenizer, which is a function that takes in strings as
input and returns arrays of numbers that are easier for the model to interpret. We’ll
be covering tokenizers in much more detail in the next chapter, but for now, if you
want a quick look into what our model sees, try printing tokens_tensor:

print(tokens_tensor)

tensor([[3152, 1049, 1176, 2058, 1049]])

Now, let’s do the actual inference, which is, again, just a few lines of code thanks to
the amazing Hugging Face transformers library:

Load pretrained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')

Set the model in evaluation mode to deactivate the DropOut modules
This is IMPORTANT to have reproducible results during evaluation!
model.eval()

Predict all tokens
with torch.no_grad():
 outputs = model(tokens_tensor)
 predictions = outputs[0]

Get the predicted next subword
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
print(predicted_text)

INFO:transformers.configuration_utils:Model config GPT2Config {
 "activation_function": "gelu_new",
 "architectures": [
 "GPT2LMHeadModel"
],
 "attn_pdrop": 0.1,
 "bos_token_id": 50256,
 "embd_pdrop": 0.1,
 "eos_token_id": 50256,
 "initializer_range": 0.02,
 "layer_norm_epsilon": 1e-05,
 "model_type": "gpt2",
 "n_ctx": 1024,
 "n_embd": 768,
 "n_head": 12,
 "n_layer": 12,
 "n_positions": 1024,
 "resid_pdrop": 0.1,
 "summary_activation": null,
 "summary_first_dropout": 0.1,
 "summary_proj_to_labels": true,
 "summary_type": "cls_index",
 "summary_use_proj": true,
 "task_specific_params": {

Inference with Hugging Face | 49

5 A character from the Spider-Man comic book series, who once said, “With great power comes great responsi‐
bility,” just like our language model did!

 "text-generation": {
 "do_sample": true,
 "max_length": 50
 }
 },
 "vocab_size": 50257
}

INFO:transformers.modeling_utils:Weights of GPT2LMHeadModel not initialized from
 > pretrained model: ['h.0.attn.masked_bias', 'h.1.attn.masked_bias',
 > 'h.2.attn.masked_bias', 'h.3.attn.masked_bias', 'h.4.attn.masked_bias',
 > 'h.5.attn.masked_bias', 'h.6.attn.masked_bias', 'h.7.attn.masked_bias',
 > 'h.8.attn.masked_bias', 'h.9.attn.masked_bias', 'h.10.attn.masked_bias',
 > 'h.11.attn.masked_bias', 'lm_head.weight']

With great power comes great responsibility

Nice! It looks like whatever we just ran was able to re-create the wisdom of Uncle
Ben5 in just a few lines of code!

And to be clear, this wasn’t just some simple lookup, database search, or something
like that. This was an actual state-of-the-art neural network that after reading large
amounts of text on the internet, was able to complete sentences based on the “knowl‐
edge” it gained. Pretty cool, huh?

But without context, this is all just a black box that you throw sentences into. So now,
let’s break down each line of code in the block we just ran to get a really good idea of
what’s going on.

Loading Models
First, we load a pretrained model. This is the single most important step for transfer
learning. It downloads the model that we’re going to use to make predictions from
somewhere on the internet and loads it in the right format into an object in our code.
All of that functionality is thankfully packed into this one line of code:

model = GPT2LMHeadModel.from_pretrained('gpt2')

INFO:transformers.configuration_utils:Model config GPT2Config {
 "activation_function": "gelu_new",
 "architectures": [
 "GPT2LMHeadModel"
],
 "attn_pdrop": 0.1,
 "bos_token_id": 50256,
 "embd_pdrop": 0.1,

50 | Chapter 2: Transformers and Transfer Learning

 "eos_token_id": 50256,
 "initializer_range": 0.02,
 "layer_norm_epsilon": 1e-05,
 "model_type": "gpt2",
 "n_ctx": 1024,
 "n_embd": 768,
 "n_head": 12,
 "n_layer": 12,
 "n_positions": 1024,
 "resid_pdrop": 0.1,
 "summary_activation": null,
 "summary_first_dropout": 0.1,
 "summary_proj_to_labels": true,
 "summary_type": "cls_index",
 "summary_use_proj": true,
 "task_specific_params": {
 "text-generation": {
 "do_sample": true,
 "max_length": 50
 }
 },
 "vocab_size": 50257
}

INFO:transformers.modeling_utils:Weights of GPT2LMHeadModel not initialized from
 > pretrained model: ['h.0.attn.masked_bias', 'h.1.attn.masked_bias',
 > 'h.2.attn.masked_bias', 'h.3.attn.masked_bias', 'h.4.attn.masked_bias',
 > 'h.5.attn.masked_bias', 'h.6.attn.masked_bias', 'h.7.attn.masked_bias',
 > 'h.8.attn.masked_bias', 'h.9.attn.masked_bias', 'h.10.attn.masked_bias',
 > 'h.11.attn.masked_bias', 'lm_head.weight']

Most deep learning libraries package this model-loading functionality neatly into a
simple function. It’s the last thing you’ll have to worry about.

The specific model we’re loading here is unimportant at this stage, but just so you
know, it’s called GPT-2, which was really revolutionary when it came out and basi‐
cally broke the internet. You can read more about it in an article that Ajay wrote in
2019, but we’ll talk about it in this book as well, in Chapter 9.

Loading Models

Loading models to a variable named model, regardless of the task
or domain, is extremely common in deep learning, so keep that in
mind when you’re browsing notebooks or code samples online.

Next we run this little line of code, which tells our model that we’re not training now
and are instead going to make predictions (i.e., perform inference):

model.eval()

Inference with Hugging Face | 51

https://oreil.ly/aT5AG

6 Primarily, we disable the DropOut and BatchNorm layers, which are only useful during training.
7 OK, maybe this phrase is not applicable to GPT-2 specifically, but when we all have computers that are 300

times faster than what we have today, this adjective will be accurate.

There are a few things that change internally in the model object when we call this
line,6 allowing us to generate predictions from the model. Again, this is not the most
important line for what we’re doing now, but make sure that you call this function
whenever you would like to generate predictions. Running this line in a notebook will
also print out all the layers of the model in the standard PyTorch format, so maybe
scroll through that if you’re feeling curious.

With the weights downloaded, the model loaded into memory, and the model object
set into evaluation mode, it’s time to crank out some output from our lean,7 mean,
text-generating machine.

Generating Predictions
We’re going to group the next three lines together, since they work as a block:

with torch.no_grad():
 outputs = model(tokens_tensor)
 predictions = outputs[0]

The first line, with torch.no_grad():, tells PyTorch to run the lines in that indent
block in the torch.no_grad() context, which means PyTorch won’t calculate the gra‐
dients, or backward pass, for the model. If you’re not familiar with backpropagation,
or not entirely clear why gradients are calculated in the first place, refer to the resour‐
ces we have in the introduction. Strictly speaking, we don’t need to turn off gradient
computation, but this saves time, memory, and compute, and makes the inference
run faster.

In the torch.no_grad() context, we then run a forward pass. As always, PyTorch
makes this extremely simple. Just call model as a function, with the tokens_tensor we
prepared as the input.

But wait, wasn’t model an object with the pretrained weights that we loaded earlier?
How is it also a function?

52 | Chapter 2: Transformers and Transfer Learning

Python Dunder Methods
In Python, you can actually do this! You have to define a __call__ method in your
class, which is a special function called a dunder method. Python has a lot of these
cool dunder functions, some of which you’ve likely encountered before, like
__init__, which lets you set up a constructor for your class, and __len__, which lets
you define a “length” property for your objects that you can access via the len() func‐
tion. Python dunder methods allow you to define a lot of cool functionality for your
custom classes, such as addition, equality, and more.

If you define a function called __call__() in your Python class, you can then treat
instances of your class as functions, and the __call__() function will be invoked
every time you do so. We’ll soon talk about PyTorch nn.Module objects, which are the
building blocks for neural nets. The nn.Module class implements the __call__ func‐
tion by default. Therefore, every PyTorch model (and submodule) can also be called
as a function, which can make your code very neat and tidy. This is why we can both
define the model variable and call it as we would for a function at the same time.

If you’re interested in learning more about Python dunder methods, check out this
tutorial or read more online (there are plenty of great resources one search away).

Calling model(input_tensor), in general, will return a torch.tensor object with the
predictions. But in this case, the Hugging Face library actually gives us a lot of other
items as well. In this case, model(tokens_tensor) will return a tuple, where the first
element is the predictions tensor. Let’s quickly confirm all of this by checking a few
lengths and shapes:

len(outputs)
outputs[0].shape
torch.Size([1, 5, 50257])

This checks out, because according to the Hugging Face transformers documenta‐
tion, the predictions tensor is supposed to have shape (batch_size,

sequence_length, config.vocab_size). Here, the batch size is 1, since we’re only
passing in one sentence. The sequence length should be 5, which makes sense if you
take a look at the line where we define the input sentence, which had five words
(space delimited substrings) in the string:

text = "With great power comes great "

The value of 50257 for the vocabulary size seems accurate, but this is something we
could always double-check by going through the documentation for this model.

Inference with Hugging Face | 53

https://oreil.ly/LqU6v

We can’t emphasize enough the importance of this technique of
checking the size, shape, and dimensions of torch.tensors. It’s
one of the most effective ways of debugging your model. Hopefully,
as you start training more complex models and building your own
architectures from scratch, this will come naturally. But until then,
always remember to try to check the size with .size and reason
through what’s going on in your model.

Since it seems like outputs[0] is what we want, we’ll assign it to the variable predic
tions. Putting these together and wrapping them in the torch.no_grad() context
gives us that mini-block of code that we had earlier:

with torch.no_grad():
 outputs = model(tokens_tensor)
 predictions = outputs[0]

predictions is a torch.tensor with values that describe the probability of each
word. Remember, one of the dimensions of this torch.tensor is the size of the
vocabulary (i.e., the number of possible words that the model could predict). What
we want now is the word that is mostly likely to come next in our sentence. We grab
this by using the argmax function, which gets the index of the largest value in the
array:

predicted_index = torch.argmax(predictions[0, -1, :]).item()

To ensure that we’re absolutely clear on what exactly we’re doing, let’s also quickly
break down the way we index predictions. It’s a three-dimensional tensor, so we
specify three indices. The first, along the batch dimension, is 0. Since we’re not run‐
ning batch predictions, there’s only one element in this axis, so it’s what we pick.
Along the sequence length dimension, we pick the last element. We do this because
we want to predict the last word in the sentence we passed in. The last index is :,
which means we want to grab everything. We need all the elements along the vocabu‐
lary dimension to calculate which one is most likely.

Finally, we decode the index we got into a word using the tokenizer.decode() func‐
tion. This is just a simple lookup:

predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
print(predicted_text)

And there we have it! Re-creating wisdom in just a few lines of code.

54 | Chapter 2: Transformers and Transfer Learning

Conclusion
In Chapter 8, we’ll try putting these ideas together to develop a technique that utilizes
both transformers and transfer learning to create an incredibly powerful set of mod‐
els that can solve the tasks we just demonstrated, as well as many more.

There’s a lot in this chapter that we haven’t explained yet. We’ve intentionally left out a
lot of details, such as what exactly a model is/does, how the tokenizer is implemented
in code, and perhaps most importantly, how to use the pretrained model for transfer
learning.

Don’t worry, though: we’ll eventually get to all that. The goal of this chapter was to
help you understand some of the important components of an NLP pipeline by run‐
ning code and seeing results in real time. To test your understanding of the material
so far, try to use a different language model, swap out the prompt, and see if you can
get the model to predict a popular quote, phrase, or idiom. Note that to do this, you
might need to swap out the tokenizer as well.

Once you’re able to perform these tasks, you should be ready to move on to the next
chapter, in which we formally introduce some of the most popular NLP applications
today and build a few together.

Conclusion | 55

CHAPTER 3

NLP Tasks and Applications

In Chapter 2, we gave you a gentle introduction to language models and fine-tuning.
Now, let’s explore more of what fine-tuning can actually be used for. It is good for
more than just generating better domain-specific language models, as we alluded to
in the previous chapter. Fine-tuning can be used to solve meaningful real-world tasks,
which serve as the building blocks of complex real-world NLP applications.

In this chapter, we will officially introduce several of these “meaningful real-world
tasks” and present several popular benchmarks, such as GLUE and SQuAD, for meas‐
uring performance on these tasks. We will also highlight several standard publicly
available datasets for you to use when solving these tasks on your own. And, most
importantly, we will solve two of these tasks—named entity recognition (NER) and
text classification—together to show just how all of this works.

We hope this chapter gives you a deeper, more applied and hands-on take to per‐
forming NLP and can serve as the launch pad for building your own real-world NLP
applications.

Pretrained Language Models
As we mentioned in Chapter 1, NLP has come a long way over just the past few years.
Instead of training NLP models from scratch, it is now possible (and advisable) to
leverage pretrained language models to perform common NLP tasks such as NER.
Only when you have highly custom NLP needs is it advisable to train your NLP
model from scratch. But, before we proceed any further, let’s define some of the terms
we will use in this chapter. We have already covered some of these terms in the previ‐
ous two chapters, but this will be a good refresher nonetheless to tie everything
together.

57

https://gluebenchmark.com
https://oreil.ly/o2ENK

1 Ankur has an entire book on hands-on unsupervised learning if you’re curious.

Machine learning is an application of artificial intelligence that enables machines to
improve their performance on a defined task by learning from data.

Natural language processing is the branch of machine learning that involves natural
(aka “human”) language, such as text and speech. Computer vision, which we will not
cover in this book, is the branch of machine learning that involves visual data, such as
images and video.

Machines can learn from labeled data or unlabeled data. The area of machine learn‐
ing that involves labeled data (e.g., this is an image of a “cat” or a “dog”) is known as
supervised learning, and the area that involves unlabeled data (e.g., you have images of
cats and dogs but none are labeled as such) is known as unsupervised learning.1 The
third major area of machine learning, known as reinforcement learning, involves soft‐
ware agents learning how to take action in an environment (either physical or digital)
to maximize the rewards they receive.

In machine learning, the process of machines learning from data (also referred to as
“training on data”) to improve their performance on a specific task results in a model.
Once the machines have learned/trained to a satisfactory level of performance on the
task, the model stores the knowledge acquired from the training process in the form
of model parameters (e.g., weights), which are used in the calculus and linear algebra
performed in machine learning.

The model uses this stored knowledge (i.e., model parameters) to perform inference
(i.e., generate predictions) on new or never-before-seen data. So long as the new data
is similar to the data the machines had trained on, the performance on the new data
should be similar to the performance the machines had achieved on the original
training dataset.

Turning back to our original topic, we can use pretrained language models to per‐
form common NLP tasks. When we refer to pretrained models, we refer to models
that were previously trained on data. Instead of having machines train on data from
scratch to perform NLP tasks, we start with pretrained language models that have
already been trained on lots and lots of data to perform language modeling to good
levels of performance. We then fine-tune the pretrained language models to perform
specific NLP tasks beyond language modeling; this process of fine-tuning a language
model to perform another NLP task is known as transfer learning, which we will turn
to next. (Don’t worry: we will discuss what these common NLP tasks are very soon,
too.)

58 | Chapter 3: NLP Tasks and Applications

https://oreil.ly/gjo83

Transfer Learning and Fine-Tuning
Using pretrained language models is the fastest way to perform common NLP tasks.
In contrast, if you need to perform uncommon NLP tasks, you may need to train the
model from scratch, including sourcing and annotating/labeling the data relevant for
your task.

There will be times when your task is similar to but not exactly the same as the task
the pretrained model was trained to perform. In these cases, it is possible to leverage
some of the prior learning by the pretrained model instead of training a model
entirely from scratch. You are effectively “transferring” learning from one model to
another.

Transfer learning is possible because pretrained language models are neural net‐
works. Neural networks are a class of models in machine learning in which machines
learn to represent data in a manner that enables them to perform complex tasks such
as data classification.

Neural networks typically involve learning a series of representations, with each sub‐
sequent representation making it easier for the machine to interpret the data from the
prior representation. Each representation is learned by a layer in the neural network;
the more layers a neural network has, the more representations are learned (see
Figure 3-1). Modern neural networks typically have many layers—in other words,
they are very deep. This is where the terms deep learning and deep neural networks
come from.

Figure 3-1. Artificial neural network

Transfer Learning and Fine-Tuning | 59

In transfer learning, we borrow the first several layers of a pretrained language model.
These first several layers have already learned some useful representations of the data,
making it easier for us to train the subsequent layers of the neural network for our
specific task.

For example, these first several layers of the pretrained language model may have
already discovered a good way to represent the various tokens in our text. Instead of
having to learn these representations from scratch, we can just borrow and/or trans‐
fer the knowledge from the pretrained model and then train it some more (fine-tune
it) on our specific task.

Transfer learning and fine-tuning are very common practices in NLP today and have
helped accelerate the build of NLP applications in specific domains (e.g., finance,
legal, etc.). If we had to train NLP models from scratch every time we switched from
one domain to another (e.g., from analyzing finance documents to legal documents),
building NLP applications would be a very slow and arduous process.

Instead, we could leverage a generic pretrained language model trained on lots of tex‐
tual data crawled from the web and fine-tune it for finance or for legal and quickly
build a domain-specific language model, similar to what we did for movie reviews in
Chapter 2. Transfer learning is why NLP has blossomed in industry in recent years.

With this context in mind, let’s introduce the common NLP tasks.

NLP Tasks
Hugging Face has an excellent overview of the common NLP tasks, which we will
present here now. These tasks include sequence classification, question answering,
language modeling, text generation, named entity recognition, summarization, and
translation. This list is by no means exhaustive, but it does highlight the most fre‐
quent use cases for NLP today in building applications and is a great place for us to
start:

Sequence classification
Sequence classification is as straightforward as it sounds; it involves classifying
sequences into a given number of classes. When performed on text, sequence
classification is also referred to as text classification, which we will perform
together later in this chapter. An example of sequence classification is sentiment
analysis, which we performed when we classified IMDb movie reviews as posi‐
tive, negative, or neutral in Chapter 2. Another example is entailment, which
involves labeling the relationship between two statements (known as the text and
hypothesis, respectively) into one of three classes: positive entailment (hypothesis
states something that is definitely correct about the situation or event in the text),
neutral entailment (hypothesis states something that might be correct about the
situation or event in the text), or negative entailment (hypothesis states

60 | Chapter 3: NLP Tasks and Applications

https://oreil.ly/dpngk

something that is definitely incorrect about the situation or event in the premise).
Within the field of NLP, this is more specifically referred to as a natural language
understanding (NLU) task given what the machine has to be able to infer from
the data in order to perform this task well. The General Language Understanding
Evaluation (GLUE) benchmark is the most popular benchmark to measure pro‐
gress on sequence classification tasks and natural language understanding, more
generally. The authors of the original GLUE paper released an even harder
benchmark to measure progress on NLU, known as SuperGLUE, which you
should be aware of. You can find many more text classification datasets on Papers
with Code.

Question answering
Question answering is the task of providing the correct answer from a sequence
of text or audio given a question. Think of this as reading comprehension; the
machine has to find the correct segment of text from a reading passage and
present this as the answer to a question that is being asked. The most popular
benchmark to measure progress on question answering is known as SQuAD 2.0.
It is a collection of 100,000 answerable questions from the original SQuAD data‐
set (known as SQuAD 1.1) plus 50,000 unanswerable questions that look similar
to answerable ones. The unanswerable questions were introduced to fool the
machine, making the task more difficult. The machine has to decide whether the
question is answerable or not, and, if it is, the machine has to provide the correct
answer.

Language modeling
We have covered language modeling already, but, as a refresher, language model‐
ing is the task of predicting the next sequence of words given a sequence of
words. This particular type of language modeling is known as causal language
modeling and is commonly used for natural language generation (NLG) in the
field of NLP. Another type of language modeling is masked language modeling, in
which the machine must predict the masked word or words in a sequence given
the surrounding context. Given the nature of this task, there is no industry-
setting performance benchmark, but there are plenty of datasets available.

Text generation
Text generation is similar to language modeling in that the task involves generat‐
ing a coherent sequence of text that is a continuation of the given text, but it is
more open-ended compared to language modeling. Think of text generation as
longer sequence text prediction versus the shorter sequence text prediction
involved in language modeling. Text generation gained mainstream popularity
with the release of OpenAI’s GPT-2 in 2019. There is no industry performance
benchmark for this task, but here are some datasets.

NLP Tasks | 61

https://gluebenchmark.com
https://gluebenchmark.com
https://super.gluebenchmark.com
https://oreil.ly/rICba
https://oreil.ly/xtIX9
https://oreil.ly/Mg91w
https://oreil.ly/oW7ya
https://oreil.ly/cdFp2

2 For more on the dataset, view the original source.

Named entity recognition
We introduced named entity recognition (NER) in Chapter 1; it is the task of
classifying tokens of interest (think words) in a sequence of tokens (think sen‐
tence) into specific entity types, such as a person, an organization, or a location.
The most popular dataset and benchmark for this task is CoNLL-2003, which is
an NER challenge dating back to 2003. Back then, statistical NLP models were
used to perform NER, but today the best-performing NER models are
transformer-based. For more on NER, including datasets, visit the Papers with
Code website. We will perform NER together later in this chapter.

Summarization
Summarization is the task of summarizing a document into a shorter text. The
usefulness of this task should be fully apparent; this is a task all of us perform on
a daily basis, synthesizing information from a long article into a shorter block/
summary to hold as memory. The industry performance benchmark and dataset
for this task is CNN/Daily Mail, and here are some public datasets that are
available.

Translation
Translation (or machine translation, as it is commonly called) is the task of trans‐
lating a text from one language to another. Think of Google Translate or the
Translate app by Apple. The most popular metric to score the quality of machine
translation is known as BLEU. You can also find many datasets for this task on
Papers with Code.

To reiterate: this list is by no means exhaustive. These are just some of the frequent
use cases for NLP today; other use cases include voicebots, chatbots, speech recogni‐
tion, entity linking (which we explored in Chapter 1), and more. Nevertheless, this
should give you a flavor of how NLP is being used in applications today.

Natural Language Dataset
Now that we’ve covered the common NLP tasks, let’s perform two of them—named
entity recognition and text classification—using pretrained language models. Before
we do, we need a natural language dataset to work with.

We will use the AG News Classification Dataset in this chapter. AG is a collection of
more than one million news articles, gathered from more than two thousand news
sources. This dataset is provided by the academic community and is commonly used
for research purposes (e.g., to benchmark performance of various NLP models over
the years).2

62 | Chapter 3: NLP Tasks and Applications

https://oreil.ly/QyXmB
https://oreil.ly/56Rdp
https://oreil.ly/56Rdp
https://oreil.ly/56Rdp
https://oreil.ly/67MBe
https://oreil.ly/rSzCv
https://oreil.ly/fVx8m
https://oreil.ly/Q2n0V

3 For more on this dataset, visit the dataset page on Kaggle.
4 To follow along, visit the Chapter 3 notebook in our GitHub repo.

We will use a specific version of this AG News Classification Dataset that was con‐
structed by Xiang Zhang and is available on Kaggle.3 This version of the dataset has
better documentation and is readily available as a comma-separated values (CSV) file,
whereas the original is not.

This Kaggle version of the dataset, which we will refer to as the AG News Topic Clas‐
sification Dataset (“AG Dataset”) from now on, is a labeled dataset. Each news article
has a title and a description and is classified into one of four classes (1-World, 2-
Sports, 3-Business, and 4-Sci/Tech). Each class contains 30,000 training samples and
1,900 testing samples, and the entire dataset has 120,000 training samples and 7,600
testing samples.

Explore the AG Dataset
Let’s explore the training dataset in Google Colab.4 Since we want to use GPUs to
train our models, let’s enable GPUs in Google Colab (or locally, if GPUs are available).
In your Google Colab session, go to Edit → Notebook settings, select GPU under
Hardware Accelerator, and click Save. Note that this restarts the runtime; all of your
cell states get lost.

Next, we will load the data, convert all column names to lowercase and replace spaces
with underscores, and add a new feature called "class_name" that maps the numeri‐
cal labels to class names:

Import libraries
import pandas as pd
import os

Get current working directory
cwd = os.getcwd()

Import AG Dataset
data = pd.read_csv(cwd+'/data/ag_dataset/train.csv')
data = pd.DataFrame(data=data)
data.columns = data.columns.str.replace(" ","_")
data.columns = data.columns.str.lower()
data["class_name"] = data["class_index"].map({1:"World", 2:"Sports",
 3:"Business", 4:"Sci_Tech"})

Natural Language Dataset | 63

https://oreil.ly/VUW4C
https://github.com/nlpbook/nlpbook

Let’s preview the data now:

View data
data

class_index title description class_name

0 3 Wall St. Bears Claw Back Into the
Black (Reuters)

Reuters - Short-sellers, Wall Street’s
dwindli...

Business

1 3 Carlyle Looks Toward Commercial
Aerospace (Reu...

Reuters - Private investment firm Carlyle
Grou...

Business

2 3 Oil and Economy Cloud Stocks’
Outlook (Reuters)

Reuters - Soaring crude prices plus worries
\ab...

Business

3 3 Iraq Halts Oil Exports from Main
Southern Pipe...

Reuters - Authorities have halted oil export
\f...

Business

4 3 Oil prices soar to all-time record,
posing new...

AFP - Tearaway world oil prices, toppling
reco...

Business

...

119995 1 Pakistan’s Musharraf Says Won’t Quit
as Army C...

KARACHI (Reuters) - Pakistani President
Perve...

World

119996 2 Renteria signing a top-shelf deal Red Sox general manager Theo Epstein
acknowled...

Sports

119997 2 Saban not going to Dolphins yet The Miami Dolphins will put their courtship
of...

Sports

119998 2 Today’s NFL games PITTSBURGH at NY GIANTS Time: 1:30 p.m.
Line: ...

Sports

119999 2 Nets get Carter from Raptors INDIANAPOLIS -- All-Star Vince Carter was
trad...

Sports

120000 rows × 4 columns

As shown in the cell output, the training dataset has 120,000 observations and four
features, as expected. The four features are class_index, title, description, and
class_name.

Here are the number of observations per class (30,000 each, as expected):

Count observations by class
data.class_name.value_counts()

Sports 30000
Sci_Tech 30000
World 30000
Business 30000
Name: class_name, dtype: int64

Next, let’s view the titles and descriptions of the first 10 news articles to get a better
sense of the data:

64 | Chapter 3: NLP Tasks and Applications

View titles
for i in range(10):
 print("Title of Article",i)
 print(data.loc[i,"title"])
 print("\n")

Title of Article 0
Wall St. Bears Claw Back Into the Black (Reuters)

Title of Article 1
Carlyle Looks Toward Commercial Aerospace (Reuters)

Title of Article 2
Oil and Economy Cloud Stocks' Outlook (Reuters)

Title of Article 3
Iraq Halts Oil Exports from Main Southern Pipeline (Reuters)

Title of Article 4
Oil prices soar to all-time record, posing new menace to US economy (AFP)

Title of Article 5
Stocks End Up, But Near Year Lows (Reuters)

Title of Article 6
Money Funds Fell in Latest Week (AP)

Title of Article 7
Fed minutes show dissent over inflation (USATODAY.com)

Title of Article 8
Safety Net (Forbes.com)

Title of Article 9
Wall St. Bears Claw Back Into the Black

View descriptions
for i in range(10):
 print("Description of Article",i)
 print(data.loc[i,"description"])
 print("\n")

Description of Article 0
Reuters - Short-sellers, Wall Street's dwindling\band of ultra-cynics, are
 > seeing green again.

Natural Language Dataset | 65

Description of Article 1
Reuters - Private investment firm Carlyle Group,\which has a reputation for
 > making well-timed and occasionally\controversial plays in the defense
 > industry, has quietly placed\its bets on another part of the market.

Description of Article 2
Reuters - Soaring crude prices plus worries\about the economy and the outlook
 > for earnings are expected to\hang over the stock market next week during the
 > depth of the\summer doldrums.

Description of Article 3
Reuters - Authorities have halted oil export\flows from the main pipeline in
 > southern Iraq after\intelligence showed a rebel militia could
 > strike\infrastructure, an oil official said on Saturday.

Description of Article 4
AFP - Tearaway world oil prices, toppling records and straining wallets, present
 > a new economic menace barely three months before the US presidential
 > elections.

Description of Article 5
Reuters - Stocks ended slightly higher on Friday\but stayed near lows for the
 > year as oil prices surged past #36;46\a barrel, offsetting a positive
 > outlook from computer maker\Dell Inc. (DELL.O)

Description of Article 6
AP - Assets of the nation's retail money market mutual funds fell by #36;1.17
 > billion in the latest week to #36;849.98 trillion, the Investment Company
 > Institute said Thursday.

Description of Article 7
USATODAY.com - Retail sales bounced back a bit in July, and new claims for
 > jobless benefits fell last week, the government said Thursday, indicating the
 > economy is improving from a midsummer slump.

Description of Article 8
Forbes.com - After earning a PH.D. in Sociology, Danny Bazil Riley started to
 > work as the general manager at a commercial real estate firm at an annual
 > base salary of #36;70,000. Soon after, a financial planner stopped by his
 > desk to drop off brochures about insurance benefits available through his
 > employer. But, at 32, "buying insurance was the furthest thing from my mind,"
 > says Riley.

66 | Chapter 3: NLP Tasks and Applications

Description of Article 9
 NEW YORK (Reuters) - Short-sellers, Wall Street's dwindling band of ultra-
 > cynics, are seeing green again.

Based on these titles and descriptions, you should now have a better feel for the data,
including the somewhat noisy text in the descriptions (e.g., the description of article
8).

Let’s preprocess the text some more to remove some of the noise in the data. This will
remove and replace tokens that are superfluous (such as double spaces) and make
reading the text (for humans) more difficult:

Clean up text
cols = ["title","description"]
data[cols] = data[cols].applymap(lambda x: x.replace("\\"," "))
data[cols] = data[cols].applymap(lambda x: x.replace("#36;","$"))
data[cols] = data[cols].applymap(lambda x: x.replace(" "," "))
data[cols] = data[cols].applymap(lambda x: x.strip())

Write data to CSV
data.to_csv(cwd+'/data/ag_dataset/prepared/train_prepared.csv', index=False)

Great! This is the dataset we will work with. Now, let’s proceed with the our first NLP
application, named entity recognition.

NLP Task #1: Named Entity Recognition
In Chapter 1, we briefly explored named entity recognition (NER), which parses
notable entities in natural language and labels them with their appropriate class label
such as “Person” or “Location.” It is a form of text classification. NER models use the
context around a given token of interest to predict the entity label. Once the entities
are labeled correctly, we can use the extracted information to perform information
retrieval (search documents based on people or places we care about), create struc‐
tured data from unstructured documents (e.g., parse key binding legal terms from
legal documents at scale), and more. Think of NER as adding rich metadata to every
document, which then allows us to perform rich analysis downstream.

Perform Inference Using the Original spaCy Model
Let’s first use a pretrained language model from spaCy to perform NER. spaCy offers
four different pretrained models for NER: small, medium, large, and transformer-
based. All four are trained on written text in the form of blogs, news, and comments,
but differ in size. The larger the model and the more data it has trained on, the better
the performance, generally speaking. In Chapter 1, we opted for the small model to
perform the basic NLP tasks. Now, we will opt for the transformer-based model, spa‐
Cy’s best model.

NLP Task #1: Named Entity Recognition | 67

We will install spaCy on GPU by specifying spacy[cuda110]. You
can specify other CUDA versions, too. For more, visit the spaCy
documentation. If you do not wish to use GPUs, install spaCy using
pip install -U spacy (without the CUDA reference). If you run
into issues, email us at authors@appliednlpbook.com.

If you haven’t installed spaCy already, these commands will get you everything you
need. If you’re running them in a notebook, prefix each line with a ! character:

pip install -U spacy[cuda110,transformers,lookups]==3.0.3
pip install -U spacy-lookups-data==1.0.0
pip install cupy-cuda110==8.5.0
python -m spacy download en_core_web_trf

You may need to restart your runtime after installing spaCy and
downloading the pretrained language model before you can suc‐
cessfully import the model in the next step.

Import spacy and load language model
import spacy
spacy.require_gpu()
print(spacy.require_gpu())
nlp = spacy.load("en_core_web_trf")

True

If spaCy on GPU is successfully installed and activated, you will see
"GPU: True". If you do not, troubleshoot your GPU installation or
revert to CPU.

Now that we’ve installed spaCy and loaded the transformer-based model, let’s print
the metadata of the model, which highlights the underlying components and the
associated accuracy metrics:

View metadata of the model
import pprint
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(nlp.meta)

Based on the metrics (which we will not print here, given the volume of text
involved), we can see that the model has an NER component, which supports various
entity types, including the following: CARDINAL, DATE, EVENT, FAC, GPE,
LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON,
PRODUCT, QUANTITY, TIME, and WORK OF ART.

68 | Chapter 3: NLP Tasks and Applications

https://spacy.io/usage
https://spacy.io/usage
mailto:authors@appliednlpbook.com

Let’s focus on three of the more common entity types: ORG (short for organization),
PERSON, and GPE (i.e., geopolitical entity, such as country, city, and state). Let’s
review the accuracy metrics for these three. F is the F1 Score, P is the Precision, and R
is the Recall.

As a refresher, precision is the percentage of true positives/the number of total posi‐
tive predictions. Recall is the percentage of true positives/the number of total true
positives. F1 is a blended metric and is calculated as 2 × (Precision × Recall)/(Preci‐
sion + Recall). The higher the F1, precision, and recall, the better:

'PERSON': {'f': 0.9546191248, 'p': 0.9481648422000001, 'r': 0.9611618799}

'ORG': {'f': 0.9012772751, 'p': 0.9046474359000001, 'r': 0.8979321315000001}

'GPE': { 'f': 0.9467271182, 'p': 0.9619925137, 'r': 0.9319386332}

From these metrics, we can see that the model is decently good at all of these entities
but is worst at ORG, for which it has an F1 score of 90.

Now that we have loaded the spaCy model and reviewed some of its metadata, let’s
apply the spaCy model to our AG News data and generate the results of named entity
recognition:

Print NER results for Descriptions
for i in range(9):
 print("Article",i)
 print(data.loc[i,"description"])
 print("Text Start End Label")
 doc = nlp(data.loc[i,"description"])
 for token in doc.ents:
 print(token.text, token.start_char,
 token.end_char, token.label_)
 print("\n")

Here are the NER labels for the descriptions of the first nine articles, including the
start and end positions of every tagged entity. Let’s review the performance of the
NER model:

Article 0: Reuters - Short-sellers, Wall Street’s
dwindling band of ultra-cynics, are seeing green again.
Text Start End Label
Reuters 0 7 ORG

Great result.

Article 1: Reuters - Private investment firm Carlyle Group, which has
a reputation for making well-timed and occasionally controversial plays
in the defense industry, has quietly placed its bets on another part of
the market.
Text Start End Label
Reuters 0 7 ORG
Carlyle Group 34 47 ORG

NLP Task #1: Named Entity Recognition | 69

Great result.

Article 2: Reuters - Soaring crude prices plus worries about the
economy and the outlook for earnings are expected to hang over the stock
market next week during the depth of the summer doldrums.
Text Start End Label
Reuters 0 7 ORG
next week 134 143 DATE
summer 168 174 DATE

Great result. Even the date entities were captured correctly.

Article 3: Reuters - Authorities have halted oil export flows from the
main pipeline in southern Iraq after intelligence showed a rebel militia
could strike infrastructure, an oil official said on Saturday.
Text Start End Label
Reuters 0 7 ORG
Iraq 86 90 GPE
Saturday 186 194 DATE

Great result.

Article 4: AFP - Tearaway world oil prices, toppling records and
straining wallets, present a new economic menace barely three months
before the US presidential elections.
Text Start End Label
AFP 0 3 ORG
barely three months 103 122 DATE
US 134 136 GPE

Great result.

Article 5: Reuters - Stocks ended slightly higher on Friday but stayed
near lows for the year as oil prices surged past $46 a barrel,
offsetting a positive outlook from computer maker Dell Inc. (DELL.O)
Text Start End Label
Reuters 0 7 ORG
Friday 42 48 DATE
the year 74 82 DATE
46 110 112 MONEY
Dell Inc. 173 182 ORG

Great result.

Article 6: AP - Assets of the nation’s retail money market
mutual funds fell by $1.17 billion in the latest week to $849.98
trillion, the Investment Company Institute said Thursday.
Text Start End Label
1.17 billion 69 82 MONEY
the latest week 86 101 DATE
849.98 trillion 105 121 MONEY
the Investment Company Institute 123 155 ORG
Thursday 161 169 DATE

AP should have been recognized as an organization, but otherwise great result.

70 | Chapter 3: NLP Tasks and Applications

Article 7: USATODAY.com - Retail sales bounced back a bit in July, and
new claims for jobless benefits fell last week, the government said
Thursday, indicating the economy is improving from a midsummer slump.
Text Start End Label
July 50 54 DATE
last week 97 106 DATE
Thursday 128 136 DATE
midsummer 181 190 DATE

USATODAY.com should have been recognized as an organization, but otherwise
great result.

Article 8: Forbes.com - After earning a PhD in Sociology, Danny
Bazil Riley started to work as the general manager at a commercial real
estate firm at an annual base salary of $70,000. Soon after, a financial
planner stopped by his desk to drop off brochures about insurance
benefits available through his employer. But, at 32, “buying insurance
was the furthest thing from my mind,” says Riley.
Text Start End Label
Danny Bazil Riley 49 66 PERSON
annual 145 151 DATE
70,000 168 174 MONEY
32 315 317 DATE
Riley 380 385 PERSON

Forbes.com is an organization, and 32 is not a date.

All in all, the NER results from the pretrained spaCy model are excellent. This high‐
lights why you should leverage pretrained models, where possible, for your work.

Custom NER
However, sometimes pretrained models are insufficient for the task at hand. This
could be for several reasons. First, the corpus on which we want to apply a pretrained
model may be materially different from the corpus on which the model was trained.
For example, the transformer-based spaCy model we just used was trained on blogs,
news, and comments on the web. If our corpus is materially different (e.g., a very
technical corpus such as legal, finance, or health data), we may want to annotate a
portion of our corpus and fine-tune the transformer-based spaCy model. By fine-
tuning the model, the model will perform better on our specific corpus.

Second, the tasks that the transformer-based spaCy model was trained to perform
may differ from the task we wish to perform. For example, the spaCy named entity
recognition does not support stock tickers (TICKER) as an entity type. If we wish to
add this TICKER entity type, we would have to annotate tickers in our data and fine-
tune the transformer-based spaCy model.

To demonstrate how transfer learning and fine-tuning a model work, let’s annotate a
small portion of our data for the three core entity types (ORG, PERSON, and GPE)
and add a new entity type (TICKER).

NLP Task #1: Named Entity Recognition | 71

We will use an annotation platform called Prodigy to annotate our data. Prodigy, like
spaCy, is the product of the software company Explosion. Prodigy allows us to load
our corpus into a beautiful browser-based UI to label our data however we wish.
These labels then become available for us to fine-tune our spaCy model. Unfortu‐
nately, Prodigy is not available for free, but we do highly recommend it for purchase.

In the next section, we will install and use Prodigy to annotate a small portion of our
AG News Dataset. Then, we will use these annotations to fine-tune our spaCy model
from earlier. For those that do not wish to purchase a Prodigy license, feel free to skip
the next section.

Annotate via Prodigy: NER
After purchasing a license for Prodigy, you will be able to download a Python .whl file
(also known as a wheel). Unfortunately, this wheel cannot be installed on Google
Colab, so we will need to install it locally on our own machine.

Before installing Prodigy, we recommend you create and activate a virtual environ‐
ment on your local machine. If you have the Anaconda distribution of Python
installed, you can create and activate a new virtual environment using the following
commands on the command line. Even if you have set up your local environment
using the README on our GitHub repo, you should create a separate virtual envi‐
ronment solely for Prodigy to avoid any conflicts with our main conda environment:

It is generally preferable to create new virtual environments for
every machine learning project you have. Having a separate envi‐
ronment for each project allows you to install the relevant libraries
for your current project without having to uninstall libraries that
you may need for other projects but that can cause code to fail for
your current project. Think of a virtual environment as a blank
canvas (i.e., new set of libraries) for you to do your work without
having to worry about how changes to the current canvas conflict
with canvases for your other projects.

$ conda create -n prodigy anaconda python=3.8
$ conda activate prodigy

72 | Chapter 3: NLP Tasks and Applications

https://explosion.ai
https://github.com/nlpbook/nlpbook

5 For more on these Prodigy recipes, visit the Prodigy website.

Now, navigate to the directory with the Prodigy wheel and install the package. You
may need to specify the wheel by its full filename if this doesn’t work:

$ pip install prodigy*.whl

You will also need to install spaCy in this virtual environment and download the
en_core_web_lg model if you haven’t already:

As of March 2021, Prodigy does not support spaCy 3.x (hence no
transformer-based pipelines). We expect Prodigy to introduce sup‐
port for spaCy 3.x in the near future, but, for now, we will have to
work with spaCy 2.x and the en_core_web_lg model.

$ pip install -U spacy[cuda110]==2.3.5
$ pip install -U spacy-lookups-data==1.0.0
$ pip install cupy-cuda110==8.5.0
$ python -m spacy download en_core_web_lg

Now, let’s prepare a file to load into Prodigy. For NER, we need a CSV of text snippets
with a column name of “text.” We will use the descriptions from the AG News dataset
as the text snippets and annotate these in Prodigy:

Prepare text for annotation in Prodigy
train_prodigy_ner = data.copy()
train_prodigy_ner = train_prodigy_ner.description
train_prodigy_ner.rename("text",inplace=True)
train_prodigy_ner.to_csv(cwd +
 "data/ag_dataset/ner/raw/train_prodigy_ner.csv",
 index=False)

We can now load the data into Prodigy and begin annotating the data. We will anno‐
tate the data for the three main entities we care about (ORG, PERSON, and GPE) and
a fourth new entity (TICKER).

To perform this annotation, we will use the Prodigy recipe called ner.manual (see
Figure 3-2). This recipe allows us to mark entity spans in a text by highlighting them
and selecting the respective labels.5

Figure 3-2. ner.manual recipe

NLP Task #1: Named Entity Recognition | 73

https://oreil.ly/sKGFV

In the command line, we need to specify the name of the recipe (ner.manual), the
name of the dataset to which we want to save the annotations to (e.g.,
ag_data_ner_ticker), a spaCy model (e.g., en_core_web_lg or blank:en if we want
to start with a blank model), the text source (in our case, the path to the train_prod
igy_ner.csv), and the entity labels we want available in the Prodigy UI to annotate
the text:

$ python -m prodigy ner.manual <dataset> <spacy_model> <source> \
 --label ORG,PERSON,GPE,TICKER

If successful, you will see this message in the command line:

✨ Starting the web server at http://localhost:8080 … Open the app in
your browser and start annotating!

Go ahead and copy the URL into your web browser. You should see an annotation UI,
such as the one shown in Figure 3-3.

Figure 3-3. Prodigy NER annotation UI

We can now highlight spans and label the data with the correct entities, as seen in
Figure 3-4. Click the big green checkmark box to proceed to the next example (or
click “a” key on your keyboard). If you would like to skip an example because you are
not sure of the answer, click the spacebar on your keyboard.

74 | Chapter 3: NLP Tasks and Applications

Figure 3-4. Prodigy NER annotation UI: annotating first example

Let’s annotate a few hundred of these and then save them by clicking the floppy disk
icon next to the word “prodigy” on the upper-left corner of the UI. A few hundred
annotations should be good enough for a decent fine-tuned model, although, as
always, the more annotations, the better the model’s performance will be.

Once the annotations are ready, we can output the NER annotations in spaCy’s JSON
format using the data-to-spaCy Prodigy recipe (see Figure 3-5).

Figure 3-5. data-to-spaCy Prodigy recipe

For this recipe, we need to specify the output path (to train the model), an evaluation
output path (to evaluate the model), the language (“en” in our case), and the NER
dataset using the --ner tag:

$ python -m prodigy data-to-spacy <output> <eval_output> --lang en \
--ner ag_data_ner_ticker

NLP Task #1: Named Entity Recognition | 75

6 For more on the train command, visit the official spaCy documentation.

This command outputs the annotations in JSON format, but, as of spaCy v3.0
(released in January 2021), spaCy’s main data format is a binary format. Before we
can train using spaCy, we need to convert the JSON format to binary. spaCy has a
convert recipe for this (see Figure 3-6), which we will use now:

$ python -m spacy convert <path-to-json> <path-for-binary-output>

Figure 3-6. Convert spaCy recipe

We are converting to a binary format because we will use the anno‐
tations to fine-tune the transformer-based model in spaCy 3.x after
we finish exporting from Prodigy.

Great! We are now ready to fine-tune our spaCy model with this annotated data.

Train the Custom NER Model Using spaCy
If you skipped the Prodigy section just now, do not worry. We have generated the
train and eval annotations and made them available to you for this next section.

At this point, deactivate the conda environment called “prodigy”
and activate the main conda environment called “applied_nlp” if
you are developing the spaCy model on your local machine.

We will train two separate NER models. First, we will train an NER model using
transfer learning. To perform transfer learning, we will use a transformer model
called RoBERTa, a large, pretrained language model released by Facebook in 2019.
Second, we will train an NER model without a transformer model and GPUs and rely
just on a CPU-based training pipeline. This will help us compare the transformer-
based GPU-enabled performance versus the standard CPU-based performance.

Let’s go ahead and train the transformer-based model first. We will use the train
command in spaCy, as shown in Figure 3-7.6

76 | Chapter 3: NLP Tasks and Applications

https://oreil.ly/w1uFU
https://oreil.ly/NuvuI

Figure 3-7. spaCy train command

For this command, we will need to specify the config path, the output path, and the
GPU tag to enable training on GPU. The requirement for the training configuration
path is new to spaCy v3.0. The training config is the file that sets all the settings and
hyperparameters for the model development:

 $ python -m spacy train <config_path> --output <output_path> \
 --gpu-id 0

Let’s generate this config file for training first. Surprise! There is a spaCy recipe for
creating config files from scratch (see Figure 3-8). For this command, we need to
specify the lang (en), the pipeline component we need to modify (ner), the optimize
tag (“efficiency” for faster inference/smaller model or “accuracy” for higher accuracy/
slower, larger model), whether GPUs will be used or not, and whether the command
should overwrite the output file, if one exists.

Figure 3-8. spaCy init config

 $ python -m spacy init config <config_path> --lang --pipeline \
 --optimize --gpu --force

Another option is to use the training configuration UI on spaCy’s official website to
generate the best practices version of the config file for NER. To kick off most
projects, this is the best place to start because spaCy updates this configuration widget
with the best practices it has discovered based on its model experimentation. This is
what we will use. We will start a blank transformer-based template (with GPU
enabled).

We need to auto-fill this base NER template from spaCy using another spaCy com‐
mand called init fill-config, shown in Figure 3-9.

NLP Task #1: Named Entity Recognition | 77

https://oreil.ly/gFMVb

Figure 3-9. spaCy init fill-config

This command takes in two very simple parameters: an input path to the config file
(which we downloaded from spaCy’s website) and an output path. The command will
generate the final output config file by auto-populating the remaining components of
the base template generated from spaCy’s widget:

 $ python -m spacy init fill-config <config_path_original> \
 <config_path_new>

Let’s run this command now and then proceed to training. We will train for 30
epochs:

Auto-fill base template
ner_path = "data/ag_dataset/ner/"

The downloaded file from spaCy
config_file_path_input = cwd + ner_path + "config_spacy_template_gpu_blank.cfg"

The output file we will use for training
config_file_path_output = cwd + ner_path + "config_final_gpu_blank.cfg"

python -m spacy init fill-config "$config_file_path_input" \
"$config_file_path_output"

Train spaCy model on NER annotations
output_path = cwd + "/models/ag_dataset/ner/ner-gpu-blank"
train_path = cwd + "/data/ag_dataset/ner/annotations/binary/train"
dev_path = cwd + "/data/ag_dataset/ner/annotations/binary/eval"

python -m spacy train "$config_file_path_output" \
--output "$output_path" --paths.train "$train_path" \
--paths.dev "$dev_path" --training.max_epochs 30 --gpu-id 0 --verbose

Example 3-1 displays the results. As you can see, the model achieves an F1 score
above 95 within 30 epochs.

78 | Chapter 3: NLP Tasks and Applications

Example 3-1. spaCy NER: transformer GPU-based

========================= Training pipeline =============================
[i] Pipeline: ['transformer', 'ner']
[i] Initial learn rate: 0.0
E # LOSS TRANS... LOSS NER ENTS_F ENTS_P ENTS_R SCORE
--- ------- ------------- -------- ------ ------ ------ -----
 0 0 866.56 1087.32 3.31 1.75 29.99 0.03
 8 200 127924.74 63854.97 94.39 94.05 94.75 0.94
 17 400 2339.89 2798.22 94.13 93.78 94.48 0.94
 26 600 166.36 2400.21 95.40 95.00 95.81 0.95

Let’s now train the second model, this time without transfer learning from a
transformer-based model and no GPUs.

We will generate a config file first, and then we will train the model using this config
file for 30 epochs. Notice that the GPU tag is missing, which is what we want. The
absence of the GPU tag creates a config file that forgoes the transformer-based model.
This second model does not use transfer learning from the RoBERTa model, whereas
the first model we developed did:

Generate config file
The output file we will use for training
ner_path = "data/ag_dataset/ner"
config_file_path_output = cwd + new_path + "config_final_no_gpu_blank.cfg"

python -m spacy init config "$config_file_path_output" --lang en \
--pipeline ner --optimize efficiency --force

Train spaCy model on NER annotations
output_path = cwd + "/models/ag_dataset/ner/ner-no-gpu-blank"
train_path = cwd + "/data/ag_dataset/ner/annotations/binary/train"
dev_path = cwd + "/data/ag_dataset/ner/annotations/binary/eval"

python -m spacy train "$config_file_path_output" \
--output "$output_path" --paths.train "$train_path" \
--paths.dev "$dev_path" --gpu-id 0 --training.max_epochs 30 --verbose

The results of the second model (as shown in Example 3-2) are not bad but clearly
not as good as the results from the first model. This second model—which does not
use transfer learning from a large, pretrained language model—achieves an F1 score
that is near 90, well shy of the 95 F1 score of transformer-based models.

NLP Task #1: Named Entity Recognition | 79

Example 3-2. spaCy NER: no transformer CPU-based

========================= Training pipeline =============================
[i] Pipeline: ['tok2vec', 'ner']
[i] Initial learn rate: 0.001
E # LOSS TOK2VEC LOSS NER ENTS_F ENTS_P ENTS_R SCORE
--- ------- ------------- -------- ------ ------ ------ -----
 0 0 0.00 51.44 4.16 2.39 16.14 0.04
 0 200 719.12 2205.78 60.65 61.44 59.87 0.61
 1 400 105.93 871.47 70.72 69.26 72.24 0.71
 2 600 146.71 570.79 82.05 81.98 82.11 0.82
 3 800 195.22 349.08 86.29 86.22 86.36 0.86
 4 1000 302.78 276.36 88.16 87.59 88.75 0.88
 5 1200 190.30 193.66 87.47 87.31 87.63 0.87
 7 1400 229.27 116.89 87.44 86.58 88.32 0.87
 10 1600 184.20 82.39 88.55 91.75 85.56 0.89
 13 1800 216.00 82.64 87.67 87.60 87.74 0.88
 17 2000 256.72 87.17 88.04 88.56 87.53 0.88
 21 2200 179.27 60.26 89.19 89.91 88.48 0.89
 27 2400 244.17 60.08 87.50 86.75 88.27 0.88

Since the transformer-based model performs better than the non-transformer-based
model (as expected), let’s compare this fine-tuned transformer-based model (fine-
tuned on the AG News Dataset) with the original transformer-based spaCy version
(en_core_web_trf).

Custom NER Model Versus Original NER Model
It’s not an apples-to-apples comparison to compare the fine-tuned transformer-based
model with the original en_core_web_trf. This is because the fine-tuned model sup‐
ports just four entity types (ORG, PERSON, GPE, and TICKER), while the original
en_core_web_trf supports many more entity types (but does not support TICKER,
which is the new entity type we just annotated for the AG News Dataset).

Nevertheless, we can compare the two models on a sample of article descriptions in
the AG News dataset and see which model performs better. This will help us deter‐
mine whether fine-tuning the RoBERTa model improved the NER performance on
our dataset compared to the original spaCy model.

Before we compare the results of the two models, let’s load our fine-tuned NER
model and view its metadata:

Load custom NER model
spacy.require_gpu()
custom_ner_model = spacy.load(cwd + \
 '/models/ag_dataset/ner/ner-gpu-blank/model-best')

View metadata of the model
import pprint

80 | Chapter 3: NLP Tasks and Applications

pp = pprint.PrettyPrinter(indent=4)
pp.pprint(custom_ner_model.meta)

The fine-tuned NER model supports just four entity types, but the F1 scores are
pretty good: 97 for GPE, 93 for ORG, 96 for PERSON, and 98 for TICKER. By com‐
parison, the original spaCy model has F1 scores of 95 for GPE, 90 for ORG, and 95
for PERSON (and no F1 for TICKER, which the original spaCy model does not sup‐
port). Note that the comparison is not apples to apples because the F1 scores were
measured on different datasets, but this gives you a sense of relative performance.

Now, let’s use a built-in spaCy visualizer for NER to compare the two models:

We use the terms “original” and “base” interchangeably.

Compare NER results on Descriptions: Original/Base vs. Custom
from spacy import displacy
import random

spacy.require_gpu()
base_model = spacy.load("en_core_web_trf")

options = {"ents": ["ORG","PERSON","GPE","TICKER"]}

for j in range(3):
 i = random.randint(0, len(data))
 print("Article",i)
 doc_base = base_model(data.loc[i,"description"])
 doc_custom = custom_ner_model(data.loc[i,"description"])
 print("Base Model NER:")
 displacy.render(doc_base, style="ent", options=options, jupyter=True)
 print("Custom Model NER:")
 displacy.render(doc_custom, style="ent", options=options, jupyter=True)
 print("\n")

As shown in Figure 3-10, the two models have similar NER results (which makes
sense since the F1 scores are somewhat similar, albeit a bit higher for the fine-tuned
model). For example, for article 55405, both the base model and the fine-tuned model
capture “Apple” as an ORG. For article 4145, the base model misses “NewsFactor” as
an ORG and “Cingular Wireless” as an ORG, both of which the fine-tuned model
captures. The fine-tuned model misses “NYSE” as an ORG but captures “AWS” as
TICKER. For article 106431, the results are identical, too.

While the fine-tuned model does seem to perform better than the base model overall,
the fine-tuned model will not always outperform the base model for any given exam‐
ple. To see this, test the preceding code snippet to compare the results of the base

NLP Task #1: Named Entity Recognition | 81

model against the results of the fine-tuned model. You will surely find instances
where the base model performs better.

Congratulations! We fine-tuned the RoBERTa model and added a new entity for stock
tickers by annotating a small percentage of the AG News Dataset in Prodigy and
training it using spaCy. We then compared the fine-tuned model against the original
spaCy model and saw (generally) better performance from the fine-tuned model. We
can also confirm that the fine-tuned model is now tagging stock tickers, as expected.

Figure 3-10. Article examples

This is a big accomplishment for two reasons. First, our work shows that fine-tuning
a large, pretrained language model even on a small set of annotations (just a few hun‐
dred) improves performance. You don’t need to train a model from scratch; you can
leverage some prior learning from the pretrained language model and use that as a
launch pad to improve performance on your specific task on your specific corpus.
Transfer learning is a huge benefit to practitioners, dramatically reducing the time for
any new model build. Second, we showed just how easy it is to develop your own
NER model for your custom entity types (e.g., stock ticker). New model development
is pretty painless; you can get up and running with new custom models fast.

82 | Chapter 3: NLP Tasks and Applications

In the next section, let’s perform our second NLP task—text classification—applying
some of the same techniques we used for our custom NER model. These techniques
include annotating data and fine-tuning our large, pretrained language model to ach‐
ieve good performance on this text classification task.

NLP Task #2: Text Classification
Now that we’ve finished performing NER, let’s turn to a second NLP task: text classifi‐
cation. Text classification is a very common application of NLP; applications include
news apps that classify news articles into topic-based categories, the spam/not spam
feature of email apps, and the real news/fake news classification model on Facebook
and other social platforms.

As a recap, all of the articles in the AG News train Dataset are already classified into
one of four classes: Business, Sci_Tech, Sports, and World. We can skip annotations
altogether and use these labels to train a text classification model using spaCy. But, in
the real world, you will rarely have preannotated datasets like this. Instead, you will
typically have to go through the exercise of annotating your data from scratch.

To show you how easy it is to annotate data and generate a text classification model
by fine-tuning a large, pretrained language model, let’s annotate several examples
from scratch using Prodigy and then train a text classification model from the labels
we generate.

Like before, you can skip this next section if you’d rather not purchase a Prodigy
license, or if you would rather annotate the data in another annotation platform such
as Labelbox. We will export our annotations from Prodigy and make them available
for you to train the text classification model so if you decide to skip the Prodigy
annotations, do not worry.

Annotate via Prodigy: Text Classification
Like we did for NER, let’s prepare a file to load into Prodigy for text classification. As
before, we need a CSV of text snippets with a column name of “text.” We will use the
titles and descriptions (not just descriptions as we did for NER) from the AG News
Dataset as the text snippets and annotate these in Prodigy.

NLP Task #2: Text Classification | 83

https://labelbox.com

7 For more on the train_test_split function, visit the Scikit-learn documentation.
8 For more on these Prodigy recipes, visit the Prodigy website.

Let’s split the train dataset into two: one to use in Prodigy and one to use to evaluate
the text classification model. We can call these “textcat_train” and “textcat_eval” sets,
respectively. To perform this split, we will use the train_test_split function in
Scikit-learn:7

To train and evaluate text classification models in Prodigy
from sklearn.model_selection import train_test_split

Prepare for text classification
textcat = data.copy()
textcat["text"] = textcat["title"] + str(" ") + textcat["description"]
textcat["label"] = textcat["class_name"]
textcat.drop(columns=["class_index","title","description","class_name"],
 inplace=True)
textcat_train, textcat_eval = train_test_split(textcat, test_size=0.2,
 random_state=2020, stratify=textcat.label)

textcat_train.to_csv(cwd +
 '/data/ag_dataset/textcat/raw/train_prodigy_textcat_train_with_labels.csv',
 index=False)

textcat_eval.to_csv(cwd +
 '/data/ag_dataset/textcat/raw/train_prodigy_textcat_eval.csv',
 index=False)

textcat_train = textcat_train.text
textcat_train.to_csv(cwd +
 '/data/ag_dataset/textcat/raw/train_prodigy_textcat_train_without_labels.csv',
 index=False)

We can now load the data into Prodigy and begin annotating the data. We will anno‐
tate the data using four mutually exclusive labels: Business, Sci_Tech, Sports, and
World. To do this, we will use the Prodigy recipe called textcat.manual (Figure 3-11).
This recipe allows us to manually annotate categories that apply to the text. We set the
labels using the --label flag, and we use the --exclusive flag to designate the labels
as mutually exclusive; in other words, an example may have only one correct class
rather than multiple classes/labels.8

84 | Chapter 3: NLP Tasks and Applications

https://oreil.ly/YDl4A
https://oreil.ly/YUQ8x

Figure 3-11. textcat.manual Prodigy recipe

In the command line, we need to specify the name of the recipe (textcat.manual), the
name of the dataset to which we want to save the annotations (e.g., ag_data_text
cat), the text source (in our case, the path to the train_prodigy_text‐
cat_train_without_labels.csv), the labels we want available in the Prodigy UI to
annotate the text, and the --exclusive flag:

$ python -m prodigy textcat.manual <dataset> <source> \
 --label Business,Sci_Tech,Sports,World --exclusive

If successful, you will see this message in the command line:

✨ Starting the web server at <http://localhost:8080> … \
Open the app in your browser and start annotating!

Go ahead and copy the URL into your web browser. You should see an annotation UI,
as shown in Figure 3-12. Make sure you see “choice” next to the “VIEW ID” in the
upper-left corner; if not, you likely forgot to set the --exclusive tag.

We can now categorize each text into one of four categories. Click the big green
checkmark box to proceed to the next example (or press the “a” key on your key‐
board). If you would like to skip an example because you are not sure of the answer,
press the spacebar on your keyboard.

NLP Task #2: Text Classification | 85

Figure 3-12. Prodigy Textcat annotation UI

Let’s annotate a few hundred of these and then save them by clicking the floppy disk
icon next to the word “prodigy” in the upper-left corner of the UI. A few hundred
annotations should be good enough for a decent text classification model, although,
as always, the more annotations, the better the model’s performance will be.

Once the annotations are ready, we can output the annotations in spaCy’s JSON for‐
mat using the data-to-spaCy Prodigy recipe, which we also used earlier (Figure 3-13).

Figure 3-13. data-to-spaCy Prodigy recipe

For this recipe, we need to specify the output path (to train the model), the language
(“en” in our case), the textcat dataset using the --textcat flag, and the --textcat-
exclusive flag since we want to treat our classes as mutually exclusive. Note that we
do not need to set an evaluation output path since we already have a labeled text
cat_eval set, which we generated in the previous section using train_test_split:

86 | Chapter 3: NLP Tasks and Applications

$ python -m prodigy data-to-spacy <output> \
 --lang en --textcat ag_data_textcat --textcat-exclusive

Next, let’s convert this training data from JSON format to a binary format for spaCy
training:

$ python -m spacy convert <path-to-json> <path-for-binary-output>

Convert from JSON to binary format for spaCy training
Few Labels from Prodigy Annotations
json_path = "data/ag_dataset/textcat/annotations/jsons/"
bin_path = "data/ag_dataset/textcat/annotations/binary/"
input_path = cwd + json_path + "train_few_labels"
output_path = cwd + bin_path + "train_few_labels"
!python -m spacy convert "$input_path" "$output_path"

Finally, let’s convert the textcat_eval set from a CSV format to a JSON format for use
in spaCy. To perform this, we first need to load the CSV into Prodigy using the db-in
recipe (see Figure 3-14). For this recipe, we need to designate the dataset name (e.g.,
ag_data_textcat_eval) and the file path (e.g., path to train_prodigy_textcat_eval.csv):

Figure 3-14. db-in Prodigy recipe

 $ python -m prodigy db-in dataset in_file

If successful, you should see the following message:

✔ Imported 24000 annotations to 'ag_data_textcat_eval' \
in database SQLite Found and keeping existing "answer" \
in 0 examples

Now, we can use the data-to-spaCy recipe to export into spaCy’s JSON format:

 $ python -m prodigy data-to-spacy <output> \
 --lang en --textcat ag_data_textcat_eval --textcat-exclusive

NLP Task #2: Text Classification | 87

This is the same as before, except we will need to change the output path and the --
textcat tag to ag_data_textcat_eval.

Now, let’s also prepare the textcat_train_with_labels set because we will want to
train a text classification model on the original labels as well to compare how well the
Prodigy annotated model does versus one trained on many more labels.

We’ll repeat the same steps that we used to prepare the eval set, but this time using
the textcat_train_with_labels. We will call this dataset ag_data_text

cat_train_with_labels:

 $ python -m prodigy db-in dataset in_file
 $ python -m prodigy data-to-spacy <output> \
 --lang en --textcat ag_data_textcat_train_with_labels --textcat-exclusive

Now, let’s convert both of these JSONs to a binary format for spaCy training:

Convert from JSON to binary format for spaCy training - Eval Set
input_path = cwd + "/data/ag_dataset/textcat/annotations/jsons/eval"
output_path = cwd + "/data/ag_dataset/textcat/annotations/binary/eval"
!python -m spacy convert "$input_path" "$output_path"

Convert from JSON to binary format for spaCy training
Full Set of Labels
json_path = "data/ag_dataset/textcat/annotations/jsons/"
bin_path = "data/ag_dataset/textcat/annotations/binary/"
input_path = cwd + json_path + "train_full_labels"
output_path = cwd + bin_path + "train_full_labels"
!python -m spacy convert "$input_path" "$output_path"

Great! We are now ready to train a text classification model with this annotated data.

Train Text Classification Models Using spaCy
If you skipped the Prodigy section just now, don’t worry. We have generated the train
annotations and made them available to you.

We will train two separate models. First, we will train a text classification model using
the few hundred annotations we generated using Prodigy and evaluate it against the
textcat_eval set we generated earlier. Then, we will train a second text classification
model using the full set of labels in the textcat_train dataset from earlier and evalu‐
ate this, too, against the textcat_eval set.

To get started, let’s first generate the config file for training. We will use a
transformer-based model (RoBERTa) and perform transfer learning for our text clas‐
sification models. We will designate this as a multilabel classification problem because
we may have different labels for the same text; in other words, for the same text, dif‐
ferent annotators may have labeled the data differently because they disagreed. This is
a very common problem when annotating data. You will have internal disagreements/
differing judgments among annotators. You could review all the disagreements and

88 | Chapter 3: NLP Tasks and Applications

9 For more on the train command, visit the official spaCy documentation.

resolve them before training your model, or you could set up the model as a multila‐
bel classification model, as we have chosen to do:

We will refer to the Prodigy annotations version as the “few labels”
model since we have only ~800 annotations in total. We will call
the model trained on the 96,000 annotations the “full labels” model.

Generate config file
The output file we will use for training
config_file_path_output = cwd + "/data/ag_dataset/textcat/config_final.cfg"

python -m spacy init config "$config_file_path_output" --lang en \
--pipeline textcat_multilabel --optimize efficiency --gpu --force

If successful, you should see a message similar to Example 3-3. We have configured
this model as a multilabel text classification model, optimized for efficiency, leverag‐
ing GPUs, and using the RoBERTa transformer model as its base model.

Example 3-3. spaCy textcat configuration

[i] Generated config template specific for your use case
- Language: en
- Pipeline: textcat_multilabel
- Optimize for: efficiency
- Hardware: GPU
- Transformer: roberta-base
[+] Auto-filled config with all values
[+] Saved config

Let’s start by training the text classification model using our Prodigy annotations. As
we did before in the NER training process, we will use the train command in spaCy
(Figure 3-15):9

Figure 3-15. spaCy train command

Train model on text classification annotations
Few Labels from Prodigy
import spacy

NLP Task #2: Text Classification | 89

https://oreil.ly/WM63M

annots_path = "data/ag_dataset/textcat/annotations/binary/"
output_path = cwd + "/models/ag_dataset/textcat/few_labels"
train_path = cwd + annots_path + "train_few_labels"
dev_path = cwd + annots_path + "eval"

Then launch the script via a separate command:

python -m spacy train "$config_file_path_output" \
--output "$output_path" --paths.train "$train_path" \
--paths.dev "$dev_path" --gpu-id 0 --training.max_epochs 30 --verbose

Example 3-4 displays the results of the training process.

Example 3-4. spaCy text classification model: Prodigy annotations

================== Initializing pipeline =====================
Set up nlp object from config
Loading corpus from path: /content/drive/My Drive/Applied_NLP-
Loading corpus from path: /content/drive/My Drive/Applied_NLP-
Pipeline: ['transformer', 'textcat_multilabel']
Created vocabulary
Finished initializing nlp object
Initialized pipeline components: ['transformer', 'textcat_mult
√ Initialized pipeline

================== Training pipeline =========================
Loading corpus from path: /content/drive/My Drive/Applied_NLP-
Loading corpus from path: /content/drive/My Drive/Applied_NLP-
Removed existing output directory: /content/drive/My Drive/App
Removed existing output directory: /content/drive/My Drive/App
i Pipeline: ['transformer', 'textcat_multilabel']
i Initial learn rate: 0.0
E # LOSS TRANS... LOSS TEXTC... CATS_SCORE SCORE
--- ------- ------------- ------------- ---------- ------
 0 0 0.00 0.75 50.00 0.50
 9 200 0.00 139.63 76.09 0.76
 18 400 0.00 114.52 79.24 0.79
 27 600 0.00 79.26 83.00 0.83

As you can see, the model gets to an F1 score of ~83 after 30 epochs. This is still
remarkably good performance given that we trained the model on just a few hundred
annotations.

Now, let’s train the text classification model using the 96,000 original labels in the
textcat_train set (remember 24,000 examples were set aside for the textcat_eval
set using train_test_split). We should see a much higher F1 score since we will be
training on a lot more labels now.

90 | Chapter 3: NLP Tasks and Applications

The spaCy train command remains the same as before except for the new output
and train path:

Train model on text classification annotations
Full Set of Labels from AG Dataset
import spacy
annots_path = "data/ag_dataset/textcat/annotations/binary/"
output_path = cwd + "/models/ag_dataset/textcat/full_labels"
train_path = cwd + annots_path + "train_full_labels"
dev_path = cwd + annots_path + "eval"

python -m spacy train "$config_file_path_output" \
--output "$output_path" --paths.train "$train_path" \
--paths.dev "$dev_path" --gpu-id 0 --training.max_epochs 1 --verbose

Example 3-5 displays the results of the training process.

Example 3-5. spaCy text classification model: 96k original annotations

================== Initializing pipeline =======================
Set up nlp object from config
Loading corpus from path: /content/drive/My Drive/Applied_NLP-in
Loading corpus from path: /content/drive/My Drive/Applied_NLP-in
Pipeline: ['transformer', 'textcat_multilabel']
Created vocabulary
Finished initializing nlp object
Initialized pipeline components: ['transformer', 'textcat_multil
√ Initialized pipeline

================== Training pipeline ===========================
Loading corpus from path: /content/drive/My Drive/Applied_NLP-in
Loading corpus from path: /content/drive/My Drive/Applied_NLP-in
Removed existing output directory: /content/drive/My Drive/Appli
Removed existing output directory: /content/drive/My Drive/Appli
i Pipeline: ['transformer', 'textcat_multilabel']
i Initial learn rate: 0.0
E # LOSS TRANS... LOSS TEXTC... CATS_SCORE SCORE
--- ------- ------------- ------------- ---------- ------
 0 0 0.00 1.75 50.00 0.50
 9 200 0.00 128.94 76.53 0.77
 18 400 0.00 118.95 79.97 0.80
 27 600 0.00 97.88 83.81 0.84
 0 800 0.00 83.77 86.83 0.87
 0 1000 0.00 92.94 89.22 0.89
 0 1200 0.00 87.01 91.01 0.91
 0 1400 0.00 81.47 92.29 0.92
 0 1600 0.00 86.40 93.19 0.93
 0 1800 0.00 70.29 93.87 0.94
 0 2000 0.00 60.79 94.39 0.94
 0 2200 0.00 63.48 94.78 0.95

NLP Task #2: Text Classification | 91

As you can see, with the original 96k labels, the model gets an F1 score above 94 after
just one epoch. This should be no surprise; with more data, the model performance
improves dramatically.

Awesome! We have now just finished training our second NLP model.

Conclusion
In this chapter, we built models to solve two very popular and core NLP tasks—
named entity recognition and text classification—using one of the most widely used
and commercially relevant NLP libraries in the market today: spaCy. We also annota‐
ted our own data from scratch using Prodigy to develop these two models. You
should now have a much better feel for how easy it is to get up and running with NLP
models. Both of these models are ready to be used in production, and we will explore
how to stand them up in a production pipeline in Chapter 11.

We cannot emphasize this enough: when possible, it is best to start with a large, pre‐
trained language model and then fine-tune the model for your specific task on your
specific corpus. By leveraging the prior learning of the pretrained model, you will
need far fewer labels and considerably less time to achieve really great performance
on tasks such as the ones we solved together in this chapter. In a nutshell, this ability
to transfer learning from pretrained models to accelerate new model builds is what
has made NLP such a hot topic of interest in the enterprise today.

Now that you have a better feel for state-of-the-art NLP and how to solve some real-
world NLP tasks, let’s go back to the basics and build some of the foundational
knowledge you will need to perform NLP well. We will start with preprocessing and
tokenization in the next chapter, followed by word embeddings, RNNs, and Trans‐
formers. Later in the book, we will return to these models when we discuss produc‐
tionization of machine learning models.

92 | Chapter 3: NLP Tasks and Applications

PART II

The Cogs in the Machine

With a high-level understanding of what NLP is all about, it’s time to start diving into
the details to understand how exactly modern NLP works from first principles.

In this section, we’ll cover the following, in order:

• Tokenizers
• Embeddings
• Recurrent neural networks (RNNs)
• Transformers
• Transfer learning (part 2)

CHAPTER 4

Tokenization

This is our first chapter in the section of NLP from the ground up. In the first three
chapters, we walked you through the high-level components of an NLP pipeline.
From here till Chapter 9, we’ll be covering a lot of the underlying details to really
understand how modern NLP systems work. The main components of this are:

• Tokenization
• Embeddings
• Architectures

Previously, all of these steps were abstracted away in the libraries we used (spaCy,
transformers, and fastai). But now, we’ll try to understand how these libraries
actually work and how you can modify your code at a low level to build amazing NLP
applications beyond the simple examples we presented in this book.

One thing to note: “low level” is a subjective term. While some may call PyTorch a
low-level deep learning library, others may scoff at using that term for anything other
than building a custom memory allocator in x86 assembly. It’s a matter of perspective.
What we mean by low level here is that after learning about these things, you’ll have
enough of an understanding to build useful applications with NLP in the real world
and that you’ll also be able to understand and follow the latest research in the field.
We won’t be discussing anything that’s too far beyond the scope of NLP. For example,
learning about how CUDA works is certainly both interesting and useful, and we’ll do
a bit of that in Appendix B. But CUDA itself as a tool is useful for many things out‐
side NLP, so we’d consider that beyond the scope of this book. As much as possible,
we’ll try to keep the focus on things that actually improve the performance of your
models in production.

95

Each of the items in the list that we just saw (i.e., tokenizers, embeddings, and mod‐
els) can be thought of as an independent function. They take in some input and gen‐
erate some output. Each of these functions then passes on its output to the next stage
of the pipeline. To be more specific, we pass tokenized text into the embedding layer,
and we pass embeddings into the model. You can treat these functions as black boxes
if you would like and choose to focus on only one at a time. We’ll look at each one in
isolation, with tokenizers first.

A Minimal Tokenizer
As we start thinking about low-level parts of the deep learning stack, it’s useful to
understand components in terms of what their inputs and outputs are.

So what are the inputs and outputs here? The input is text. Usually, this is provided as
a .txt file or something else that is read into a Python object. The output is a
sequence of tokens. One of the main topics of this chapter will be a discussion of what
exactly a “token” is and what it should be doing.

As always, one of the best ways to understand something is to look at the code. So
here’s essentially what a tokenizer is:

text = open('example.txt', 'r').read()
words = text.split(" ")
tokens = {v: k for k, v in enumerate(words)}

tokens

{'The': 0,
 'quick': 1,
 'brown': 2,
 'fox': 3,
 'jumps': 4,
 'over': 5,
 'the': 6,
 'lazy': 7,
 'dog.': 8}

A tokenizer reads in text and returns a mapping between words and indices. Essen‐
tially, it creates a dictionary (both figuratively and literally, since the preceding exam‐
ple creates a Python dictionary) that maps words to numbers. This is extremely
useful, because we now have a representation of the source text that can be fed into an
NLP model:

token_map = map(lambda t: tokens[t], words)
list(token_map)

[0, 1, 2, 3, 4, 5, 6, 7, 8]

This was, of course, a drastically oversimplified example. In practice, you’d never
want to do tokenization this way. It’s slow, for one thing, and does not account for a

96 | Chapter 4: Tokenization

lot of intricacies across different languages. Furthermore, this simple tokenizer does
not account for punctuation, grammar, or compound word structure (i.e., the fact
that words ending in “-ing,” “-ify,” etc., are related) in any meaningful way. Nonethe‐
less, it’s a start.

Here’s a more precise way of stating what a tokenizer should be: a tokenizer is a pro‐
gram that converts a sequence of characters into a sequence of tokens. Tokenizers as a
general tool are very useful even outside NLP. Wherever there is a need to parse text,
there is probably some form of a tokenizer. Let’s take an example from the world of
compilers, because it turns out that tokenization is a very old, fundamental, and use‐
ful thing to do.

So useful, in fact, that there were popular tools like lex and flex
invented in the ’80s that generated the C code for a fast tokenizer
given a simple description of the token you wanted to parse!

When building a compiler for a programming language, one of the first things to do
is identify and mark keywords like if and for to pass on to the next stage. Here, the
tokenizer reads in a file and builds a new representation of the source code where the
raw ASCII/Unicode characters are replaced by tokens that represent these keywords,
which can then be used to construct a data structure called a parse tree.

We’re not building a compiler here, so the parse tree isn’t entirely relevant, and in
practice, we’ll be using libraries instead of complex code-generation procedures. But
we wanted to illustrate an example of how a tokenizer is a very useful and robust pro‐
gram to have, even outside of NLP.

The type of tokenizers we’re interested in as deep learning practitioners, though, usu‐
ally don’t give us parse trees. What we want is a tokenizer that reads the text and gen‐
erates a sequence of one-hot vectors.

That is the most important thing to understand about tokenizers from our top-down
perspective. The input is raw text, and the output is a sequence of vectors. To be even
more specific, the vectors, in our case, are simply one-hot encoded PyTorch tensors
that we pass into an nn.Embedding layer. Once we get to that stage, where we can pass
something to an embedding layer (which we’ll discuss in the next chapter), we’re
done with tokenization.

Now that we understand the input and outputs, let’s jump straight into the implemen‐
tation, after which we’ll look at some of the new ideas in this space, and examine
them in more low-level detail.

In our opinion, there are two tools for tokenization that are superior to most of the
others–spaCy’s tokenizer and the Hugging Face tokenizers library.

A Minimal Tokenizer | 97

spaCy’s tokenizer is more widely used, is older, and is somewhat more reliable. It has
its own unique tokenization algorithm that tends to work well for common NLP
tasks. The tokenizers library is a slightly more modern package that focuses on
implementing the newest algorithms from the newest research.

Some models like BERT expect certain specific tokens, so you can‐
not use any tokenizer you like on these models. To work around
this, recent versions of spaCy include wrappers around the Hug‐
ging Face transformers library, which allows you to combine the
rest of your spaCy workflow with transformers. But behind the
scenes, this will still use the BERT, not spaCy, tokenizer.

We’ve already used spaCy in Chapters 1 and 3, and will revisit it when we deploys
model in Part III. So in this chapter, we’ll focus on the Hugging Face tokenizers
library.

Hugging Face Tokenizers
tokenizers is Hugging Face’s official tokenization tool written in the Rust program‐
ming language (which happens to be Ajay’s favorite programming language at the
time of writing), with bindings to Python and JavaScript. While tokenizers could be
used as a general-purpose tokenizer, it being Hugging Face, it’s designed to be used
specifically for deep learning and NLP, with a specific focus on fast subword tokenizer
(which we’ll look at in detail once we try out the code first).

Tokenization, unlike other parts of the deep learning pipeline, is typically done on the
CPU. But that doesn’t mean it has to be slow! Hugging Face’s library makes good use
of the multiple cores you might have on your machine, and can tokenize large data‐
sets at the gigabyte scale (which is fairly large for nonacademic NLP) in under a
minute.

The tokenizers library further subdivides the task of tokenizations into smaller,
more manageable steps. Here’s Hugging Face’s description of the components of the
tokenization process in its library:

Normalizer
Executes all the initial transformations over the initial input string. For example,
when you need to lowercase some text, maybe strip it, or even apply one of the
common Unicode normalization processes, you will add a Normalizer.

PreTokenizer
In charge of splitting the initial input string. That’s the component that decides
where and how to pre-segment the origin string. The simplest example would be
like we saw before, to split on spaces.

98 | Chapter 4: Tokenization

Model
Handles all the subtoken discovery and generation. This part is trainable and
really dependent of your input data.

Post-Processor
Provides advanced construction features to be compatible with some of the
Transformer-based SOTA models. For instance, for BERT it would wrap the
tokenized sentence around [CLS] and [SEP] tokens.

Decode
In charge of mapping back a tokenized input to the original string. The decoder
is usually chosen according to the PreTokenizer we used previously.

Trainer
Provides training capabilities to each model.

Each of those logical modules has multiple options/implementations in the library:

Normalizer
Lowercase, Unicode (NFD, NFKD, NFC, NFKC), Bert, Strip…

PreTokenizer
ByteLevel, WhitespaceSplit, CharDelimiterSplit, Metaspace, …

Model
WordLevel, BPE, WordPiece, …

Post-Processor
BertProcessor, …

Decoder
WordLevel, BPE, WordPiece, …

You have some amount of freedom in choosing these, but more often than not, you’ll
be restricted to the components supported by the pretrained model you’re using. In
practice, you’ll want to use whatever is suggested on the documentation for your
model, so we suggest going through it if/when you encounter bugs.

Installing the library is as simple as running the following:

pip install tokenizers

But of course, we have already included this in our requirements.txt and environ‐
ment.yml files on the GitHub repo:

import tokenizers

Hugging Face Tokenizers | 99

https://oreil.ly/UAEX3

Subword Tokenization
If you continue looking through the documentation for tokenizers, you’ll notice that
there are a lot of different algorithms that are implemented in the library. But tokeni‐
zation seems like a fairly straightforward task, right? What gives?

Well, it turns out that there are plenty of ways you can decide to form a “token” from
a string of text.

For example, consider the strings "cat" and "cats". One valid subtokenization of
"cats" would be [cat, ##s], where the double-hashtag represents a prefix subtoken
of the initial input. The advantage of this approach is that you get the semantic infor‐
mation that word-based tokenizers provide without incurring the cost of a very large
vocabulary. These training algorithms might extract subtokens such as "##ing" and
"##ed" over an English corpus.

This approach has pros and cons in terms of computation cost. On the one hand,
you’ll have fewer words in your vocabulary, meaning a smaller embedding matrix
(discussed in Chapter 5). But on the other hand, one word will now have multiple
tokens, so you’ll be able to fit fewer words into a model that accepts a fixed number of
tokens.

As illustrated in Figure 4-1, the simplest character-based tokenizers will generally
never produce unknown tokens but will also break up a word into many small pieces,
which may cause some loss of information. On the other hand, you can fully and
accurately represent words with word-level tokenization, but then you’ll need a very
large vocabulary, or you risk having many unidentified tokens.

Figure 4-1. Subtokenization

So, the goal here is twofold:

• Increase the amount of information per token.
• Decrease the total number of tokens (vocabulary size).

100 | Chapter 4: Tokenization

Subword tokenizers achieve this effectively by finding a good balance between char‐
acters, subwords, and words.

Subword tokenization algorithms (the newer ones, at least) are not
set in stone. There is a “training” phase before we can actually
tokenize the text. This is not the training of the language model
itself, but rather a process we run to find the optimal balance
between character-level and word-level tokenization.

The idea of using prefixes and suffixes is simple enough, and you could perhaps
design a somewhat effective subword tokenizer by coding in rules for common sub‐
words like "##ing" and "##ed". However, in practice, there are a number of difficul‐
ties with this approach:

• There are many different languages, each with its own rules. Building a good sub‐
word tokenizer would then mean understanding and implementing a new set of
rules for each language.

• There is no guarantee that the rules you make are actually any good. As an
extreme example, you might decide to make a subword token for "super##", but
that might never show up in the text. So you’ve essentially wasted a spot in the
dictionary. You could evaluate the number of tokens matched and tune your
rules again, but at that point you might as well use a training algorithm.

• You as a human reading the text may not be able to capture intricacies in
repeated language patterns. It’s much simpler to have a computer read 40+ GB of
text and figure out the repeating tokens than it is to actually read 40+ GB of text
yourself!

So, the goal of the training procedure, then, is to identify recurring text in a corpus
and “refactor” it into a token. If a particular pattern is not repeated often, it is not
included as a token.

For example, if your text corpus has an even balance of the strings "car" and "cat"
(along with many other words), then the tokens you might get would be ["ca##",
"r", "t", ...]. But if your corpus has many more occurrences of "cat" than other
words, then it might be beneficial to condense that into a single token, giving the
tokens ["cat", "ca##", "r" ...]. Ideally, we want to avoid chunking entire words
together into a single token like that, since it increases the vocabulary size, as shown
in Figure 4-1. But when something is repeated often, like the word the, it is more effi‐
cient to chunk that information together into a single token.

Subword tokenization also reduces the impact of the issue where the model encoun‐
ters a new word that it’s never seen before. If your training corpus has the strings
swim, play, and playing, a word-level tokenizer would identify the string swimming

Hugging Face Tokenizers | 101

as an unknown word. However, "swimming" is simply a new word constructed on
primitive subwords that the model has seen. So a subword tokenizer could identify it
as ["swim", "##m##", "##ing"] and pass more relevant information to the model.

Let’s take a look at how these ideas are implemented in the tokenizers library.

Building Your Own Tokenizer
The ready-to-use subword tokenizers are great, but sometimes, you really do need a
tokenizer that picks out nuances specific to your text domain. The canonical exam‐
ples are legal and medical text. These domains usually have a specific set of frequently
used terms that are important enough to deserve their own token (think of molecule
names or specific sections of legal documents).

Yes, we said “train,” because subword tokenizers need some criteria
to decide how to split words, and learning is often the best
solution.

If you want to train your own tokenizer, there are a few popular options. Here are
some references to the state-of-the-art research in tokenizers:

Byte pair encoding (BPE)
See R. Sennrich et al., “Neural Machine Translation of Rare Words with Subword
Units,” arXiv, 2015, https://oreil.ly/dlFNw.

WordPiece
See M. Schuster and K. Nakajima, “Japanese and Korean Voice Search,” Interna‐
tional Conference on Acoustics, Speech and Signal Processing, IEEE (2012),
https://oreil.ly/fvGTh.

SentencePiece
See T. Kudo and J. Richardson, “SentencePiece: A Simple and Language Inde‐
pendent Subword Tokenizer and Detokenizer for Neural Text Processing,” arXiv,
2018, https://oreil.ly/YNFhP.

Getting real-world medical data is actually quite hard due to regulations and a lack of
privacy-preserving machine learning techniques. So for now, we’ll use the
WikiText-103 dataset, which is the set of Wikipedia articles we used in Chapter 2. Just
know that if your text data represents the typical literary patterns on the internet, you
won’t have to train your own tokenizers from scratch most of the time.

102 | Chapter 4: Tokenization

https://oreil.ly/dlFNw
https://oreil.ly/fvGTh
https://oreil.ly/YNFhP

First, we need to get the dataset (in case you didn’t download it already):

wget https://s3.amazonaws.com/research.metamind.io/wikitext/
 wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip

Using an established tokenizer is quite simple with Hugging Face’s tokenizers
library. Here, we first set up a byte-pair encoding (a form of subword tokenization)
tokenizer in a single line of code:

from tokenizers import Tokenizer
from tokenizers.models import BPE

tokenizer = Tokenizer(BPE(unk_token="[UNK]"))

Next, we initialize a special BpreTrainer object. This is only required if you’re train‐
ing a new tokenizer from scratch:

from tokenizers.trainers import BpeTrainer

trainer = BpeTrainer(
 special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])

Finally, we specify the files and train our BPE tokenizer:

files = [
 f"data/wikitext-103-raw/wiki.{split}.raw" for split in
 ["test", "train", "valid"]]

tokenizer.train(files, trainer)

How Tokenizers Are Made
Unlike training, tokenization is primarily a CPU-driven program. We typically don’t
use GPUs for standard tokenizers, even though there is scope for massive paralleliza‐
tion, for the same reason we don’t use GPUs for PowerPoint or Excel—the gains are
small, and writing efficient GPU code is very hard. However, there are some admira‐
ble new efforts from Rapids AI, which has built a modern CUDA-accelerated token‐
izer for BERT.

From a practical standpoint, writing a GPU-accelerated tokenizer likely has a low
return on investment. Hugging Face claims that their tokenizers library can tokenize
a gigabyte of text in 20 seconds. If you’re training on a 40 GB dataset (which is about
the scale of GPT-2), tokenization would take 40 * 20 = 800 seconds, which is roughly
13.3 minutes. Compared to the days (or potentially weeks) it can take to actually train
the model, that’s small.

During inference, you likely aren’t using text streams nearly as large as your training
set, and the tokenization is much, much lower. Besides, if you are running inference
on very large text samples, your bigger technical concern may be fitting the model

Building Your Own Tokenizer | 103

and the data into memory and actually running a fast forward pass. In almost every
scenario, a fast CPU tokenizer should be more than performant enough for your
application.

But how were we able to get such efficient CPU tokenizers in the first place?

One of the main sources of speed in spacy and tokenizers is that they’re both writ‐
ten in lower-level systems programming languages. spacy is written in C++, and
tokenizers is written in Rust. These languages have a number of benefits when it
comes to speed and memory usage, which is why they’re used in performance-critical
applications, even if they may be harder to read, write, and understand.

If you haven’t already heard of C++, it’s one of the oldest and most popular program‐
ming languages in the world. With C (a different but very similar language that is a
subset of C++), it powers much of the world’s technology infrastructure to this day.

Rust is a newer systems programming language built by Mozilla research that got its
first stable release in 2015. It is designed to be syntactically similar to and perform
similar tasks to C++, but incorporates many new ideas in programming language
design that had been learned in the years since C++ was first released.

You can use these libraries written in other languages in your Python code because
the developers also released a set of bindings to Python. This means that while it
looks like you’re running Python code, using Python functions, etc., what you’re
doing is calling into code that was written in an entirely different language!

The developers of these libraries go through all this trouble because of performance.
Python as a language was designed for usability. Because of how it is designed and
because it’s a highly dynamic language, it’s very easy to write Python code. But that
comes at the cost of Python doing a lot of work behind the scenes that your computer
may not appreciate.

The simplest example of this is the garbage collector. All variables we assign and use
in our code take up memory. To ensure that we don’t run out of memory, the OS
needs to know when it can free up some of it. For example, if you load a file, read
some information from it, and move on to another file to repeat the procedure, you
could free the memory of the first file once you’ve processed it. In the past, all this
memory allocating and freeing was performed manually by the programmer.

But later in the 20th century, we realized that this process was very tedious, and con‐
stantly thinking about memory can lead to a loss in programmer productivity. So,
most modern high-level languages include some built-in mechanism for deciding
when to free up memory. In Python, that implementation is a garbage collector, a
small task that runs in the background and constantly monitors the state of variables
to see if they are currently in use.

104 | Chapter 4: Tokenization

Conclusion
In this chapter, we looked at the first stage of a lower-level view of the NLP pipeline—
tokenizers. Tokenizers are not the stage of the stack that most people should be opti‐
mizing because different tokenizers won’t have a significant impact on your applica‐
tion’s performance in the real world, but they are nonetheless a vital component. In
practice, you should use spacy or tokenizers since they’ll have the latest versions of
the newest tokenizers from research implemented. If you have a custom dataset with
a lot of domain-specific vocabulary (like in legal or medical applications) it makes
sense to retrain an established tokenizer algorithm like WordPiece or SentencePiece.

We also explored some of the nuances of developing fast tokenizers. Specifically, we
explored how the choice of programming language can have an impact on the perfor‐
mance of your tokenizer.

Now we have a working low-level understanding of tokenizers, and if you want you
should be able to build your own from scratch (in practice, of course, it’s not that use‐
ful). This allows us to take large text files and generate tokens that our model can use
to solve complex NLP problems.

But we can’t pass raw tokens into the model. Tokens are still essentially indices in dic‐
tionaries, which is not semantically useful for a deep learning model. Instead, we pass
what are called “embeddings” of the tokens, which is what the next chapter is all
about.

Conclusion | 105

CHAPTER 5

Embeddings: How Machines
“Understand” Words

In the first stage of our journey through lower-level NLP, we figured out how to use
tokenizers to massage our text data into a format that’s more convenient for a neural
net to read. The next piece of the puzzle is the embedding layer. If tokenizers are what
our models will use to read text, embeddings are what they use to understand it.

Understanding Versus Reading Text
For a long time, machines have been able to represent characters (and by extension,
words, sentences, etc.) digitally. The idea of using a binary encoding scheme for lan‐
guage and communication dates back to at least the invention of the telegraph in the
19th century.

One of the earliest forms of language encoding was Morse code. In this system,
binary signals, such as switching a light on and off or sending a sequence of long and
short pulses of audio, were used to represent different characters. If two people had a
mode of binary communication and agreed upon a standard of what the binary
sequences meant, they could reliably communicate in Morse code. This was one of
the earliest and simplest methods of embedding natural human language into a
binary format that machines could work with in some way. Notice how Morse code,
illustrated in Figure 5-1, uses only dots and dashes—analogous to the 1s and 0s used
in modern digital communication.

107

Figure 5-1. Morse code translation

Since that time, there have been many improvements in our ability to encode text/
language. These include audio recordings; newer encoding algorithms like ASCII,
which uses an integer number to represent text (shown in Figure 5-2); and Unicode,
which lets us use characters from many different scripts.

Apart from the occasional practical issues of data integrity, corruption, etc., we have
been able to reliably store, send, and access text data for a very long time. However,
simply having a raw representation of text as characters can only take us so far.

108 | Chapter 5: Embeddings: How Machines “Understand” Words

Figure 5-2. The ASCII table

For example, your hard drive will have no problem spelling out “supercalifragilisti‐
cexpialidocious” a million times with perfect accuracy. But for most of their history,
computers lacked the ability to comprehend that “apple” can simultaneously be both
a tech company with a trillion-dollar market cap and a juicy red fruit that keeps the
doctor away.

When we humans see text, we see more than the raw information presented to us.
The knowledge we’ve accumulated over time gives additional context about the
things we read, which makes language and communication meaningful and efficient.

To be clear, it’s perfectly OK for computers to not “understand” text to build useful
things. Many older NLP systems used rule-based logic to some level of success:

 if(question == "What is your name"):
print("""I'm Al, your AI assistant.
I use whatever technology makes my investors happy."""")

Understanding Versus Reading Text | 109

https://oreil.ly/acNAT

But this type of hardcoded rule-based system is very brittle and does not generalize
well, as anyone who lived through the iPhone 4s can attest to:

Me: Hey Siri, show me a sitcom.

Siri: Ok, calling mom…

How do we make computers understand words?

A computer is a machine that can only manipulate 1s and 0s. So when we say “under‐
stand,” what we really mean is that we need a new way of encoding text into numbers
that emphasizes the meaning of the text rather than the raw characters.

This is a conceptually difficult problem for humans to solve. How would you go
about describing, say, the “Olympics” with just numbers? How would you convey the
sense of excitement, intensity, and history that goes along with that word? Further‐
more, the same word might mean different things to different people, so who would
decide what numbers to use and how to use them? While ASCII, Unicode, etc., might
not directly be a useful format for NLP, at least we can all agree on what the map
between characters and numbers should be. How do we achieve that if the numbers
are supposed to represent semantic meaning?

To clarify this idea of encoding text and language in numbers, let’s think about a few
tangible examples: we use social media followers to measure fame, IQ to measure
intelligence, and wealth to measure success. Despite their flaws, we use these numbers
all the time to quantify abstract concepts like intelligence and fame, which would
otherwise be philosophical concepts with little practical value.

None of these measures are perfect, but they are concrete, and by extension, useful.
We may not agree on how unhealthy french fries are and what “healthy” even means.
But we can agree on how much trans fats they contain, and that trans fats are proba‐
bly not good for you. It’s not a perfect measure, but it is useful.

Furthermore, you can combine multiple numbers (numerical properties of the thing
you’re describing) to come up with a somewhat accurate and useful representation of
all sorts of people, objects, places, things, and, more generally, words.

For example, you could say that person X has some specific number of followers, has
some specific IQ, and earns some specific amount of money each year. The more
quantifiable characteristics you add (like height, weight, place of birth, primary resi‐
dence, etc.), the more accurate your description of this person will be. That’s because
the more numbers you add, the more information you have about person X.

In fact, let’s strengthen that claim by saying that any word can be represented by a
bunch of numbers that describes its properties.

This may get really weird really fast. Let’s say we want to use 300 numbers. This
means that we’ll be using 300 different numerical properties to describe a significant

110 | Chapter 5: Embeddings: How Machines “Understand” Words

https://oreil.ly/UYK9t

1 This is not a made-up example. See the Scoville scale.

portion of every word in the English language. We won’t be able to perfectly encode
all these words with just 300 numbers, of course. But that’s not the point. We’re trying
to build a numerical representation that’s useful for NLP, not accurate for
communication.

For example, when describing food, one of those properties could be how some food
item ranks on a scale of how spicy it is.1 When describing humans, another property
could be how much money they make.

But crucially, each word needs to have the same 300 properties. This can lead to a
very disturbing decision-making process where we’re forced to determine the flavor
of humans and the net worth of fruits.

The way you could justify this goes something like this: let -1 represent super mild
and let 1 represent super spicy on the spiciness scale. Similarly, let -1 represent
“drowning in debt” and let 1 represent “richest human on earth” on the money scale.
Now we can assign a score of 0 on the mild–spicy scale to every nonfood word, like
“car” or “king,” and 0 to every word that has no notion of income, like “chili pepper”
or “jack fruit.”

But the issue remains that it would take a lot of work to manually sit and code in
these number properties for each and every single word in the dictionary. Also,
deciding what 300 properties to ascribe to every word seems like something that
would involve a lot of debate and result in some very unhappy people.

So instead, we can use machines to assign these number properties to words for us!
“Wait a minute, I thought they can’t do that by themselves. Isn’t that why we have this
chapter in the first place?” you ask.

You’re right. As we mentioned before, computers on their own cannot infer the
meaning of words just by looking at them. But by looking at words in the context in
which they appear, maybe they can…

Word Vectors
To recap: we know that we can encode raw text accurately using established methods
like ASCII and Unicode. However, we noted that having the raw text alone is not suf‐
ficient to create NLP models that dazzle investors. So, we need a way to map text to
numbers that encode the meaning of the words rather than the raw information. We
know that there’s no perfect way to do this, but we’re hoping that we can do it in a way
that’s at least useful to solve the NLP tasks we talked about in Chapter 3.

Word Vectors | 111

https://oreil.ly/C8rpE

We hypothesized that we can encode the meaning of a word into a collection of num‐
bers that describes its various properties. What we need now is a way to map words to
their number properties. We also need to perform this mapping using machines
because it would take humans an incredibly long time to perform this task manually.

To make the problem more precise, we’ll say that we want to store all these numerical
properties of our words in vectors (which are simply 1D arrays). So the task, then, is
to come up with an algorithm that maps words to vectors.

Arrays and Vectors
Technically speaking, arrays and vectors are not the same thing. Arrays are a data
structure that allows us to arrange data in a particular way.

Vectors, on the other hand, are a specific kind of abstract mathematical object with a
precise definition (a vector is an element of a linear vector space, and you could then
define a vector space in terms of the properties of its elements).

If you want to venture into the deep depths of pure mathematics, this is probably
important to keep in mind. But for all practical purposes that we care about, vectors
and 1D arrays are essentially the same thing. In this book, we’ll use the terms inter‐
changeably.

In fact, C++ even calls its dynamically sized array an std::vector, and we’ve man‐
aged to build a vast majority of the world’s computing infrastructure with it, so I
think we’ll get by just fine.

If you remember your machine learning and data processing basics (which, hopefully
you do if you’ve made it this far), you should remember the idea of a one-hot vector.

A one-hot vector is an array where one element is 1 and all the other elements are 0
(see Figure 5-3).

Figure 5-3. One-hot vector

We’re bringing this up because using large one-hot vectors is one of the easiest ways
to map words to vectors.

112 | Chapter 5: Embeddings: How Machines “Understand” Words

The nth word in the dictionary will have a one-hot representation where the nth ele‐
ment is 1 and the rest are 0. For the rest of this chapter, we’ll refer to this one-hot
vector as on. Suppose “orange” is the 1152th word in our dictionary. The one-hot vec‐
tor corresponding to orange will be o1152. Let’s tell that to the computer:

o = torch.zeros(20000)
o[1152] = 1

The dimensionality of the vector is the size of the dictionary. For example, a dictio‐
nary with 20,000 words means we’ll have 20,000-dimensional one-hot word vectors.
This is because each word in the dictionary takes up one position in the array, and the
array can only have one non-zero element.

The components of that vector don’t really carry semantic meaning. This is not what
we were going for, but we do have some vector, and what we can do now is map the
one-hot vector to another vector whose components actually carry some semantic
meaning.

And luckily, we already have a pretty good tool for transforming vectors into other
vectors—a matrix multiplication.

The matrix’s job is to map some vector on to some other vector, which we’ll call en. en
is a new fancy vector that corresponds to the nth word in the dictionary. But unlike
on, en’s components have some meaning, like taste or how much it rhymes with
sesquipedalian.

If we were to write it down in an equation, it would look like this:

en = E · on

Or alternatively, in code:

E = torch.nn.Embedding(num_embeddings = 20000, embedding_dim = 300)
e = E(o)

What we’re doing here is “embedding” the 20,000-dimensional one-hot vectors into a
smaller vector with only 300 components. Unlike the one-hot vector, the embedding
vector (en in equations and e in code) has components that can be any floating-point
number: e.

Note that there is one somewhat important detail in the implementation of this
embedding matrix multiplication—it’s not actually a matrix multiplication. Well, yes,
the formula you just read is correct, but this isn’t the most efficient process. Remem‐
ber that on is a one-hot vector, meaning that most of its elements are 0, like for the
example in Figure 5-4. When you actually go through the matrix multiplication with
all those 0s, you’ll notice that you’ll be multiplying by a lot of 0s. Not good.

Word Vectors | 113

Figure 5-4. Matrix multiplication with many 0s

We’re forcing our computers to do a lot of useless multiplications. Instead, we simply
ignore all the multiplications that we know are going to be zero, and since the only
number in the one-hot vector is a one, we just pick out the corresponding column
from the embedding matrix, as shown in Figure 5-5.

This reduces the complicated matrix multiplication into a much simpler and compu‐
tationally efficient array lookup. Just retrieve the column index from the embedding
matrix, and you have your vector en.

However, there is one minor annoyance to resolve: how do you get the darn E matrix
in the first place!?

114 | Chapter 5: Embeddings: How Machines “Understand” Words

Figure 5-5. Picking out the column from the embedding matrix

Word2Vec
A few years ago, we generated this embedding matrix through an algorithm that goes
through text, performs some analyses, and generates a single, static vector for each
word in the vocabulary.

Some of these algorithms are Word2Vec, GloVe, and more recently, fastText. We have
a more detailed explanation of these older algorithms for historical context in Chap‐
ter 8, but you should also look these up if you’re interested. Jay Alammar’s article is a
good starting point. We’ll be using them in “Embeddings in Practice” on page 117 just
for evaluation purposes.

But these methods, as cool as they once were, are typically not used in the current
state-of-the-art models. Here are the reasons why.

A new hope
Word2vec and GloVe are falling out of fashion because there are newer, sleeker sys‐
tems that do the same thing. To be specific, when we refer to Word2Vec, we’re essen‐
tially talking about the giant embedding matrix. If you download a Word2Vec model
online, you’re basically getting a function that takes in words and returns vectors. But
newer, faster, better-documented solutions like Flair and fastText are probably better
choices.

The English language strikes back
Another major downside of Word2Vec and probably the most important reason you
should avoid it (or any other direct word/token → vector mapping, for that matter) is
that Word2Vec doesn’t consider context.

Word Vectors | 115

https://oreil.ly/jWLHw

Consider the following two sentences:

“I’m going to rob a bank.”
“Hey, that’s a pretty cool river bank.”

It’s clear that the word “bank” has different meanings in each of these contexts. With
Word2Vec, both versions of “bank” will have the same vector embedding, which
means the model will understand both versions of “bank” as the same thing even
though the two versions of “bank” are very different.

The solution to this is to generate embeddings that are not only a function of the
word you’re looking to get an embedding of, but also the rest of the sentence/para‐
graph/document (the so-called context of the word). We’ll go into detail on how we
do this when we discuss ELMo in Chapter 10. For now, just know that today richer
contextual embeddings exist, and they are much better than context-free embeddings.

The Return of the Character-Level Models
We’ve been saying Word2Vec, but the name should really be “Token2Vec” because
we’re technically using tokens, not just words. In fact, Word2Vec is able to generate
embeddings even when there are no fully formed words; in other words, Word2Vec
can accommodate subword tokens.

To understand this problem more clearly, let’s quickly recap subword tokenization.

We noticed that there tend to be patterns in the construction of words in the English
language that we could potentially exploit. For example, the words “fast,” “faster,” and
“fastest” all share the same root word but have different suffixes. But Word2Vec can’t
notice that since it only sees words as indices to an embedding matrix.

But newer tokenization methods like byte-pair encoding (seriously, read Chapter 4 if
you haven’t already!) are able to construct more artisanal, handcrafted vocabularies,
with exotic tokens like “xxer” and “xxest” that are used to represent general suffixes.
So what we need isn’t a word → vector mapping, but a token → vector mapping.

With these token embeddings, we can let our models understand the words “fast,”
“faster,” “fastest,” “slow,” “slower,” and “slowest” (and other adjectives that can use
those suffixes, but you get the idea) using four independent vectors instead of six. Not
only is this more efficient, but linguistically, it’s the right thing to do.

Additionally, Word2Vec can generate embeddings for words it has seen before. The
way we try to deal with this issue is by creating a special unknown word token that is
used whenever our model encounters something it’s never seen before. But this limi‐
ted vocabulary size can still become a major problem when dealing with domain-
specific text data. Don’t know about you, but we’re fairly confident we don’t want our
models confusing transistors and microorganisms!

116 | Chapter 5: Embeddings: How Machines “Understand” Words

The subword models, on the other hand, have all the individual tokens built into the
vocabulary. In other words, these subword models will try to pick up at least some
parts of the word, and if not, they will have embeddings for the individual characters.

Unfortunately (or fortunately, depending on how you look at it), most of the new
transformer networks have their own set of special tokens that do their own thing
(we’ll explore these details more in Chapter 7). Each of the big, new milestone models
(e.g., BERT and GPT-2) have implemented their own tokenizer and embedding layer.

This means we typically do not need to download embedding matrices from the
internet anymore. The original goal with Word2Vec was to have some reusability in
terms of what you feed into the model. But, considering that we can now do transfer
learning with the model itself, reusing embeddings isn’t required.

So, what should we do then?

Embeddings in the Age of Transfer Learning
The keen-eyed among you will have noticed that we spent the last four sections tell‐
ing you not to use Word2Vec. Again, I’d like to clarify that there are no hard-and-fast
rules here. If Word2Vec works for your application, go for it.

That said, if you’re using transfer learning with transformers (which is what you
should be doing if you’re reading this book), here’s a good way to approach embed‐
dings and vectors: first, perform the preprocessing steps from the previous chapter.
Use whatever shiny new subword tokenizer you like (or the amazing spacy tokenizer,
which will work fantastically well in most cases), and generate a rich numericalized
subword vocabulary. For models like BERT, remember that you have to use a custom
tokenizer. If you’re using transfer learning (which you should!), the pretrained model
you’re using will have the embedding layer built in, which performs the lookup and
gets vectors that correspond to the dataset that the model was pretrained on. Over the
course of fine-tuning the model, you’re going to update the embedding layer as well.
This will give you the best of both worlds—an embedding matrix that is built upon
the foundations of a large corpus of text while also capturing the subtleties of your
particular dataset.

Now that you know what to do, let’s do it! On to the code!

Embeddings in Practice
It’s nice to reason about what works and all, but you should believe none of what we
said without actual experimental evidence. So let’s see how these embeddings stack up
against each other in practice.

Embeddings in Practice | 117

For those of you reading this from the print book, remember that
the rest of this chapter is a 100% executable Jupyter Notebook. So
as always, we’d highly encourage you to hop on to Colab or your
favorite cloud computing service (or on your local machine, if
that’s how you roll) and run the code in real time, edit it, play
around with hyperparameters, and have fun.

Preprocessing
Before doing anything at all, we need to import the libraries we’ll be using, which are
PyTorch and torchtext. We’ll be importing a few submodules under certain specific
names, since this is the convention with PyTorch:

import torch.nn.functional as F
import torch.nn as nn
from torch import optim
import torch

from torchtext import *
import torchtext

We’ll also set up a CUDA device, which is just a way of telling PyTorch to use the
GPU for faster computation. If you’re using Colab, make sure that you’ve selected the
GPU runtime type to ensure the greatest possible speed:

dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

Cool! The main thing we’ll need is a dataset (duh!). For this notebook, we’ve chosen
the IMDb dataset, which contains 50,000 movie reviews, each labeled with “positive”
or “negative.” Follow the comments to understand what’s going on.

If you aren’t able to figure all of this out at first glance, don’t worry. Our goal here is to
understand word vectors, not text preprocessing and PyTorch setup functions. We’re
following the “do whatever works well enough to allow for rapid experimentation”
principle here, so we’re going to skip using any fancy subword tokenizers, and instead
we will use the tried-and-tested spacy tokenizer with torchtext.

The main line you should be interested in is:

TEXT.build_vocab(train, vectors='glove.6B.100d')

This is what’s responsible for getting the vectors and building the vocabulary. Try
using different arguments for the vectors parameter and see how your model
performs. In general, you’ll see higher performance with higher-dimensional vectors,
since they have more space to represent the “meaning” of the words, as we discussed
earlier in the chapter. But with larger vectors come larger compute requirements, so
we’ll leave it to you to find a happy medium.

Here are some values you can try (from the torchtext documentation):

118 | Chapter 5: Embeddings: How Machines “Understand” Words

'charngram.100d',
'fasttext.en.300d',
'fasttext.simple.300d',
'glove.42B.300d',
'glove.6B.100d',
'glove.6B.200d',
'glove.6B.300d',
'glove.6B.50d',
'glove.840B.300d',
'glove.twitter.27B.100d',
'glove.twitter.27B.200d',
'glove.twitter.27B.25d',
'glove.twitter.27B.50d'

Hopefully, the meaning of each of these values is fairly easy to interpret. This is some‐
thing you’ll have to get used to in NLP/deep learning. The models, datasets, etc., that
you download online often have somewhat cryptic names like the ones here, some‐
times with no documentation explaining what exactly each one is. Understanding
that the d stands for dimension is an example of that. Here, the number before the
dimension is an indication of the vocabulary size that the embeddings were trained
on (for example, 42B indicates 42 billion different words):

This next block of code involves downloading both the dataset and
the embedding matrix, so it can take a while to run. Be patient!

Set up fields
TEXT = data.Field(lower=True, include_lengths=True, \
batch_first=False, tokenize='spacy')
LABEL = data.LabelField()

Make splits for data
train, test = datasets.IMDB.splits(TEXT, LABEL)

Build the vocabulary
TEXT.build_vocab(train, vectors='glove.6B.100d') \
use 'glove.42B.300d' for greater accuracy or \
'glove.6B.100d' for greater speed
LABEL.build_vocab(train)

Make iterator for splits
train_iter, test_iter = data.BucketIterator.splits((train, test), \
batch_sizes=(128,1024), device=dev, sort_within_batch=True, repeat=False)

After running this code block, you should now have the IMDb dataset downloaded,
tokenized, and vectorized. We’re now ready to start building a model to process the
IMDb word vectors.

Embeddings in Practice | 119

Model
Remember, our goal here is to try different word embeddings and see their effect on
performance on a simple dataset. Instead of overcomplicating, we’re going to stick to
a few simple, default models that come built-in with PyTorch (remember the rapid
experimentation principle!). We won’t be using any crazy new architectures or train‐
ing techniques from modern research.

But note that since we’re not using any fancy stuff, our model will perform pretty
badly relative to what’s out there today. You should almost never use the code here for
your projects or in production, since there are far better performing NLP models and
techniques today.

At a high level, this is what our model consists of the following:

Pretrained embedding layer that performs an array lookup with the GloVe vectors that
we already downloaded

This is what we’re interested in.

Standard RNN module
nn.RNN() implements a simple recurrent neural network in PyTorch. You can
find the implementation in the PyTorch docs.

Classification head that consists of two fully connected layers
The final layer outputs a single number, which we will pass through a sigmoid to
get a prediction:

We’re now going to define the RNN classifier model. This might be
your first time looking at a PyTorch model (implemented as an
nn.module). If so, refer to “PyTorch” on page 201 or to some of the
excellent resources online.

class RNN_classifier(nn.Module):
 def __init__(self, embedding_size = 100, hidden_size = 512, num_layers = 3):
 super().__init__()

 # Set up an embedding layer with the right dimensions, \
 and copy the weights from the pretrained glove embeddings
 vocab = TEXT.vocab
 self.embed = nn.Embedding(len(vocab), embedding_size).cuda()
 self.embed.weight.data.copy_(vocab.vectors)

 # Set up a standard PyTorch RNN sections with the right \
 dimensions and a variable number of layers
 self.rnn = nn.RNN(embedding_size, hidden_size, num_layers)

 # Add a two layer classification head with the right dimensions. \
 The final layer must output a single number

120 | Chapter 5: Embeddings: How Machines “Understand” Words

https://oreil.ly/wuDAW

 self.classificationLayer1 = nn.Linear(hidden_size,10)
 self.classificationLayer2 = nn.Linear(10,1)

 def forward(self, input, lengths=None):

 embed_input = self.embed(input)
 packed_emb = nn.utils.rnn.pack_padded_sequence(embed_input, \
 lengths, batch_first=False)

 output, hidden = self.rnn(packed_emb)
 hidden = hidden[-1]
 x = hidden.squeeze(0)
 x = self.classificationLayer1(x)
 x = self.classificationLayer2(x)

 logits = x.view(-1)
 return logits

We just set up the model as a Python class. Now, we need to create an actual instance
of the RNN_classifier to use it. Here, you can tweak the hidden_size and num_lay
ers to change the dimensionality of the hidden state and the number of layers,
respectively.

Generally, the larger the values you use for both of these parameters, the better results
you’ll get. However, they involve more computation, so your code will run slower:

model = RNN_classifier(hidden_size=256, num_layers=1)
model.to(dev)

As a quick test, let’s run through one batch of our training data and check the shape
of the output. Checking the dimensions at various stages of computation is generally
a good way to debug PyTorch code.

We should get an output tensor of 128, which is our batch size. The 128 number cor‐
responds to 128 predictions, one for each example in our batch:

for batch in train_iter:
 (x,x_len) = batch.text
 pred = model(x,x_len)
 print(pred.shape)
 break

Training
On to the training phase. First, set up a few hyperparameters:

loss_func = F.binary_cross_entropy_with_logits
opt = optim.Adam(model.parameters(), lr=1e-4)
epochs = 6

Embeddings in Practice | 121

To make our lives easier later on and to monitor training effectively, we’ll define a
quick function that runs through the test sets and computes the model accuracy:

def get_metrics(model, test_data):
 model.eval()
 correct, total = 0, 0
 with torch.no_grad():
 for batch_idx, batch_data in enumerate(test_data):
 text, text_lengths = batch_data.text
 logits = model(text, text_lengths)
 predicted_labels = (torch.sigmoid(logits) > 0.5).long()
 total += batch_data.label.size(0)
 correct += (predicted_labels == batch_data.label.long()).sum()
 return correct.float()/total

Final step: the training loop. This is where we run through the training data and
update our model’s parameters. After running this block, you’ll see a progress bar and
the accuracy printed at the end of each epoch:

from tqdm import tqdm_notebook as tqdm

for epoch in tqdm(range(epochs)):
 model.train()
 for batch in tqdm(train_iter):
 (x,x_lengths)=batch.text
 pred = model(x,x_lengths)

 actual=batch.label.float()
 loss = loss_func(pred,actual)

 loss.backward()
 opt.step()
 opt.zero_grad()

 if (epoch==5):
 for g in opt.param_groups:
 g['lr'] = 3e-3

 print("Accuracy: " + str(get_metrics(model, test_iter).cpu().numpy()))

Hopefully you’re getting >70% accuracy. Note that this can vary due to random fac‐
tors like initialization, so if your model isn’t working that well, consider changing a
few hyperparameters and run the code again.

Validation
Great! We’re done! We now have an RNN-based text classifier that’s about 75% accu‐
rate at predicting whether a movie review is positive or negative.

122 | Chapter 5: Embeddings: How Machines “Understand” Words

Let’s see how our model performs on some real data. To make predictions quickly,
let’s construct a function that does all the hard work for us, so that we can focus on
the fun stuff:

import spacy
nlp = spacy.load('en')

def predict_sentiment(model, sentence):
 # based on:
 # https://github.com/bentrevett/pytorch-sentiment-analysis/blob/
 # master/2%20-%20Upgraded%20Sentiment%20Analysis.ipynb
 model.eval()
 tokenized = [tok.text for tok in nlp.tokenizer(sentence)]
 indexed = [TEXT.vocab.stoi[t] for t in tokenized]
 length = [len(indexed)]

 tensor = torch.LongTensor(indexed).to(dev)
 tensor = tensor.unsqueeze(1)
 length_tensor = torch.LongTensor(length)
 prediction = torch.sigmoid(model(tensor, length_tensor))
 return prediction.item()

Let’s try predicting the score of a review the model has never seen before. The follow‐
ing is a review of Spider-Man: Far From Home on Rotten Tomatoes. The original
score was 3/4, which equates to 75% positive.

What does our RNN say?

review = """I like that Far From Home is trying something new and that its
humor feels more real than the ironic cracks in most superhero movies.
I just wish its good pieces all came together more satisfyingly."""

print('Probability positive:')
predict_sentiment(model, review)

Hmm…not too bad. Not too bad at all.

Now, it’s time to go back to the beginning and try out some different embeddings.
Have fun!

Embedding Things That Aren’t Words
Now that you’re (hopefully) comfortable with using word embeddings, let’s move on
to another tangential use of embeddings. This should help you build intuition for
how embeddings can be powerful inputs to a neural network.

In the notebook, you just saw that the models we’re building, regardless of whether
it’s some sort of RNN, LSTM, or transformer, take in sequences of word vectors and
perform operations that manipulate them. Depending on the specifics of the model,
these manipulations could be used for classification, regression, text generation, etc.

Embedding Things That Aren’t Words | 123

2 Please don’t actually do this in practice. There are a lot of ways it can go wrong, and there are much better
models, algorithms, and techniques to deal with stocks. We are by no means expert traders. This was just an
example.

3 Or is it…
4 We encourage you to look up the literature, though. Often, you’d be surprised at the sort of things people

build with neural nets.

What they do with this sequence is entirely up to you and your application. This is a
key point to remember.

We haven’t discussed exactly how these networks work from a low-level perspective
yet, but we don’t need to. For now, we can understand that RNNs/LSTMs/transform‐
ers process sequences of vectors, and we can implement that idea in code. That
should be enough.

But wouldn’t it be cool if we could also run the same exact models on entirely differ‐
ent kinds of data?

After all, these NLP models take in vector sequences, but that doesn’t mean the vec‐
tors have to represent words. They can be absolutely anything. As long as you can
create a mapping from x to a vector representation of x, you can create a model that
works on x.

Was that too many xs? Let us articulate:

• Want a model that can remove background noise from speech recordings? Find a
way to embed raw audio waveforms into vectors, feed that into an NLP model,
and boom, you’re now the owner of the most subscribed-to ASMR YouTube
channel.

• Want a model that can predict stock movements? Find a way to embed stock
pricing information into vectors, feed that into an NLP model, and boom, you’re
a millionaire!2

• Want a model that can play Fortnite? Find a way to embed useful game metadata
like HP, ammo, etc., into a vector, feed it into an NLP model, and boom, you’re
now livestreaming with Ninja!

OK, the last one might have been a bit of a stretch,3 but you get the idea.

This, of course, begs the million-dollar question: how do we map these seemingly dis‐
parate items into vectors?

That depends. As the expert in your field/project, how you choose to create vector
embeddings of your data for uncommon formats that haven’t been worked on before
is entirely up to you.4

124 | Chapter 5: Embeddings: How Machines “Understand” Words

https://oreil.ly/mOVWN

5 If you haven’t gotten the idea yet, check him out! He has a lot of well-written, clear blog posts on his site.

But just so that this doesn’t seem like a bunch of Master Shifu wisdom without sub‐
stance, let’s go over an example—engineering embeddings for music data. This fan‐
tastic example was again provided by Jay Alammar.5

A sonnet in the MIDI protocol
The MIDI protocol, if you haven’t heard of it, is a way of representing music digitally.
We don’t mean the raw audio as waveform data; that’s been done for ages. MIDI
stores the actual information about the notes that are played by different instruments
of a song (but no vocals). It does this through a series of commands such as note on
and note off.

But the protocol allows for much more than that since just note on and note off com‐
mands would result in music that sounds monotonous and would be inefficient in
terms of storage/memory utilization.

MIDI also adds a set velocity command, which allows you to control “how hard” the
note is played. But remember, MIDI doesn’t store any sort of audio information, it
only encodes the semantics of the musical notes. You can think of it as a digital repre‐
sentation of sheet music.

And just like sheet music, you can play MIDI tracks on a variety of instruments and
do things like switch the piano part with a heavily distorted guitar.

Hopefully this gives you a fair idea of how MIDI works at a high level. But, if you’re
unfamiliar with music arrangement or if this still seems a little foreign, try out an
online MIDI editor or search for “Synthesia” on YouTube.

We understand if you’re still skeptical about MIDI’s ability to encode music realisti‐
cally. That’s fair. After all, MIDI isn’t perfect, and there are many subtleties in how
instruments are played that can’t be captured in simple rule-based logic.

However, MIDI is still a powerful encoding format for digital music and, more
importantly, one that we can use to generate vectors that we pass to neural nets.

Making Vectorized Music
With MIDI in hand, we’re now one step closer to retrofitting our NLP neural net (we
really need to come up with a better name for this) to do cool things with music data.
We know that music can (more or less) be represented as a sequence of MIDI com‐
mands. Somehow, we need to transform those MIDI commands into vectors.

Well, this shouldn’t come as a surprise by now, but there are no hard-and-fast rules in
machine learning, and one of the simplest solutions here is to just concatenate all the

Embedding Things That Aren’t Words | 125

http://jalammar.github.io

6 To see what they did, see their blog post. It has an interesting section on the different embedding techniques
they tried, which is relevant to what we’ve discussed in this chapter.

MIDI commands into a giant one-hot vector (an example of which can be seen in
Example 5-1).

Example 5-1. OpenAI’s MIDI embedding vector

bach piano_strings start tempo90 piano:v72:G1 piano:v72:G2 piano:v72:B4 piano:v72:D4
violin:v80:G4 piano:v72:G4 piano:v72:B5 piano:v72:D5 wait:12 piano:v0:B5 wait:5
piano:v72:D5 wait:12 piano:v0:D5 wait:4 piano:v0:G1 piano:v0:G2 piano:v0:B4
piano:v0:D4 violin:v0:G4 piano:v0:G4 wait:1 piano:v72:G5 wait:12 piano:v0:G5
wait:5 piano:v72:D5 wait:12 piano:v0:D5 wait:5 piano:v72:B5 wait:12

In fact, this is more or less what OpenAI used in 2019 to create MuseNet, the
transformer-based composing AI that stunned a small, nerdy group of people on
Twitter that were dying to hear Bon Jovi play Chopin (see Figure 5-6).6

Figure 5-6. Example from OpenAI’s MuseNet

126 | Chapter 5: Embeddings: How Machines “Understand” Words

https://openai.com/blog/musenet

Some General Tips for Making Custom Embeddings
With the example of making embeddings for MIDI tracks from scratch, you should
have a fair idea of how to create embeddings for the task you’re working on.

But we should emphasize that the golden rule if you’re trying to create your own cus‐
tom embeddings is—don’t. For most NLP tasks, you’ll almost never want to use
handmade embeddings. This simply takes too much manual effort and does not
improve model performance a lot. This is a job best left to the learning process.

In cases where a straightforward embedding scheme is not readily available (as was
the case with MIDI), we’d still recommend crafting a clever way to preprocess your
data into nicely formatted text and then let subword tokenization and learned embed‐
dings deal with the rest.

If you do find yourself in a situation where you really need to make vectors out of
your data, be careful how much metadata you supply. You don’t want to make your
vectors too big, as that would make computation more intensive. But at the same
time, concatenating extra information on your vectors almost never hurts.

To get a sense of what’s enough in terms of how much you should concatenate, let’s
quickly think about another example: images. We’re going to try image classification
with transformers (it’s not as crazy as it sounds).

First, we need a way to feed raw pixel values into the transformer. To do this, let’s
stack up the RGB intensities into a 3D vector, as shown in Figure 5-7.

Figure 5-7. Stacking RGB values into an array

We could then “read” the pixels from left to right, row by row. This would create a
sequence of 3D vectors, which is a suitable format to feed into a transformer.

Embedding Things That Aren’t Words | 127

If you think about it, you as a living, breathing human being would probably find it
difficult to classify images if I laid out the pixels into a giant strip. You’d need some
way of knowing where pixels belong relative to each other in space.

A reasonable piece of metadata to add to our 3D pixel vectors, in this case, would be
position. We’d literally just concatenate the row and column numbers (in other
words, the x and y coordinates) of the pixel onto that pixel’s embedding vector (as
shown in Figure 5-8).

Figure 5-8. Concat x and y position of pixel onto array of RGB values

This helps the transformer understand exactly where each pixel is located, which is
super useful when classifying images.

But on the other hand, let’s go over some types of metadata that you probably
wouldn’t want to concatenate onto your pixel vectors.

A nice example of this would be values of the pixel in another color space like HSL or
CMYK (see Figure 5-9). These might be useful, but, considering that a neural net
could technically learn the RGB → HSL mapping internally if required, this doesn’t
make a lot of sense. Here HSL isn’t adding any extra useful information that the
model couldn’t have figured out in the first place, and would just add unnecessary
complexity and computational requirements.

128 | Chapter 5: Embeddings: How Machines “Understand” Words

Figure 5-9. HSL color space

Conclusion
In this chapter, we looked at the concept of embeddings—vectors or 1D arrays that
use numbers to represent semantic properties. Embeddings have historically been
generated with algorithms like Word2Vec, but with the advent of transfer learning,
copying model weights allows you to copy embeddings as well, with no extra effort.
We also looked at an example that used embeddings with MIDI data and learned that
the same architecture can be used for multiple tasks.

With the advent of contextual embeddings, using the embeddings we presented in
this chapter is no longer enough. So why settle for static vectors that don’t accurately
capture the meanings of words when we know we can do better? In Chapter 9, we’ll
revisit the idea of embeddings in the context of ELMo, BERT, and others, which are
the modern alternatives that you should be using instead.

At this point, we have now covered enough of the pipeline to read in raw text from a
file and generate a sequence of semantic vectors that can be fed into any model of
your choosing. What model you might want to choose is what we’ll cover next.

Conclusion | 129

1 A. Vaswani et al., “Attention Is All You Need,” arXiv, June 12, 2017, https://oreil.ly/f7uk1.

CHAPTER 6

Recurrent Neural Networks
and Other Sequence Models

One of the big themes of this book so far has been transformers. In fact, almost every
model we have trained so far has been some member or relative of the transformer
family. Even the tokenizers we built and used were constructed with specific trans‐
former architectures in mind.

But transformers aren’t the only model in town.

Transformers themselves are relatively recent—the original paper by Vaswani et al.1

was first published on arXiv in June 2017 (eons ago in the deep learning community
but not too long ago in the span of human history). Before then, people weren’t really
using transformers. So what was the alternative?

Recurrent neural networks (RNNs) were the name of the game back in the day. With
all of our talk about how transformers and transfer learning have revolutionized the
field, we might have given you the (false) impression that NLP wasn’t really a thing
until BERT came out. This is most certainly not the case.

RNNs and their variants were the convolutional neural networks (CNNs) of NLP. In
2015, if you wanted to learn deep learning, most courses introduced CNNs as the
“solution” for vision and RNNs as the “solution” for NLP. Perhaps the most salient
example of 2015 RNN hype was Andrej Karpathy’s blog post, “The Unreasonable
Effectiveness of Recurrent Neural Networks”, which shows how RNNs can be used to
do a lot of interesting things and actually work.

131

https://oreil.ly/f7uk1
https://oreil.ly/QVCAW
https://oreil.ly/QVCAW

2 If you’re a perfect machine, that is. In practice, knowing your opponent’s previous moves likely helps you
understand their psychology.

RNNs and their variants, unlike transformers, are not new. The very first LSTM net‐
work designs (along with a fair bit of drama surrounding who actually created them)
trace back to at least the 1980s. They grew in popularity, just as deep learning did, in
the 2010s, and became the dominant architecture for deep learning–based NLP. Their
most popular use case was translation and speech-to-text systems. Today, RNNs are
not as popular for NLP, but popularity in the research community does not always
equate to practicality in the real world.

A good example of this is the self-driving system in comma.ai products, which uses a
GRU (another RNN variant). Some of the most revolutionary work from DeepMind,
including AlphaStar, used LSTM networks. Because of the rapid transition to trans‐
former networks that happened at roughly the same time as the transfer learning rev‐
olution, some researchers have questioned whether RNNs can be just as effective
when used properly.

One of the biggest selling points of transformers, thanks in no small part to the work
done by OpenAI on GPT, is scale. Transformers parallelize better, steadily improve
accuracy as dataset size increases, and present a solid platform for transfer learning.

However, as we’ve seen in Chapter 2, initially training transformers can sometimes be
finicky, and the attention mechanism is still a very memory-hungry operation. In the
real world, having perfect large datasets is also not too common.

RNNs, then, present an interesting middle ground that might be worth considering.
They can be (but not always are) easier to train, are smaller overall, and consume less
memory. If you’re deploying to a low-resource edge device, that is very appealing.

RNNs for General Sequence Modeling
As we mentioned before, the architectures we’re talking about here (including trans‐
formers) are not just for text. More generally, they are designed for sequences. In NLP,
we decide to tokenize text and construct a sequence of tokens, but in the end, the
computer sees only numbers.

RNNs, just like transformers, can be used for all sorts of sequence modeling tasks, like
time series forecasting, reinforcement learning, and audio. However, it turns out that
RNNs work especially well for a particular kind of sequence: sequences that are
Markovian.

Markovian means that the next item in the sequence depends only on what the cur‐
rent item is. For example, in some games like chess, you could, in principle, walk into
the middle of a game, look at the state of the board, and decide what move to make.2

132 | Chapter 6: Recurrent Neural Networks and Other Sequence Models

https://oreil.ly/TXAbw

All the information you need to know is encapsulated in the positions of the pieces of
the board at the time you look at it. This is not the case with natural language, where
there can be complex long-term dependencies across sentences, paragraphs, etc. The
attention mechanism in transformers excels at capturing long-range dependencies,
but in a Markovian sequence, that is not very useful.

We won’t be talking too much about Markovian sequences in this book, but if it
sounds interesting, you might want to look into the field of reinforcement learning.

Now, we’ll walk you through the workings of the RNN architecture and compare it to
more advanced variants like the LSTM and GRU.

Recurrent Neural Networks
We begin with vanilla RNNs, which planted the seeds for deep learning in NLP. RNNs
are like every other neural network: they use the general idea of putting together a lot
of matrix multiplications and nonlinear activation functions to do interesting things.

There are many ways in which RNNs are very similar to transformers:

• They both “operate” on sequences of word vectors.
• Both can be used for most NLP tasks.
• Both can take advantage of attention mechanisms.
• Both can use similar transfer learning techniques.

But there are a few important differences between RNNs and transformers:

• Transformers take in sequences of fixed-length, but RNNs can handle sequences
that are as long or as short as you want.

• Transformers “process” multiple words in parallel, while RNNs work with one
word at a time.

In fact, if you remember, you already used an RNN in the last chapter. That tells you
that the process for actually training and using an RNN isn’t very different from that
for a transformer. There are fundamental differences in the architecture, but you can
reuse most/all of your data pipeline, training loop, and other surrounding infrastruc‐
ture that isn’t directly related to the architecture of your model.

Most deep learning frameworks you’re likely to use will have some API to build an
RNN without too much effort. The simplest way to do this in PyTorch is:

import torch

model = torch.nn.RNN(300, 512)

Recurrent Neural Networks | 133

This initializes an RNN that takes 3D word vectors as input and internally uses a 512-
dimensional vector as its hidden representation. You can now use this just like you
would use any other PyTorch nn.Module—create a dataloader and an optimizer, then
train. But before we actually do that, let’s look at the RNN docs to see some of the con‐
figuration options:

input_size

The number of expected features in the input x

hidden_size

The number of features in the hidden state h

num_layers

Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two
RNNs together to form a stacked RNN, with the second RNN taking in outputs of
the first RNN and computing the final results. Default: 1

nonlinearity

The nonlinearity to use. Can be either tanh or reluv. Default: `tanh

bias

If False, then the layer does not use bias weights b_ih and b_hh. Default: True

batch_first

If True, then the input and output tensors are provided as (batch,seq,feature).
Default: False

dropout

If nonzero, introduces a Dropout layer on the outputs of each RNN layer except
the last layer, with dropout probability equal to dropout. Default: 0

bidirectional

If True, becomes a bidirectional RNN. Default: False

Most of these hyperparameters are not new and are analogous to the corresponding
parameters in transformers. The one interesting parameter is bidirectional, which
we’ll get to in a bit.

What RNNs actually do, though, is not that complicated. An RNN is essentially a
neural network with a for loop. In simplest form, you could implement it like this:

for word in words:
 state = f(word, state)

In English, this means that an RNN has a loop that iterates through the sequence. For
each word in the sequence, it passes the current word and the previous state to an
“RNN cell” that performs some computation to generate the next state. This is

134 | Chapter 6: Recurrent Neural Networks and Other Sequence Models

repeated until you reach the end of the sequence. The result is a final state that you
can feed into a feed-forward layer, whose functionality depends on the task you’re
solving.

In RNN literature, you’ll often hear the word “cell” being thrown
around. A cell represents a unit of computation that is applied at
each time step or word.

We have left the meaning of the word “state” here intentionally vague because differ‐
ent variants of the RNN architecture (LSTM, GRU, etc.) implement state differently.
But at their core, this is what all RNN architectures do—read in the sequence one
word at a time and update some state as they do so.

A common visual depiction of RNNs you might see is a block with an arrow that
loops back to itself (shown in Figure 6-1). This captures the idea that RNNs loop
through the sequence and pass the previous state back as input into the cell to get the
next state.

Figure 6-1. An RNN with a loop

The loop here can then be unrolled, to get something that looks more like the trans‐
former diagrams we’ve been looking at. The unrolled version, shown in Figure 6-2,
depicts how you would pass a sentence into the RNN more clearly.

Figure 6-2. An unrolled RNN

Recurrent Neural Networks | 135

3 Again, we highly recommend checking out the fastai library and courses!
4 …if you’re ignoring performance, that is. Of course, it’s better to use one that’s well optimized and fast. But

you get the idea. For more information on deep learning frameworks and other tools, check out Chapter 9.

For a vanilla RNN, the cell is implemented in two simple matrix multiplications: one
to transform the word vector and another to transform the hidden state. We’ll explain
that more clearly in a bit, but to get a firm understanding of cells and how to use
them in a loop, let’s implement an RNN in PyTorch.

RNNs in PyTorch from Scratch
We’ve talked about this briefly before, but fastai’s functionality is split into modules.
Most of the NLP functionality is in the text submodule. In typical fastai style,3 we
import all the things we need from that module. The fastai library automatically
handles a lot of imports for us behind the scenes, so you don’t need to worry about
importing things like PyTorch yourself.

As you might have guessed from the name, transformers (the
Hugging Face library, not the family of architectures) is mostly
focused on implementing state-of-the-art transformers and expos‐
ing an API to interact with them. It is not really a general-purpose
NLP or deep learning framework. As a consequence, transformers
doesn’t really have a great way to train nontransformer models, and
there’s no reason it should! Implementing things that are not trans‐
formers is not a goal of that library. So for this chapter, we’ll be
using fastai to train and evaluate our RNN models. We’ll focus on
the core architecture and let the library deal with setting up the
dataloaders, optimizer, and training loop. Remember, the choice of
deep learning framework is not as important as how you use it.4

The RNN class discussed previously drives the core functionality of the model we’re
going to build, but there are a few things we need to add around it. First, there’s an
embedding layer (which we explored in detail in Chapter 5). Then, we pass the word
vectors to our PyTorch RNN model.

136 | Chapter 6: Recurrent Neural Networks and Other Sequence Models

As you should with all other fastai code in this book, make sure
you’re using fastai version 2 when running this code. It is not
backward-compatible with version 1. You can check your library
version with the following code snippets:

import fastai
fastai.__version__

'2.0.16'

from fastai.text.all import *

The output of the RNN module will be the final hidden state in the network. This
essentially encodes information about what the processed sentence means. There are
variants of RNN models that use the hidden state for every item in the sequence, but
we’ll keep it simple for now.

We’ll be trying a simple text classification problem: positive/negative sentiment analy‐
sis on the IMDb dataset. While admittedly a little too basic and boring at this point,
we want to focus on actually seeing if we can use that last hidden state of our RNN to
do useful things.

While PyTorch does provide a built-in RNN class, let’s try to build something similar
ourselves. It’s instructive and not too hard to do. Later, we can swap out our module
for the real torch.nn.RNN, because reinventing the wheel is not very useful in
practice.

We’ll build our RNN modularly. There are two parts to our RNN implementation:

Loop
The loop takes in a sequence, loops over it while updating the hidden state, and
returns the final hidden state.

Cell
The cell takes a single word vector and the previous hidden state and returns the
next hidden state.

The cool part is that since almost every recurrent architecture follows this frame‐
work, we’ll also get to see how we can easily swap out cells to get better performance.

First, the vanilla RNN cell. The mathematical formulation for the simple RNN cell
computation is:

ht + 1 = tanh Wihxt + bih + Whhht + bhh

The subscript ih means “input to hidden,” and hh means “hidden to input” (i.e., Wih
takes a vector that’s the size of an input and transforms it to a vector that’s the size of
the hidden vector). You might recognize the Wihxt + bih and Whhht + bhh terms.

Recurrent Neural Networks | 137

These are simply the usual, feed-forward layers, so that’s how we’ll implement it. This
abstraction simplifies the equation a bit:

ht + 1 = tanh Linear xt + Linear ht

The RNN cell, then, simply takes the word vector and hidden state vector, passes both
of them through separate linear layers, adds them up, and then passes them through a
tanh function. The result is a vector that is the next hidden state and is what our for
ward function should return.

We implement our RNNCell just like you implement every other PyTorch layer—by
extending nn.Module:

class RNNCell(nn.Module):

 def __init__(self, input_size, hidden_size):
 super(RNNCell, self).__init__()

 self.input_size = input_size
 self.hidden_size = hidden_size
 self.ih = nn.Linear(input_size, hidden_size)
 self.hh = nn.Linear(hidden_size, hidden_size)

 def forward(self, x, h = None):
 if h is None:
 h = torch.zeros(x.size(0), self.hidden_size)
 h = torch.tanh(self.ih(x) + self.hh(h))
 return h

See how simple that was! Apart from setting things up, all the computation essentially
boils down to one line of code:

torch.tanh(self.ih(x) + self.hh(h))

Now we need to make our RNN itself. This is also fairly straightforward. All we have to
do is initialize our cell and run it in a loop:

class RNN(nn.Module):

 def __init__(self, input_size, hidden_size):
 super(RNN, self).__init__()
 self.cell = RNNCell(input_size, hidden_size)

 def forward(self, x, h = None):

 print(x.shape)
 for i in range(x.shape[1]):
 h = self.cell(x[:,i], h)

 return h

138 | Chapter 6: Recurrent Neural Networks and Other Sequence Models

Now we have a working RNN! But it’s still not 100% ready to be used for IMDb clas‐
sification. What we built just now is a general-purpose RNN that takes in a sequence
of word vectors and outputs a single hidden state vector. There are a few final pieces
we need to add to get a model that can classify text. Our model will have three
components:

1. An embedding layer
2. The RNN section, which runs cells in a loop
3. Fully connected layers to transform the final hidden state into whatever size we

want

We’ve already seen and implemented embedding layers and fully connected layers in
previous chapters, so we can use the PyTorch versions of those. But we’ll use the RNN
class we just built for the RNN portion. To keep things simple (i.e., reduce one hyper‐
parameter you have to set), we’ll use our embedding layer to create embeddings that
are the same size as the hidden state size. For the final stage, we’ll use two fully con‐
nected layers to take in the hidden state and return a single value, which we interpret
as the binary classification result:

class TextClassifier(nn.Module):

 def __init__(self, vocab_size, hidden_size):
 super(TextClassifier, self).__init__()
 self.emb = nn.Embedding(vocab_size, hidden_size)
 self.rnn = RNN(hidden_size, hidden_size)
 self.fc1 = nn.Linear(hidden_size, 10)
 self.fc2 = nn.Linear(10, 1)

 def forward(self, x):

 x = self.emb(x)
 x = self.rnn(x)
 x = self.fc1(x)
 out = self.fc2(x)

 return out

That’s it for the architecture. Now let’s train. Just like we did in Chapter 4, we need to
create a DataLoaders object and a Learner. In the following code snippet, fastai
handles downloading the dataset, reading in the files, and tokenization:

path = untar_data(URLs.IMDB)
dls = TextDataLoaders.from_folder(path, valid='test', bs=256)

Recurrent Neural Networks | 139

To remind you of what the IMDb dataset looks like, let’s look at a quick sample from
the training dataset. fastai has a really handy function called show_batch that you
call as a method from your DataLoaders object:

dls.show_batch(max_n=5)

text category

0 xxbos xxmaj match 1 : xxmaj tag xxmaj team xxmaj table xxmaj match xxmaj bubba xxmaj ray and xxmaj
spike xxmaj dudley vs xxmaj eddie xxmaj guerrero and xxmaj chris xxmaj benoit xxmaj bubba xxmaj ray and
xxmaj spike xxmaj dudley started things off with a xxmaj tag xxmaj team xxmaj table xxmaj match against
xxmaj eddie xxmaj guerrero and xxmaj chris xxmaj benoit . xxmaj according to the rules of the match , both
opponents have to go through tables in order to get the win . xxmaj benoit and xxmaj guerrero heated up
early on by taking turns hammering first xxmaj spike and then xxmaj bubba xxmaj ray . a xxmaj german
xxunk by xxmaj benoit to xxmaj bubba took the wind out of the xxmaj dudley brother . xxmaj spike tried to
help his brother , but the referee restrained him while xxmaj benoit and xxmaj guerrero

pos

1 xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad

pos

2 xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad

pos

3 xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad

neg

140 | Chapter 6: Recurrent Neural Networks and Other Sequence Models

text category

4 xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad xxpad
xxpad xxpad xxpad xxpad xxpad xxpad

pos

To create the Learner, we use a built-in function that creates one from a DataLoaders
and a specified model class (TextClassifier in our case):

learn = Learner(dls, TextClassifier(len(dls.vocab[0]), 100),
 loss_func=CrossEntropyLossFlat(),
 metrics=accuracy)

And that’s pretty much it! fastai abstracts away the other details that we don’t care
about at the moment (such as the loss function and optimizer). All that’s left is the
training step:

learn.fit(10)

OK, so not exactly a stellar model, but it does work. Let’s look at some ways we can
improve it. In this chapter, we’ll be focusing on strictly architectural improvements,
which means we will only edit/change the RNNCell, RNN, and TextClassifier classes.
We will continue using the same training loop, dataset, etc. This means that you could
get better performance if you spend time on the tokenizer, optimizer, and some
hyperparameter tuning, but that’s not the focus of this chapter.

You might be wondering why we chose to use three nn.Module subclasses instead of
just putting everything in one to make the code shorter. Well, for one, separating the
functionality into modules is a good engineering practice. But more importantly, now
that they are all individual modules, you can customize the functionality more effec‐
tively. If you want to make a multilayer RNN, you just have to edit the RNN class. If
you want to swap the cell for a more advanced one, just replace RNNCell with some‐
thing else. Want to add more fully connected layers at the end? Or perhaps modify
the network to perform multiclass classification? All you have to do is customize the
fully connected layers in TextClassifier.

As a matter of fact, this is how RNNs are implemented in PyTorch. For each of the
recurrent network types that PyTorch supports natively (RNN, LSTM, and GRU),
there is a corresponding class for the cell and the module itself. When implementing
your own text classifiers, language models, etc., you’ll want to use the default PyTorch

Recurrent Neural Networks | 141

modules directly, rather than building it yourself. Let’s take a look at the PyTorch ver‐
sion of RNN:

import torch
??torch.nn.RNN

It’s very similar to the RNN module that we built, but adds some useful features like
dropout, multiple layers, and the ability to select an activation function. You could try
implementing these things yourself if you want to for fun, but it’s more trouble than
it’s worth for a real production system. So from now on, we’ll use torch.nn.RNN
instead of our custom RNN. They are similar enough that the PyTorch version is a
drop-in replacement in TextClassifier:

class TextClassifier(nn.Module):

 def __init__(self, vocab_size, hidden_size):
 super(TextClassifier, self).__init__()
 self.emb = nn.Embedding(vocab_size, hidden_size)
 self.rnn = nn.RNN(hidden_size, hidden_size, batch_first=True)
 self.fc1 = nn.Linear(hidden_size, 10)
 self.fc2 = nn.Linear(10, 2)

 def forward(self, x):

 x = self.emb(x)
 _, x = self.rnn(x)
 x = self.fc1(x)
 out = self.fc2(x)

 return out

learn = Learner(dls, TextClassifier(len(dls.vocab[0]), 100),
 loss_func=CrossEntropyLossFlat(),
 metrics=accuracy)
learn.fit(10)

epoch train_loss valid_loss accuracy time

0 0.695069 0.692872 0.513840 00:04

1 0.692819 0.685738 0.547360 00:04

2 0.694167 0.697343 0.463360 00:04

3 0.693335 0.690784 0.531040 00:04

4 0.693080 0.688063 0.545880 00:04

5 0.692383 0.692549 0.511240 00:05

6 0.689648 0.679611 0.571080 00:04

7 0.686122 0.688807 0.531920 00:04

8 0.677578 0.693136 0.532440 00:05

9 0.687349 0.686864 0.552560 00:04

142 | Chapter 6: Recurrent Neural Networks and Other Sequence Models

Fifty-five percent accuracy is not great, and is a nice illustration of why we needed
better architectures. But thankfully, even within the framework recurrent sequence
models, there are better alternatives.

Bidirectional RNN
The idea of a bidirectional RNN is similar to the bidirectional transformer used in
BERT, but in this case, the directionality is more apparent. Instead of just traversing
the sentence from left to right, a bidirectional RNN has two “paths” for the hidden
state that are computed simultaneously. In effect, you’ll end up with a sequence of
left-to-right hidden states and a separate sequence of right-to-left hidden states.

The TL;DR of bidirectional RNNs is that it adds some more computation but gener‐
ally improves performance without much tweaking. You should almost always use the
bidirectional variant of your RNN model as long as it is computationally feasible.

There is one important consideration—in practice, a lot of the problems you might
want to use an RNN for in this day and age (versus a transformer) don’t really have a
bidirectional structure. For example, in text generation, your model can’t “see” the
end of the sequence, since the end of the sequence is what we’re generating! Where it
is perhaps most useful is in the simpler NLP tasks with larger inputs, like document
classification or summarization, where a transformer might work better but is com‐
putationally impractical to use.

For the IMDb text classification problem, we do have access to the entire sequence at
once, so we can use a bidirectional RNN by simply setting bidirectional=True. This
will give us two hidden states instead of just one, so we concatenate them and pass it
on to the fully connected layer:

class TextClassifier(nn.Module):

 def __init__(self, vocab_size, hidden_size):
 super(TextClassifier, self).__init__()
 self.emb = nn.Embedding(vocab_size, hidden_size)
 self.rnn = nn.RNN(hidden_size, hidden_size,
 bidirectional=True, batch_first=True)
 self.fc1 = nn.Linear(hidden_size * 2, 10)
 self.fc2 = nn.Linear(10, 2)

 def forward(self, x):

 x = self.emb(x)
 _, x = self.rnn(x)
 x = torch.cat((x[0], x[1]), dim=-1)
 x = self.fc1(x)
 out = self.fc2(x)

 return out

Recurrent Neural Networks | 143

5 In fact, this is where the transformer terminology comes from, since RNNs are older.

learn = Learner(dls, TextClassifier(len(dls.vocab[0]), 100),
 loss_func=CrossEntropyLossFlat(),
 metrics=accuracy)
learn.fit(10)

epoch train_loss valid_loss accuracy time

0 0.682959 0.663150 0.606560 00:08

1 0.676049 0.679050 0.566600 00:08

2 0.659499 0.711453 0.541720 00:08

3 0.671983 0.681267 0.562640 00:08

4 0.639950 0.636450 0.643600 00:08

5 0.623661 0.645424 0.624920 00:08

6 0.625853 0.648754 0.628800 00:07

7 0.590960 0.616835 0.664600 00:08

8 0.599594 0.628637 0.665120 00:08

9 0.549145 0.599172 0.683880 00:08

Wow! The simple act of reading backwards gave our model a huge boost in accuracy.
Note that with transformers, there is no concept of directionality to begin with, since
they read all the words you throw at them in parallel. But with recurrent models,
making them bidirectional is a simple and effective way to improve performance
while incurring some computational cost.

But there’s more we can do with RNNs than just text classification.

Sequence to Sequence Using RNNs
As long as you can build a model that uses the hidden state you get from the RNN in
some way, you can build an NLP model for most common tasks. PyTorch’s nn.RNN
also returns the hidden state of the last layer for each time step, so now you have a
sequence of hidden states to use—just as we did when training transformers. You can
use these hidden states however you like.

For example, if you want to build an RNN to do machine translation, you can split
the task into an encoder and decoder phase—just like we did for transformers.5 The
encoder creates a hidden state, and the decoder uses it to generate text in another lan‐
guage (visualized in Figure 6-3).

144 | Chapter 6: Recurrent Neural Networks and Other Sequence Models

Figure 6-3. RNN for neural machine translation

It turns out that a lot of the tasks we mentioned in Chapter 3 can be solved with
RNNs as well as transformers. So you if you have the budget, it may be worth experi‐
menting with both. RNNs, generally speaking, are easier to train if you start from
scratch. But in practice, there are many more large pretrained transformer models
available today than there are RNNs.

There’s more we can do to the improve the architecture of RNNs than change how
the state vectors flow between cells, though. We can also change the architecture of
the individual cells. The LSTM cell is perhaps the most famous improvement.

Long Short-Term Memory
A big improvement to the RNN architecture (along with some drama surrounding
who actually created it) came in the form of the LSTM network. Fundamentally,
there’s not too much new here. As we mentioned, almost all RNNs are just a cell block
that updates a hidden state in a loop. The LSTM architecture uses a more complex
cell block.

Instead of representing the hidden state as a single vector, the LSTM block uses two
vectors with some machinery to manage when it updates these states. Figure 6-4 gives
you a sense of what’s going on.

Figure 6-4. An LSTM network

Long Short-Term Memory | 145

6 In particular, we recommend Chris Olah’s blog post on the topic.

We won’t be covering the specifics of the LSTM block here, since there are plenty of
fantastic tutorials online.6 Rather, we’ll focus on using it in our existing text classifier.

PyTorch has a built-in class for LSTM: nn.LSTM. This takes similar parameters to
nn.RNN and works in pretty much the same way functionally. All we have to do is
swap out nn.RNN with nn.LSTM:

class TextClassifier(nn.Module):

 def __init__(self, vocab_size, hidden_size):
 super(TextClassifier, self).__init__()
 self.emb = nn.Embedding(vocab_size, hidden_size)
 self.rnn = nn.LSTM(hidden_size, hidden_size, batch_first=True)
 self.fc1 = nn.Linear(hidden_size, 10)
 self.fc2 = nn.Linear(10, 2)

 def forward(self, x):

 x = self.emb(x)
 x, _ = self.rnn(x)[1]
 x = self.fc1(x)
 out = self.fc2(x)

 return out

Thanks to the elegant design of the fastai library, we don’t need to change the code
for anything else to train our LSTM-based text classifier. We just have to re-initialize
the learner with the updated TextClassifier and train again:

learn = Learner(dls, TextClassifier(len(dls.vocab[0]), 100),
 loss_func=CrossEntropyLossFlat(),
 metrics=accuracy)
learn.fit(10)

epoch train_loss valid_loss accuracy time

0 0.692424 0.686630 0.541640 00:06

1 0.655113 0.609996 0.681640 00:05

2 0.626896 0.749849 0.528720 00:06

3 0.592931 0.597747 0.694080 00:05

4 0.528877 0.511302 0.762520 00:06

5 0.539924 0.553975 0.720920 00:05

6 0.475588 0.478583 0.784360 00:06

7 0.412415 0.451568 0.798320 00:06

8 0.397446 0.446312 0.802120 00:05

146 | Chapter 6: Recurrent Neural Networks and Other Sequence Models

https://oreil.ly/S1kba

epoch train_loss valid_loss accuracy time

9 0.356494 0.406632 0.821800 00:06

That was much better! LSTMs usually are. At the time of writing, the best RNN (in
terms of NLP SOTA leaderboards in published research) is a variant of this architec‐
ture, called the AWD-LSTM. But that performance comes at a cost. As you can see
from the implementation, LSTM networks are more conceptually and computation‐
ally inefficient than vanilla RNNs, and a lot of research has gone into making cheaper
variants of them over the years. The one that lasted was the gated recurrent unit
(GRU).

Gated Recurrent Units
The GRU cell tries to solve the same problem that the LSTM cell tries to solve (learn‐
ing long-term dependencies) using a method that is similar but simpler both compu‐
tationally and conceptually. But in the end, GRU is just another cell and follows the
same formula as every other RNN. So we can now swap out our LSTM for a GRU
without much hassle:

class TextClassifier(nn.Module):

 def __init__(self, vocab_size, hidden_size):
 super(TextClassifier, self).__init__()
 self.emb = nn.Embedding(vocab_size, hidden_size)
 self.rnn = nn.GRU(hidden_size, hidden_size, batch_first=True)
 self.fc1 = nn.Linear(hidden_size, 10)
 self.fc2 = nn.Linear(10, 2)

 def forward(self, x):

 x = self.emb(x)
 _, x = self.rnn(x)
 x = self.fc1(x)
 out = self.fc2(x)

 return out

Again, the training loop remains unchanged:

learn = Learner(dls, TextClassifier(len(dls.vocab[0]), 100),
 loss_func=CrossEntropyLossFlat(),
 metrics=accuracy)
learn.fit(10)

epoch train_loss valid_loss accuracy time

0 0.689930 0.676298 0.577360 00:05

1 0.604351 0.529154 0.740560 00:05

Gated Recurrent Units | 147

7 The people who made them certainly are!

epoch train_loss valid_loss accuracy time

2 0.503720 0.482746 0.781160 00:05

3 0.445455 0.418563 0.814600 00:05

4 0.372754 0.401952 0.833400 00:05

5 0.326986 0.349531 0.851880 00:05

6 0.292445 0.340987 0.854440 00:05

7 0.245959 0.350378 0.859120 00:05

8 0.260215 0.346354 0.854800 00:05

9 0.201884 0.315813 0.879160 00:05

In this case, the GRU performed better than the LSTM, but this is not always the case.
The benefit of GRUs is that they do less work in each cell, which means they are more
efficient. This is particularly useful in edge device deployment, where CPU resources
are scarce, and LSTMs are known to be CPU-hungry. Comma AI, the self-driving car
startup, uses a GRU-based network for their in-car compute module.

Conclusion
There are many other RNN variants, such as AWD-LSTMs, QRNNs, SHA-RNNs, and
other three-to-seven–letter acronyms that expand to polysyllabic words that can
make you sound really smart.7 But most of these are similar in spirit—they use some
sort of cell that processes a single element of the sequence and repeats that computa‐
tion multiple times in a loop.

If you look hard enough, you’ll also find many more exotic variants
that do other things. Are these really RNNs if they don’t have a loop
structure? That’s up to you! Deep learning is a highly experimental
field, and we don’t have super-rigorous definitions for things. But
most models that call themselves RNNs can be expressed as repeat‐
ing a computation in a loop to update a hidden state. As we saw
earlier with LSTMs and GRUs, what differs is usually the cell block.

One question for the next architecture improvement in RNNs is: have we come up
with the best possible cell blocks, or are there more interesting ones yet to be made?
We believe that this remains an open question. But one thing that’s clear is that a large
portion of the field of NLP has moved on from the idea of using a loop with a cell
block.

148 | Chapter 6: Recurrent Neural Networks and Other Sequence Models

In our opinion, the verdict is still out on RNNs. While many may claim that the age
of the recurrent neural network is over and that transformers will forever be the
future, there are still some concerns with that architecture—for extremely long
sequences (like documents), the Transformer architecture’s n2 memory complexity is
not fun to deal with. For now, RNNs present a satisfactory middle ground in terms of
performance and computational cost.

In the next chapter, we’ll turn our attention to the latest and greatest in NLP today—
the Transformer architecture.

Conclusion | 149

1 An inside joke for the people following the names of new NLP research papers.

CHAPTER 7

Transformers

In the previous chapter, we covered RNNs, the modeling architecture in vogue in
NLP until the Transformer architecture gained prominence.

Transformers are the workhorse of modern NLP. The original architecture, first pro‐
posed in 2017, has taken the (deep learning) world by storm. Since then, NLP litera‐
ture has been inundated with all sorts of new architectures that are broadly classified
into either Sesame Street characters or words that end with “-former.”1

In this chapter, we’ll look at that very architecture—the transformer—in detail. We’ll
analyze the core innovations and explore a hot new category of neural network layers:
the attention mechanism.

Building a Transformer from Scratch
In Chapters 2 and 3, we explored how to use transformers in practice and how to lev‐
erage pretrained transformers to solve complex NLP problems. Now we’re going to
take a deep dive into the architecture itself and learn how transformers work from
first principles.

What does “first principles” mean? Well, for starters, it means we’re not allowed to
use the Hugging Face Transformers library. We’ve raved about it plenty in this book
already, so it’s about time we take a break from that and see how things actually work
under the hood. For this chapter, we’re going to be using raw PyTorch instead.

151

2 Again, see Chapter 2 for details on what these tools do.

When deploying models in production, especially on edge devices,
you may have to go to an even lower level of abstraction. The tool‐
ing around edge device inference, as we mentioned in Chapter 2, is
not great at the moment. Currently, it’s not uncommon to have
models exported and transpiled into complex C++-based formats.2
ONNX seems to be a promising new project that we would love to
see more of in the near future. But at present, running inference on
dedicated servers where you can choose your own software stack
seems to be the way to go. A major benefit of this approach is that
you can use PyTorch without having to worry too much about
compiling C++ libraries and transpiling between 102 different for‐
mats. So for now, PyTorch is about as “low level” as we’ll go.

PyTorch, being a fully fledged deep learning library that most researchers use, natu‐
rally has an implementation of the extremely popular transformer architecture, just
like a Hugging Face library does. This version, though, exposed as an nn.Module, is
much more DIY and is meant to be used with the other familiar PyTorch tools like
dataloaders, optimizers, etc.

As we’ve mentioned before, one of the best ways to see what any deep learning–
related class/function does is by looking at the type signature and the dimensionality
of the inputs and outputs. So let’s do that:

import torch
model = torch.nn.Transformer()
model.encoder.layers[0]

TransformerEncoderLayer(
 (self_attn): MultiheadAttention(
 (out_proj): Linear(in_features=512, out_features=512, bias=True)
)
 (linear1): Linear(in_features=512, out_features=2048, bias=True)
 (dropout): Dropout(p=0.1, inplace=False)
 (linear2): Linear(in_features=2048, out_features=512, bias=True)
 (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
 (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
 (dropout1): Dropout(p=0.1, inplace=False)
 (dropout2): Dropout(p=0.1, inplace=False)
)

152 | Chapter 7: Transformers

3 A revolutionary new architecture isn’t the only thing this paper brought to the deep learning community.
Since its publication, we’d argue that this paper normalized the idea of having catchy and attractive titles that
help market your paper.

4 A popular AI conference.
5 Yes, the pun was intentional, and no, it’s not going to stop. Living with attention puns is a reality you must be

able to navigate if you have any hope of comprehending NLP literature.

In Jupyter Notebooks, you can enter ?? followed by a variable
name to get more information about its type, methods, documen‐
tation, and more. It’s a really useful tool to use for debugging. For
PyTorch nn.Module objects, you get a full description of the mod‐
el’s layers. We aren’t using it here due to size constraints, but you
can try this out yourself in a Jupyter Notebook.

At the outset, there doesn’t seem to be too much to take away from this. It’s a fairly
standard PyTorch nn.Module with the standard forward() function defined for us. In
principle, we could just plug it into our training pipeline and carry on. In fact, this is
essentially what we did in Chapter 2. But let’s try to understand the exact components
of this module.

Of particular interest is the MultiheadAttention layer. Most of the other layers, like
Dropout, Linear, and LayerNorm, are things you’d expect to see in nontransformer
models as well. This particular implementation of the transformer by PyTorch (with
no additional configuration parameters), exactly matches the specification of the
architecture in the original paper (shown in Figure 7-1) which, coincidentally, is titled
“Attention Is All You Need.”3

In short, it’s safe to say that the most important component of this Transformer class
is the MultiheadAttention layer. So it makes sense to take some time to understand
what that is and how it works.

Attention Mechanisms
An attention mechanism is a layer in a deep neural network. Its job, while still open
to interpretation, is to learn long-range, “global” features. An attention mechanism
acts as what we like to call an “information router” that decides what components of
the input sequence of embedding vectors contribute to a single output vector. This
idea will become more clear as we actually work through the details.

We’re just as excited to talk about attention as the other couple thousand people that
attended NeurIPS4 within the last year, but before we do, we should mention that an
important theme to pay attention to5 is the computational complexity of the

Attention Mechanisms | 153

operations involved. Think about how many dot products/matrix multiplications you
see and the size of the tensors involved.

Computational Complexity
In computer science, there’s a known method to measure the speed or efficiency of an
algorithm by looking at what’s known as its “computational complexity.” In this
method, you don’t measure how fast a given algorithm runs by taking speed/timing
measurements, but instead use theoretical principles to predict how the algorithm
scales.

You might be familiar with the so-called “Big Oh” notation used to write down com‐
plexity. In practice, this is not very useful for deep learning, as real-world perfor‐
mance is often dictated by a concoction of interdependent performance
considerations like programming language, CPU/GPU architecture, degree of paral‐
lelism, etc.

Dot Product Attention
OK, strictly speaking, we don’t think we’ve seen this type of attention actually being
applied in real networks. Scaled dot product attention is usually just talked about as a
component of the next thing we’ll discuss: Multi-Head Self-Attention.

The most important question you need to ask in the world of exotic attention mecha‐
nisms is this: how, exactly, do you measure the similarity between things? This core
idea, shrouded in a veil of linear algebra and bucket-loads of GPUs, is what drives the
fundamental behavior of neural nets in NLP today.

And the scaled dot product uses probably one of the simplest and most intuitive
methods of measuring similarity—the dot product.

You should be familiar with this, but let’s do a quick recap. The dot product is an
operation that takes two vectors, multiplies them element-wise, and then adds up the
results. This measures similarity because if the two vectors that we’re “dot-
producting” have similar components, the product of their elements will be large, and
vice versa (in the sense that vectors with dissimilar components will have a small dot
product).

But the real question is, what exactly are we taking the dot product of? To answer this
question, let’s focus on how these attention mechanisms are implemented in trans‐
formers (see Figure 7-1).

154 | Chapter 7: Transformers

Figure 7-1. A single layer of a transformer

A typical transformer takes in sequences of word vectors as input, and at each layer,
transforms (and no, we don’t think that’s how they got their name) them into another
sequence of vectors, which we call the hidden representation/state.

So at each hidden layer in the network, we have sequences of vectors that we want to
“attend” over. See Figure 7-2.

Attention Mechanisms | 155

Figure 7-2. Dot product attention in a transformer layer

Now, here’s the important bit, so pay attention (pun very much intended).

What we’re going to do is transform each one of these hidden state vectors into three
separate, completely independent vectors—the query, the key, and the value.

We do this transformation via a simple matrix multiply, and the dimensions of these
vectors are up to us. The only restriction is that the query and key vectors need to
have the same dimensions (since we’re going to take the dot product between them):

ki = WKhi, qi = WQhi, vi = WVhi

We then compute the attention weights by taking the dot product of the query vector
at each time step as with all of the key vectors, and softmax the result. To do this over
all time steps simultaneously, it’s more efficient to pack these vectors into a matrix
that performs the multiplications in parallel. The final calculation would look some‐
thing like this:

zi = softmax qiK
T V

That’s not all we can do, though. Since each of the query vectors are independent, we
can parallelize across time (something that wasn’t possible with RNNs, since the com‐
putation would be dependent on zi − 1):

Z = softmax QKT V

156 | Chapter 7: Transformers

But why? That’s the question we were asking ourselves when reading the transformer
paper. Splitting into three vectors seems a little arbitrary and complicated. Like, why
not two or four?

Based on just the naming, it seems like the intuition here is rooted in databases.
Think about how this would work in regular old Python dictionaries, no neural nets
involved.

You have a large sequence of key-value pairs. That’s the dictionary structure. It could
look something like this:

sentence = {
 "word_1": "Squirtle"
 "word_2": "is"
 "word_3": "the"
 "word_4": "greatest"
 "word_5": "Pokemon"
 "word_6": "ever"
}

Now I know what you’re thinking—“Puh-lease! We all know Squirtle doesn’t stand a
sliver of a chance against Charizard.”

Well, we beg to differ. Deal with it.

When you want to get a value from the dictionary, you’d use a query that looks some‐
thing like this:

 a = sentence['word_3']

And what Python would do, behind the scenes, is compare your query word_3 against
all the possible keys in the sentence dictionary. It would then return the value and
store it in a variable.

What we’re doing with dot product attention is similar. The query vector represents,
in some abstract sense, what the current word is looking for. The key associated with
each word kind of represents what each word has to offer. The value vector contains
the information that the query vector was looking for. But we know that sounds super
abstract, so let us show you an example.

Consider the following sentence:

Mario is short, but he can jump super high.

Now say our transformer is currently working on the word “he,” and it’s trying to
propagate it to the next layer in the network. The query vector here might be some‐
thing that’s looking for a name or a person to clarify what exactly the pronoun “he” is
referring to. So, the transformer takes the query vector for “he” and computes dot
products of this query vector with the key vectors of every other word in the

Attention Mechanisms | 157

sentence. Each of these dot products generates a sort of alignment score that meas‐
ures how much the query and key match.

As it does it, the key vector corresponding to “Mario” is likely to light up, and will
generate the largest alignment score. This indicates to the network that there’s some‐
thing interesting going on there, and the network should pay attention (see what we
did there?).

But the job isn’t done yet. Once the transformer calculates all the alignment scores
between “he” and the other words in the sentence, it passes these scores through a
softmax, to generate a nice distribution. You can interpret the scores more naturally:
0 would tell you that there’s little connection between the words, and a 1 would tell
you that there’s a near-perfect alignment.

Remember that each word also has an associated value vector, which, in our picture,
is supposed to represent the actually meaningful content of the word, just like in the
case of values in Python dictionaries. Unlike Python dictionaries, however, each
query doesn’t return a single result. Instead, the transformer takes the normalized
alignment scores that we calculated for each word and uses them to perform a weigh‐
ted sum over all the value vectors. The reason for this is somewhat simple—say the
sentence we were working with was now “Mario and Luigi are short, but they can
jump very high.” Here, the query for “they” is not just looking for a single word, but
every possible person that fits into this group.

Creating a distribution of alignment scores now lets us pick up different parts of the
sentence in different amounts! Oversimplifying a bit, you can imagine that the nor‐
malized alignment scores for the words “Mario” and “Luigi” are 0.5 and 0 for all other
words.

The transformer has now attended (seriously, is that even a word?) over the sentence,
and has created a vector for a particular word (“he” and “they,” in our example) that
encapsulates how the relevant parts of the sentence relate to this word in the grand
scheme of things.

You’d now repeat this process for every word in the sentence, thereby getting another
sequence of vectors to pass on to deeper layers in the network.

When we’re computing the so-called “self-attention” in the encoder parts of the trans‐
former, the following hidden states are used to calculate:

ki, qi, vi

These all come from the sequence in that layer of the encoder. The same is true for
self-attention in the decoder.

158 | Chapter 7: Transformers

There’s another one, though—the attention layer used in the decoder that uses the
decoder hidden representation for the queries, and the encoder hidden representa‐
tion for the keys and values. This allows the decoder to attend over all previous
encoder hidden representations, which is useful in tasks like machine translation. You
wouldn’t want your French translator to starts spewing out gibberish without actually
reading the whole sentence in English first.

You can visualize the self-attention layer in Figure 7-2 and the entire layer put
together in Figure 7-1. Stack a few of these layers on top of one another, and boom!
You’ve (almost) got yourself a transformer.

Scaled Dot Product Attention
There’s a minor problem with this, though. Although dot products are really fast,
cool, and all that, when the size of the vectors are large, the dot product can get pretty
big.

To see what we mean, consider two random vectors. Instead of just talking about it,
though, let us show you some actual computations from NumPy:

import numpy as np

small_dots = [
 np.dot(np.random.randn(10),
 np.random.randn(10))
 for i in range(100)]
np.mean(np.absolute(small_dots))

2.7733341538409992

What we just did there was generate two random arrays of size 10 and take the dot
product of them. Just to be sure, we repeated this 100 times and calculated the aver‐
age magnitude of the dot product to make sure that we’re not getting a random
outlier.

And so the value was around 2.74. How’s that useful? Well, let’s try the same thing
with arrays of size 10,000:

large_dots = [np.dot(np.random.randn(10000),
 np.random.randn(10000))
 for i in range(100)]
np.mean(np.absolute(large_dots))

85.0101478977957

OK. That’s a lot bigger. But think about it—since we’re using dot products to measure
alignment, something is clearly wrong here. In both cases, we generated purely ran‐
dom vectors, so ideally, their alignment scores should be similar.

But since the components are chosen from a standard normal distribution with mean
0 and variance 1, an n-dimensional vector will have a variance of n (you get this by

Attention Mechanisms | 159

adding up the variances of the components, and if you’re going to be pedantic, it’s the
trace of the covariance matrix of the vector, but that’s way too long a name).

To correct for this and ensure that vectors of any dimensionality have roughly the
same alignment scores, we’ll scale our previous attention mechanism similar to how
you’d normalize to unit variance in statistics.

The new, corrected attention mechanism would be:

Z = softmax QKT

dk
V

Multi-Head Self-Attention
Here’s something you might find interesting: the two attention mechanisms that we
just discussed, and the one we’re about to show you now, all came from the same
paper—“Attention Is All You Need” (aka the transformer paper). Pretty cool, huh?

Anyway, the next thing we can do is try to split up our attention mechanism into
many smaller attention mechanisms (with an “s”). Why would we want to do this? A
good way to illustrate the rationale is through a popular attention test video.

Now you’ve probably seen that video before (if you haven’t, surprise!), and you know
why it’s so hard to spot the gorilla on your first pass—it’s easier and more natural to
pay attention to one thing at a time. In this case, that’s basketball passes, since that’s
what the video asks you to look for. If instead, you were asked to look for a gorilla, it
probably would have been easier to find the gorilla.

Attention mechanisms kind of work in the same way. There’s a lot of stuff to pay
attention to and keep track of in language, like pronouns, as we discussed earlier
(“Mario is short, but he can jump super high”), but also other things, like where the
main characters are going in physical space (“Mario went to the flower store and then
to the gym, where he did 50 squats”).

Having one set of queries, keys, and values do all that work might be a bit too much,
and they might miss out on the occasional gorilla, just like you probably did.

Multi-head attention mechanisms try to fix this issue by independently applying the
attention mechanism multiple times on the same sequence in a single pass. In terms
of the gorilla video, this would be like having your buddy watch the video with you.
One of you could pay attention to the passes, while the other could look for gorillas,
thereby increasing the overall attention capabilities.

Crucially, the query key and value matrices need to be different, otherwise redoing
the whole attention thing multiple times would just be a waste of computation (ask‐
ing your friend to look for passes while you also look for passes).

160 | Chapter 7: Transformers

https://oreil.ly/jrrmP

To create variety in the queries, keys, and values, the transformer network simply uses
multiple separate weight matrices to transform the input into multiple queries, keys,
and values:

Q1 = W1
Qx, K1 = W1

Kx, V1 = W1
Vx

Q2 = W2
Qx, K2 = W2

Kx, V2 = W2
Vx

. . .

Qn = Wn
Qx, Kn = Wn

Kx, Vn = Wn
Vx

Here, n is the parameter you set, and it’s called the number of heads. It represents
how many different attention computations are being done on the same sequence.
You can think of it as the number of people you invite over to watch that gorilla video
with you.

Are you tired of that analogy yet? Don’t worry, we’re almost done with it.

Each one of these “heads” performs the scaled dot product attention calculation inde‐
pendently (and, crucially, in parallel):

head1 = softmax
Q1K1

T

dk
V1

head2 = softmax
Q2K2

T

dk
V2

. . .

headn = softmax
QnKn

T

dk
Vn

Attention Mechanisms | 161

At the end of all this number-crunching, we’re going to be left n different output vec‐
tors per spot in the sequence, corresponding to the outputs from each of the attention
heads. But since the next layer needs a sequence of vectors (and a sequence of n vec‐
tors), the transformer concatenates the output from the multiple attention heads and
passes it through another learned linear transform to make the dimensions work
right:

z = WO head1; head2; . . . ; headn

A sequence of these new concatenated and transformed z vectors is what gets passed
on to the next layer of the transformer.

That’s definitely a lot of linear algebra to take in at once, so go through it slowly again
to make sure you actually get it. In particular, visualizing Multi-Head Self-Attention is
probably the best way to understand how it works. Jay Alammar has an excellent set
of articles on this, and we highly encourage you to take a look at the visualizations
presented there.

Adaptive Attention Span
OK, we’re finally moving on to some (relatively) newer and cooler stuff. In 2019,
some cool people at Facebook AI Research asked a really cool question—what if we
could get transformers to learn what to pay attention to?

But isn’t that what transformers already do? Isn’t this the entire point of the attention
mechanism?

Well, yes. But there’s also another very important thing we haven’t talked about—
computational cost. You see, adding an attention mechanism isn’t cheap. If you have n
words in a batch/sentence, it would take n2 dot products (per layer) to compute each
of the attention weights across all the tokens in the sequence. This is because you have
to take the dot product of each of the n query vectors with each of the n keys.

As you can tell, this can blow up pretty fast. If you had, say, 50 tokens/words in your
batch/sentence, then there are at least 502 = 2, 500 dot products to compute. But sim‐
ply by increasing the number of tokens by two, to 52, you’d now have more than
522 = 2704 dot products to compute. That’s about 200 more dot products just for
adding two extra tokens per batch, and that’s not even factoring in multi-headed
attention!

162 | Chapter 7: Transformers

https://oreil.ly/A7jmk

Of course, one could question if we really need to compute attention over every single
token every single time. It seems a little excessive. Especially in character-level or
subword-level models, where some of the attention heads might simply be looking at
the last few tokens to try and fit characters or subwords together into words. But then
again, other heads might actually be looking over the entire sequence, so we can’t just
make every head look at only the last few tokens.

The way we (or in this case, the Facebook team; we are just reaping the benefits of
their work) strike a balance is by having some heads attend over a larger set of tokens,
and have some heads attend over only the last few tokens.

There’s one term we’ll introduce here: attention span. This simply refers to how many
previous tokens the model is attending to. So if a head has an attention span of 5, this
means that head runs an attention mechanism over the last 5 tokens from the current
position in the sequence.

So how do we decide the attention span for each of the heads? Typically, this would
involve experiments, plots, some hand-waving, and a fair bit of guesswork. But what
makes adaptive attention span so cool is that each head can learn its own attention
span through the training process!

This idea is really cool because it takes something that would have been a hyperpara‐
meter, the number of tokens to attend over, and makes it a simple parameter that can
be automatically tuned through backprop.

Here’s the main issue at hand: the number of tokens that each head looks at, also
called the attention space, is an integer, and therefore can’t be differentiated. Being
nondifferentiable means that you can’t really learn that parameter through training.
So instead, the research team had to come up with a clever way to get a differentiable
version of the attention span.

They did this by creating something called a masking function, which takes in the dis‐
tance between tokens and outputs a value between 0 and 1. In the paper, they define
the masking function like this:

mz x = min max 1
R R + z − x , 0 , 1

Which we guess looks a little weird. But the plot is actually pretty clear and simple, as
shown in Figure 7-3.

Attention Mechanisms | 163

Figure 7-3. Adaptive attention span

So the intuition here is that if the distance x between two tokens is large enough, the
value of mz x will be zero, which means we don’t do the attention computation
between those two tokens.

Since this mz x function is smooth, we can get its gradient and tune the value of z for
each attention head. With a larger z, the attention head would look across more
tokens, and vice versa. R is a hyperparameter that controls the smoothness of that
ramp section you see on the plot.

But most importantly, the adaptive attention span transformer has some pretty cool
results. It achieves state-of-the-art performance on the enwik8 dataset using consider‐
ably less memory and FLOPs than other transformers.

Persistent Memory/All-Attention
This modification to the self-attention mechanism is a little interesting, because it
focuses on something that deep learning research rarely does—simplicity.

The all-attention layer, introduced in a paper by FAIR (yes, those same people again)
doesn’t significantly improve performance or decrease computational cost. Instead, it
takes a multistep process in the original Transformer architecture and reformulates it
into a single step that involves just the attention mechanism, nothing else.

In the original implementation, the transformer uses a position-wise feed-forward
network in each layer. What this means is that after running the attention mecha‐
nism, the transformer passes each of the vectors in the sequence through a tiny
vanilla neural net before passing it on to the attention mechanism in the next layer.

And here’s the juicy bit—the persistent memory paper says that most of the parame‐
ters from the transformer are used in these feed-forward networks, not the attention
and self-attention mechanisms.

So their idea was to get rid of the position-wise feed-forward network entirely. Not
necessarily to reduce the number of parameters (because they end up adding back in
a lot more parameters eventually), but just because.

164 | Chapter 7: Transformers

They showed that if you stare at the computation of the position-wise feed-forward
networks, it actually looks similar to the computation that an attention mechanism is
doing. Let’s take a look and see what the authors mean:

FeedForward xt = U · ReLU Vxt + b + c

Attention xt = softmax QKT

dk
V

where U, V in the feed-forward network are weight matrices.

Don’t really see the connection between the two? Yeah, neither do we. But take a look
at what happens when we remove the bias terms and swap out the ReLU for a
softmax:

FeedForward xt = U · softmax Vxt

Now if you look carefully at that last step, you’ll notice that what we’re doing is a
matrix-vector product between U (the matrix) and Vxt (the vector). And you remem‐
ber the details of how that works—this is basically taking a weighted sum of the col‐
umns of the U matrix:

FeedForward xt = U · softmax Vxt = ∑
i = 0

d f
atiui

where the attention weights ati are computed from the Vxt product and ui is the ith
column of U.

Looking at the computations in this way, xt, V, U are analogous to the queries, keys,
and values in scaled dot product attention.

So what’s the point of all this math, you ask? Well, actually not much. Sorry.

The main conclusion of the paper is that since the computation that the feed-forward
networks are doing is very similar (in fact, almost equivalent if you ignore the bias
terms and activation function), we can probably swap them out and make the Trans‐
former architecture simpler.

In our opinion, it would have been equally valid to just say, “Hey look, so we got rid
of those feed-forward network things after the attention mechanism and just used a
bunch of attention instead. It worked pretty well.” But hey, it is what it is.

Attention Mechanisms | 165

If you’re beginning to question the meaning of life after spending the last five minutes
of your precious free time breaking your head over a bunch of equations that we just
told you do pretty much nothing new, fear not. Because this paper did have another
really cool idea: persistent memory.

Considering that replacing the feed-forward networks with attention would reduce
the number of parameters in the model, the authors benevolently decided to not let
their GPU memory get too bored, so they found some new ways to crank up the tem‐
perature on their Nvidia home heaters.

Now of course, if you wanted to add more parameters to your model, you could
always do something simple, like increasing the number of layers, increasing the con‐
text size, etc. But instead, this FAIR team decided to do something very clever. They
decided to give the model an independent memory bank.

We’ll be specific. When we say “memory bank,” we mean a large collection of key-
value vector pairs. You can have as many of these key-value vector pairs as you want,
and they are completely independent from the actual training data.

Once you have this large bank of vectors, you can choose to run the attention mecha‐
nism over these vectors as well, not just the sequence from the text data. These vec‐
tors are then updated over the course of training, and used in the attention
mechanism at inference time as well.

The key-value vectors then act as a sort of indexed knowledge base. If a transformer
language model is trying to predict the next word of the sentence “World War II
ended in,” it would have a query for the next position that corresponds to asking for
the year that the Second World War ended. However, this information is nowhere to
be found anywhere else in the sentence, so the model just kind of has to guess.

But with a dedicated memory bank, the transformer can store all sorts of little tidbits
like that, and when the query vector hits the right key in the memory bank, it can
access the right information in it.

A few technical details for those of you who care: the positional embeddings for the
memory vectors are zero, and the keys and values are stacked into a matrix and con‐
catenated onto the sequence for running the attention mechanism.

The idea of a dedicated memory unit in a neural net isn’t exactly new. But it’s the idea
of using a persistent memory bank as a way to inject more parameters into a relatively
simple neural net architecture that makes this attention mechanism interesting.

166 | Chapter 7: Transformers

Product-Key Memory
Let’s dive down the memory-augmented attention rabbit hole a bit further, since it
seems to be a thing that’s getting more popular, at least in the deep learning literature.

This next attention mechanism + memory unit that we’re going to look at doesn’t
seem that cool if you look at it on its own. But it’s actually used in XLM and CTRL,
two state-of-the-art transformers that came out after this layer was introduced.

By the time this paper was published, memory in transformers was already a thing.
So the goal of this project was to make memory more efficient.

It starts off with a very similar premise to the previous memory mechanism we talked
about. We have a memory bank that consists of a large collection of key-value pairs,
where the keys and values are both vectors.

In persistent memory, we attend over the entire memory bank, which can quickly
blow up if the memory bank gets too big (which wasn’t a super-big deal last time
since the authors were mostly trying to use memory to substitute for parameters lost
in the feed-forward networks). Here, the authors propose a different solution.

Instead of attending over a huge memory bank, most of which will be pretty useless
for each query, why not just pick a few keys and use the corresponding value? Specifi‐
cally, they suggest finding the top k keys that maximize the dot product with the
query, and using a weighted sum of the k corresponding values to get a result from
the memory bank, as shown in Figure 7-4.

Figure 7-4. Product-key memory

This seems neat, but it gets even cooler. Consider the case when you have a large
number of keys; you then have to compute a lot of dot products, because you need to
dot-product the query with each key to get the similarity scores before picking the
top keys.

Attention Mechanisms | 167

To make the top-k key search more efficient, we can split each of the keys into half, so
that instead of having, say, a key as a vector/array with 10 elements, you can have 2
keys with 5 elements each.

Now if you pull out your old undergrad combinatorics textbook, you’ll see that if you
have n half-keys, and consider a full key to be the concatenation of two half-keys,
then in total, you can make up to n2 keys. An example with 3 subkeys is shown in
Figure 7-5. What this means is that for a memory bank of n2 value vectors, all we
need is n half-keys!

Figure 7-5. Generating product keys from subkeys

Using the power of half-keys, Figure 7-6 shows how we’d now access values in the
memory bank.

Figure 7-6. Retrieving values from the memory bank

Now, let’s break down what that diagram is saying. First, you split the query vector
into two parts. With the first half of the query vector, you dot product it with all the
first-half parts of the half-keys, and pick the top k subkeys. Do the same for the
bottom-half subkeys.

168 | Chapter 7: Transformers

Now, since you picked k subkeys for the first half, and k subkeys for the bottom half,
you’ll end up with k2 full-keys to pick from.

Now, instead of having a huge number of keys to search through, we just have k2. So
we compute the dot product between the query and these k2 keys, but this time we
use the full query and keys. Here, we’re assuming that k2 is much smaller than the full
memory bank size, so this is actually still much more efficient than searching through
every single one of the full-keys.

From there on out, it’s just the standard scaled dot-product attention computation.
Attend over those k memory units that you just selected, and you’ve got yourself a
super-efficient memory module to plug into your transformer.

But is all this effort worth it? How well does this half-key memory method work in
practice? Well, according to the paper, they were able to beat a 24-layer BERT using
just 12 layers + memory. So we’ll leave it up to you to decide.

Here, we provided you a small set of variants on the traditional attention mechanism
that we found interesting. But this list is by no means complete, and the interest
around attention mechanisms is at an all-time high. The Google Trends results for
terms like “attention mechanism” and “transformers” look much more like stock pri‐
ces during a bull run than the search frequency of scientific literature.

As the transformer architecture exploded in popularity, the entirety of the deep learn‐
ing research community decided to go bullish on it, and since the release of the origi‐
nal transformer in 2017, the field has seen an influx of new variants on the
Transformer architecture that promise to be more efficient, scale better, have a lower
memory cost, etc. Today, there are more transformer-like architectures than we can
possibly hope to include in one book, and new ideas keep pouring in on a weekly
basis.

Hopefully this gives you the impression that transformers are not one single mono‐
lithic model that will be etched into stone walls like the fundamental equations of
physics. Today, there are more variants than we can count, and it seems like there will
soon be more variants than we can possible hope to name. Linformer, Longformer,
Reformer, Performer, and Perceiver are just a few of the many new variants of the
original Transformer architecture that are rapidly eating up the English language
vocabulary.

Navigating this architectural landscape is hard. Many times, research papers pitch
their ideas as the best thing since sliced bread for doing one particular thing, but may
completely ignore others. For example, big research labs often have a very high com‐
putational budget, and focus on developing new architectures that may consume an
obscenely high amount of compute resources to top a benchmark leaderboard by a
fraction of a percent. Thankfully, many researchers now understand and appreciate

Attention Mechanisms | 169

that not everyone can fit a supercomputing cluster in their two-bedroom studio
apartment, and there is an increasing interest in creating small, lightweight models.

But apart from this, transformers are increasingly being used in other domains,
where they might not seem like a great fit initially. One of these is computer vision.

Transformers for Computer Vision
While transformers are ubiquitous in modern NLP, that’s not the only place you’ll
find them.

As the accessibility of compute and GPU resources has been decreasing, we are now
starting to see transformers being used more seriously in computer vision tasks as
well. The two most prominent examples of this in recent memory are the vision trans‐
former (ViT) and detection with transformers (DETR).

The most common architecture in computer vision is the convolutional neural net‐
work (CNN). These use convolutional layers to transform images, similar to an atten‐
tion layer. However, convolutional layers only learn local features, and do not
necessarily produce same-sized outputs. CNNs, unlike RNNs, are already well-
parallelized, and many engineers at Nvidia have spent years building optimized algo‐
rithms to perform convolution extremely quickly on GPUs. So why would anyone
bother trying out transformers here?

In truth, the verdict on transformers for vision is still not in. We’ve seen some prom‐
ising results, but the n2 memory complexity is too hard to ignore, especially when we
already have a well-parallelized, fast architecture that has been working well for years.
Convolutions likely won’t go away anytime soon, but vision transformers may still be
worth looking at. One benefit is that after training a transformer-based vision net‐
work with self-attention, you can use the attention weights as an interpretability tool,
as we discussed earlier.

The attention visualization is actually much more intuitive in computer vision—high
attention weights means that the network is “focusing” on that region when making a
prediction. For example, say we build a network that takes in images and generates
captions. Here, we’d have an image encoder, and a text decoder. Then, we can use the
encoder-decoder attention weights to create a heatmap over the original image that
may look something like Figure 7-7.

170 | Chapter 7: Transformers

Figure 7-7. Using attention weights to create a visual heatmap

Conclusion
So there you have it—a deep dive into the transformer architecture. At this stage in
the book, we hope that you are starting to get some idea of what deep learning
researchers and engineers today are thinking about. You might also start to come up
with ideas of your own. Usually, these start simple—something along the lines of
“Gee, this attention mechanism doesn’t fit on my GPU. I wonder if I can generate a
smaller set of matrices in some way.” We highly encourage you to try these out! Often,
these simple ideas, after iteration and testing, are what lead people to create break‐
through research ideas and revolutionary new products.

Here’s a quick summary of the key ideas in this chapter:

• Transformers were first proposed in the 2017 paper “Attention Is All You Need”
by Vaswani et al.

• Transformers remove the recurrent portion of the RNN architecture and use
only an attention mechanism, allowing them to be parallelized across sentences.

• Attention mechanisms are a type of layer in a neural network that allows them to
collect and combine “global features” (information from every point in a large
input sequence).

• Attention mechanisms come in many flavors and are used across many domains
and architectures, not just transformers.

• The standard attention mechanism used in the Transformer architecture is called
Multi-Head Self-Attention (MHSA). It transforms the input into a small key space
and repeats the dot product attention multiple times.

Conclusion | 171

• Attention mechanisms are very powerful but are also computationally expensive.
The standard MHSA has an n2 memory cost, which means that if you have 10
words in your sentence, you need to store 10*10 = 100 attention weights.

• The attention weights between x and y can be interpreted as “how much are x
and y related?” in an abstract sense (useful in pronoun resolution).

• Attention weights can be a useful visualization tool.
• There is significant research being conducted in assessing how to build a new,

more computationally efficient attention mechanism. So far, there is no clear best
approach, and most practitioners still use MHSA for simplicity.

While this chapter is now coming to an end, the story of transformers is not. Next,
we’ll look at the sequence of events that fed the explosive growth of NLP in the last
several years. Transformers played a huge role here, and new models like BERT, RoB‐
ERTa, and GPT-3 will show you how we can take this simple idea of an attention
mechanism, scale it up, and create incredibly powerful NLP models.

172 | Chapter 7: Transformers

CHAPTER 8

BERTology: Putting It All Together

Together, we’ve come a long way since we started with fiddling with spacy in Chap‐
ter 1. We started with solving the most common NLP problems using the microwave-
meal equivalent of deep learning libraries, and then we proceeded to the low-level
details, including tokenization and embeddings. Along the way, we covered recurrent
networks, including RNNs, LSTMs, and GRUs, as well as the Transformer architec‐
ture and attention mechanisms.

This chapter, in many ways, is the grand finale. We will tie all the pieces together and
trace back the steps that led to the so-called ImageNet moment in 2018, which has
since led to a flurry of excitement regarding the potential commercial applications of
these advances in NLP. We will touch on some of these possibilities, too. Let’s get
started.

ImageNet
It’s worth taking a moment to clarify what we mean by “ImageNet moment.” Image‐
Net is a computer vision dataset that was originally published in 2009. It became a
benchmark for the progress in image classification, a core computer vision task, and
spawned an annual computer vision competition to see which research team could
best identify objects in the dataset’s images with the lowest error rate.

The high visibility of the competition helped spur significant advances in the field of
computer vision starting in 2010. From 2009 through 2017, the winning accuracy
jumped from 71.8% to 97.3%, surpassing human ability (achieving superhuman abil‐
ity) and capturing the world’s imagination as to what machine learning could do.

Looking back, 2012 was the breakthrough year for computer vision and the so-called
original ImageNet moment. In 2012, a team from the University of Toronto, led by

173

1 For more, read this thorough piece on ImageNet by Quartz.

Geoffrey Hinton, Ilya Sutskever, and Alex Krizhevsky, beat the rest of the field by a
10.8% margin.1

This performance shocked the AI research community and began to convince more
commercially minded enterprises to pay more attention to computer vision. Over the
next few years, enterprises used pretrained ImageNet models to solve a wide array of
computer vision tasks, including tasks the models were not trained for explicitly. In
other words, ImageNet was when computer vision broke through a performance and
ease-of-application barrier that helped draw the attention of the rest of the world.

The Power of Pretrained Models
In much the same way that 2012 was the breakout year for computer vision, 2018 was
the breakout year for NLP. This was the year the world started to pay much more
serious attention to what NLP could accomplish in the enterprise, and since then
there has been very active interest in NLP for commercial applications. Let’s retrace
the events that led to this breakout moment for NLP, its so-called ImageNet moment.

Prior to 2018, the mainstream view was that NLP models had to be trained mostly
from scratch in order to solve specific NLP tasks. There was little to reuse from other
language models to help develop a model for your specific task. The only thing that
was of value to transfer from other language models was pretrained word embed‐
dings, which could help your model get started but provided limited value.

This presented a major problem for solving specific NLP tasks in enterprise because,
to train a model mostly from scratch, you needed a lot of annotated data for your spe‐
cific task at hand. Without this large volume of annotated data, you would not be able
to train a model from scratch to sufficiently good levels of performance. But, getting
such a large volume of annotated data was a nonstarter for many companies, limiting
the applicability of NLP in the enterprise.

This train-from-scratch paradigm in NLP contrasted sharply with the leverage-
pretrained-models paradigm in computer vision, which became dogma by late 2017.
In computer vision, it was considered foolish to train computer vision models from
scratch. Instead, applied machine learning engineers would leverage the first several
layers of large, pretrained computer vision models, which had already learned some
of the basic elements of computer vision such as identifying edges and shapes, to
develop computer vision models for their specific task.

Transferring some of the “knowledge” from these pretrained models to new models
required less annotated data than would otherwise be necessary and improved the
adoption of computer vision in the enterprise. Unfortunately, as of the end of 2017,

174 | Chapter 8: BERTology: Putting It All Together

https://oreil.ly/0f3IH

2 For more on NLP’s ImageNet moment, read Sebastian Ruder’s excellent piece on the topic.

such a transfer of knowledge from pretrained models was not possible in NLP, requir‐
ing teams to gather a lot of annotated data to train their specific models from scratch.

The Path to NLP’s ImageNet Moment
In 2018, the mainstream view changed dramatically as NLP researchers showed that
pretrained language models could be used to achieve state-of-the-art results on a
wide range of NLP tasks; you did not need to train language models from scratch to
solve specific NLP problems. This led to a watershed moment for NLP because now
applied machine learning teams could leverage pretrained language models to solve a
wide array of NLP tasks, just like computer vision engineers were leveraging pre‐
trained ImageNet models to solve a wide array of computer vision tasks. By reusing
several layers of pretrained language models, applied NLP scientists and engineers
needed much less annotated data to solve specific NLP problems. Previously intracta‐
ble problems in NLP became ripe for solving.2

To understand what led to this breakthrough moment in NLP, let’s retrace the pro‐
gress in NLP over the last several years. This will help us tie together the major con‐
cepts across this book, deepening your understanding of the field.

Pretrained Word Embeddings
One of the first steps in NLP is tokenization, which we covered in Chapter 5. Tokeni‐
zation breaks down text into discrete units (e.g., words, punctuation, etc.), after
which we can apply NLP algorithms to learn the structure of the text, including how
to represent each token.

Learning how to represent each token is generally the second step in NLP. This pro‐
cess is called learning word embeddings (i.e., word vectors), which we covered in
Chapter 6. Word embeddings are vital in NLP because they capture the relationship
between words. Unless a model learns the relationship between words, it cannot per‐
form more complex NLP tasks, such as text classification, well.

Prior to 2013, NLP researchers had to train their own word embeddings from scratch
for much of the work they did. Starting in 2013, pretrained word embeddings began
to rise in prominence, allowing NLP researchers to leverage them for model develop‐
ment, speeding up their training process.

The Path to NLP’s ImageNet Moment | 175

https://ruder.io/nlp-imagenet

The Limitations of One-Hot Encoding
Before we dive into these pretrained word embeddings, let’s visit why simple one-hot
vector encoding of words would not be an optimal approach at generating meaning‐
ful word vectors. If we had to apply one-hot encoding for every word in a large cor‐
pus, the dimensionality of the encoding matrix would be equal to the number of
unique words, which would be quite massive and impractical to work with.

For example, if our corpus had a vocabulary of 400,000 unique words, our one-hot
encoding matrix would have 400,000 dimensions, which is very large. This matrix
would be a sparse matrix (mostly zero) and would suffer from the curse of dimen‐
sionality (e.g., we would need a lot of data to train a model that generalizes well
because this matrix is both large and sparse, making parameter estimation more
difficult).

Aside from the high dimensionality, a one-hot encoding matrix would not capture
any of the semantic properties of words. For example, “queen” and “king” would have
vectors that are orthogonal, implying that they are completely different when they are
in fact related.

In contrast, word embeddings trained with algorithms such as Word2Vec, GloVe, and
fastText store contextual information in a much lower dimensional space. For the
same vocabulary of 400,000 unique words, we could store the contextual information
for each word using just a few hundred dimensions, far less than the 400,000 dimen‐
sions required from one-hot encoding.

Moreover, the word embeddings trained by Word2Vec, GloVe, and fastText store
semantic information for each word, unlike one-hot encoding. Words such as
“queen” and “king” have vectors that are closer together in space, implying that there
is some semantic relationship/similarity between the two. By capturing this semantic
property, word embeddings trained by Word2Vec, GloVe, and fastText capture more
of the structure in language compared to one-hot encodings, which is how these
word embeddings helped materially advance the field of NLP starting in 2013. This
was the year pretrained word embeddings that capture semantic information began
to become widely available to the researchers in the NLP community.

Word2Vec
A word is characterized by the company it keeps.

—John Rupert Firth

In 2013, pretrained word embeddings became popular with the rise of Word2Vec, the
first of the major word embedding algorithms. As you may recall from Chapter 6,
Word2Vec is a highly efficient algorithm that is used to learn word associations from
a large corpus of text. Each distinct word is represented with a vector (hence

176 | Chapter 8: BERTology: Putting It All Together

3 For more on these two approaches, refer to Chapter 6.
4 For more, read the Word2Vec Wikipedia article.

Word2Vec, which is short for “word to vector”). You can think of Word2Vec and
other word embedding algorithms as unsupervised feature extractors for words.

Word2Vec learns how to represent each word with a vector based on the surrounding
context of each word; in other words, the words around the target word help define
the vector representation for the target word. There are two approaches to do this:
continuous bag of words (CBOW), which uses a neural network to predict which
word is most likely given its context, and skip-gram, which predicts the surrounding
words given a target word (the opposite of CBOW).3

The magic of Word2Vec is that semantically similar words have vectors (e.g., numeri‐
cal representations) that are similar because the words appear in similar contexts. In
other words, in a high-dimensional space, words that have similar meaning, such as
“queen” and “king,” have similar representations (i.e., vectors) and, therefore, are
located closer together.4

Instead of having to learn word embeddings from scratch, ML engineers could use
the pretrained word embeddings trained by Word2Vec in their model development,
leveraging some of the “learning” done beforehand. This emergence of pretrained
word embeddings helped ML engineers because they did not have to start model
development entirely from scratch.

Despite its successes, Word2Vec has shortcomings. First, it relies on a relatively small
window-based model to learn the word embedding for a particular word. It does not
consider the word in the context of the entire document. Second, it does not consider
subword information, which means that it cannot efficiently learn, for example, how
a noun and an adjective that are derived from the same subword are related. For
instance, “intelligent” and “intelligence” share the subword “intelligen” and are related
as a result, sharing similar semantic information.

Third, Word2Vec cannot handle Out of Vocabulary (OOV) words; it can only vector‐
ize words that it has seen in training. Finally, Word2Vec cannot disambiguate the
context-specific semantic properties of words. For example, with Word2Vec, the
word “bank” has the same word vector regardless of whether it appears in the finan‐
cial setting (“I deposited a check at the bank”) or in the river setting (“I sat on the
river bank after fishing”).

Pretrained Word Embeddings | 177

https://oreil.ly/8DHbE

5 For more on GloVe, read the pdf of the official paper.

Generally, pretrained word embeddings have a few hundred
dimensions (typically three hundred). The more dimensions, the
more subtle representations you can embed with the word embed‐
ding algorithms, but this comes at the cost of computation speed
and increased complexity. If you want a better-performing model,
it is better to use a word embedding matrix that has more dimen‐
sions than fewer for any given word embedding algorithm you
choose. If you want a faster/more computationally efficient model,
it is better to use a matrix that has fewer dimensions, all else being
equal.

GloVe
GloVe, short for Global Vectors, was ‘the next major word embedding to come onto
the scene; it launched in 2014, a year after Word2Vec. GloVe addressed the first major
shortcoming of Word2Vec. Instead of relying on a small window-based model like
Word2Vec, GloVe considered the word statistics of the entire corpus when learning
the word embedding for each word.

GloVe works similarly to Word2Vec but uses a different approach to learn the vector
representations for words. More specifically, GloVe uses unsupervised learning, gen‐
erating a global co-occurrence matrix to learn the semantic property of the target
word given the entire corpus it appears in.5

Although GloVe addresses one of the shortcomings of Word2Vec, it still does not
consider subword information.

fastText
In 2016, Facebook launched fastText, the third major word embedding approach in
recent years. fastText differs from Word2Vec and GloVe; instead of considering each
word as the smallest unit, fastText uses n-gram characters as the smallest unit. In
other words, fastText uses subword information to generate word embeddings. For
example, the word vector “kingdom” could be broken down into n-gram characters
such as “ki,” “kin,” “ing,” “ngd,” “gdo,” and “dom.”

Instead of learning vector representations for words by using other words as context,
fastText learns vector representations for n-gram characters by using other n-gram
characters as context. Because it breaks the units down into a more granular level
than either Word2Vec or GloVe, fastText achieves a wider variety and more nuanced
set of word embeddings.

178 | Chapter 8: BERTology: Putting It All Together

https://oreil.ly/RRRSu

This use of n-gram characters instead of words as the smallest unit is a material
improvement over Word2Vec and GloVe for several reasons. First, fastText requires
less training data because it is able to learn a lot more from the various n-gram char‐
acters in a set of words than what Word2Vec or GloVe could for the same set of
words.

Second, fastText uses subword information and, therefore, generalizes better because
new words that fastText hasn’t been trained on yet may share n-gram characters with
words on which fastText has trained on. For example, if fastText has trained on “fast‐
est” but has not trained on “biggest,” it can infer the meaning of “est” in “biggest”
from the “est” in “fastest,” whereas Word2Vec and GloVe could not. Third, fastText
can generate embeddings for OOV words using the average vector representations of
n-grams in the OOV words that fastText has embeddings for. This is related to the
use of subword information, which neither Word2Vec nor GloVe support.

With fastText, the only major shortcoming is its inability to produce multiple vectors
for each word depending on the context.

Context-Aware Pretrained Word Embeddings
As good as they are, word embeddings trained by Word2Vec, GloVe, and fastText are
not context-aware. They do not capture the different context-specific semantic prop‐
erties of words. For example, the word “bank” has the same word vector (and, there‐
fore, the same semantic property) regardless of whether it is used in the sentence, “I
deposited a check at the bank,” or in the sentence, “I sat on the river bank after
fishing.”

The large, pretrained language models based on the Transformer architecture, such as
ELMo and BERT, that came onto the scene starting in 2018 changed this: they intro‐
duce context-aware word representations. With context-aware word representations,
the “bank” in a financial setting has a different word vector than the “bank” in a river
setting. This should feel intuitive: the same word in different contexts means different
things, and, therefore, we should have different word vectors to represent the differ‐
ent meanings of the word depending on the context. More on this soon.

In this section, we just covered the advances in word embeddings over the years. In
the next section, we’ll explore the advances in modeling approaches in recent years,
starting with sequential models.

Sequential Models
Starting in 2016, sequential models began to rise in prominence in the field of NLP,
achieving success in tasks such as machine translation, text summarization, conversa‐
tional bots, and image captioning. Sequential models also captured mainstream atten‐
tion with the New York Times article on Google’s new machine–translation-based

Sequential Models | 179

https://oreil.ly/M0VJb

Google Translate. Dubbed “The Great AI Awakening,” the article brought to the
world stage for the first time the power of NLP models in solving complex language
tasks.

Sequential models are machine learning models that input or output sequences of
data, such as text, audio, and time series data. Sequential models are a class of model‐
ing approaches, not just a singular approach, and they include RNNs, LSTMs, and
GRUs, all of which we covered in detail earlier in the book. All of these sequential
models either take in a sequence of data and output a singular result (for example,
classify movie reviews as positive or negative sentiment), take in a singular input and
output a sequence of data (for example, take in an image and return a caption that
describes the image), or turn one sequence of data (such as text or audio) into
another sequence (known as seq2seq modeling). For instance, neural machine trans‐
lation models take text in one language as the input sequence (e.g., French) and
return the text in another language as the output sequence (e.g., English). In other
words, the model takes in an input sequence and outputs an output sequence.

To recap, sequential models handle multiple types of scenarios: (a)
sequential input to single output, for scenarios such as sentiment
analysis; (b) single input to sequential output, for image captioning;
and (c) sequential input to sequential output, for machine
translation.

Sequential models are generally composed of an encoder and a decoder. The encoder
takes in the input sequence, item by item, and generates a representation; think of
this as converting text (such as a sentence) into a vector of numbers that machines
can process. In the machine translation task, the encoder “encodes” the representa‐
tion word by word to form the representation.

Once the encoder processes the entire input sequence, it passes the representation to
the decoder, which unravels it into an output sequence, item by item. For example, in
the machine translation task, the decoder “decodes” the representation word by word
to form the output sentence.

Over the past several years, sequential models have gotten better and better, solving
the flaws of their predecessors. Let’s explore the nature of sequential data some more,
and then we will start with the earliest of the modern-day sequential models, made up
of RNNs.

180 | Chapter 8: BERTology: Putting It All Together

https://oreil.ly/M0VJb

Although we focus on NLP-based sequential modeling applications
in this book, it is important to know that sequential modeling has
applications well beyond NLP. Within NLP, sequential modeling is
relevant for text (e.g., machine translation, text summarization,
question answering, and more), audio (e.g., chatbots), and speech
(e.g., speech recognition). Outside NLP, sequential modeling is rel‐
evant for images (e.g., image captioning), video (e.g., video cap‐
tioning), anomaly detection on time series data, and time series
prediction involving sensor data, stock market data, genomic data,
and weather data. Sequential modeling is one of the most relevant
and flourishing areas of machine learning in the enterprise, not just
for NLP.

Sequential Data and the Importance of Sequential Models
Before we dive into RNNs, let’s explore the nature of sequential data and why there is
a need for a special class of models (i.e., sequential models) to work with it. Sequen‐
tial data involves a series of sequentially interdependent/related items; for example,
the words in a sentence are related to one another in some sequential fashion and,
therefore, are interdependent. The words in a sentence are not sequentially independ‐
ent of each other.

This is true of other sequential data as well. For example, the phonemes in a spoken
sentence (phonemes are the smallest speech utterances, such as the “c” in “cat”) are
also sequentially dependent on each other. The sounds we make in speech are related
to the ones preceding and succeeding each utterance. If we want to model audio, we
need a way to capture the sequential connectedness of the data.

A third example of sequential data is stock market prices. Each one-second tick in
stock prices is related to the series of ticks before and the series of ticks after. There is
a pattern in the data that connects each tick with the rest. To predict stock prices well,
a machine learning model that learns from the stock market’s price data needs to be
able to represent and process the sequential nature of stock prices well. This is true of
sensor-type time series data in healthcare and industrial robotics and many other
fields.

Traditional feed-forward neural networks treat each input/observation as independ‐
ent of the one preceding it and the one succeeding it. For example, a computer vision
model that classifies images as “cat” or “dog” does not need to consider the preceding
or succeeding image in order to successfully classify the current image. The model
needs to focus only on the current image.

This singular focus on a single input is, of course, not optimal for sequential data
problems. If we had to build a model to translate a sentence from French to English,
it would be suboptimal to translate each word in the French sentence to a word in
English, word by word. While this would be a literal translation of French to English,

Sequential Models | 181

the output sentence in English would likely not make much grammatical sense
because the rules of French grammar differ from the rules of English grammar.

A more optimal approach would be for the model to generate a representation of the
entire input (French) sentence first before attempting to translate it to an output
(English) sentence. The model should do this by processing each word, word by
word, while taking into consideration the preceding word(s). This is critical because
language exhibits a sequential pattern that will help the model generate a better repre‐
sentation of the French sentence than if the model ignored the sequential pattern
altogether.

By taking into account the sequential pattern of the French language as it processes
the input sentence, the model is better equipped to more accurately translate the sen‐
tence into English. This is the crux of sequential modeling; by considering the
sequential pattern of data, such as text, audio, and time series data, sequential models
generate better performance on tasks than traditional feed-forward neural networks.

With this context, let’s dig into the first of the successful sequential models in recent
years: RNNs.

RNNs
Sequential models learn about the temporal nature of data, one time step at a time.
Let’s use an example to demonstrate this. Sequential models that process text “read”
each word, one word at a time. Each moment the model reads a word is a time step.
As the model processes an entire sentence, it moves from time step 0 to time step x,
where x is the length of the sentence. At every time step increment, the model consid‐
ers the present word while taking into consideration the series of words that preceded
it.

Here’s a simple, intuitive way to think of RNNs: they are networks
with loops in them, allowing information of the past to persist as
“memory,” which can be used to process the next input.

The better the memory of the model, the better the model will be able to perform
tasks, such as translating a sentence from one language to another or answering
questions.

RNNs are a family of machine learning models that can store and use memory of
prior sequential data in processing the current data. For example, RNNs have mem‐
ory of prior words and use this memory to process the current word in a sentence.
The major challenge of RNNs is having great memory of sequential data that spans a
long time frame. For example, it is easier for an RNN to have memory of the most

182 | Chapter 8: BERTology: Putting It All Together

recent few words it has processed compared to memory of words in a sentence sev‐
eral sentences ago.

Let’s start with vanilla RNNs in this section, which have good short-term memory,
before we turn to RNNs with gates (e.g., LSTMs and GRUs), which model not only
short-term memory but also long-term memory and are better able to capture the
long-term dependencies in sequential data that are necessary to solve more complex
tasks such as question answering.

Before RNNs, CNNs were used to solve NLP problems. CNNs have
become famous in machine learning for their performance on
computer vision tasks, but they also have relevance for natural lan‐
guage tasks. In CNNs, the neural net uses fixed-length windows to
represent the data. For example, in text-based problems, the neural
network uses a small, bounded context of words to perform tasks
such as machine translation. While CNN-based language models
are very fast, they have little context of words; they have even less
context than the short-term memory of RNNs. This limits the
CNNs’ performance, which is why researchers switched to RNNs
once these became available.

Vanilla RNNs
Unlike conventional feed-forward networks, recurrent neural networks have a tem‐
poral dimension; in other words, RNNs take time into account, whereas conventional
feed-forward networks do not. Conventional feed-forward networks feed informa‐
tion in one direction (hence, feed forward), but RNNs pass the data forward and then
cycle the data back through a loop.

This “recurrent” cycling allows RNNs to have a sense of time, enabling the network to
process the current input while retaining some context of the previous inputs. When
an RNN processes an event in time step t, it also considers the recent past (e.g., what
happened in time steps t-1, t-2, etc.). In other words, RNNs share weights over time.
You can think of conventional feed-forward networks as having forgetful memories,
whereas RNNs have better memories of recent events. Information in RNNs persists,
whereas it does not with conventional feed-forward networks.

In sequential models, both the encoder and decoder could be RNNs. Both the
encoder and decoder RNNs take two inputs at each timestamp. In the machine trans‐
lation case, for example, the two inputs are (a) a word and (b) a hidden state. This
hidden state vector is the sequential memory that the recurrent network has pre‐
served from previous time steps.

RNNs | 183

Each word is represented with a word embedding, which we
reviewed earlier in the chapter.

At each timestamp, the encoder RNN processes the input (i.e., the word vector) and
the hidden state (also a vector) and generates an output vector and a new output hid‐
den state (also a vector). At the next timestamp, the RNN processes the next input
(i.e., the next word vector) and the (output) hidden state from the previous time‐
stamp and generates another output vector and a new output hidden state. This con‐
tinues until the encoder RNN has finished processing the entire input sequence.

Once the encoder is done, it passes only the last output hidden state it generated to
the decoder. This last output hidden state is the “representation” we alluded to earlier.
You can think of it as the input sequence represented in a machine-processable for‐
mat, ready for the decoder to process into an output sequence.

Once the decoder RNN receives the “representation” from the encoder, it unravels it
word by word into the output sequence. In other words, the decoder RNN “trans‐
lates” the hidden state word by word. You can think of this as unraveling what the
encoder did but in reverse. This is a very simple explanation of how RNNs work, but
check out Chapter 6 for more details.

RNNs can handle all sorts of sequential data, not just text; this
includes time series data, for example.

RNNs are an excellent choice for modeling sequential data such as text because they
use an internal state to process the sequence. In other words, as the RNN works item
by item through a sequence, it relies on its internal state/memory to process each
item. This is very important because the items in the sequence (e.g., words in a sen‐
tence) are not independent of one another; they are related. Having an internal state/
memory of how the inputs are related to one another is crucial for modeling the data
effectively.

This should be intuitive. Translating one sentence from one language to another
requires representing the input sentence properly first. Each word in the input sen‐
tence is dependent on/related to the word(s) prior. By managing the hidden states in
the way it does, an RNN uses its internal state/memory (based on the prior words
processed) to process each subsequent word.

184 | Chapter 8: BERTology: Putting It All Together

6 This is due to the infamous vanishing gradient problem in backpropagation.

However, RNNs also have a major flaw: they cannot process very long sequences very
well.6

LSTM Networks
Vanilla RNNs have memory, but this memory is mostly just short-term; vanilla RNNs
really struggle with capturing and storing long-term dependencies in data. Therefore,
they have limited performance in solving more complex NLP tasks such as question
answering.

LSTM networks also use a recurrent neural network architecture but help solve for
the inability of vanilla RNNs to process long sequences very well. LSTMs are able to
hold memory of data over longer sequences. They can keep the context of sequential
data in mind for much longer using mechanisms known as gates as part of their neu‐
ral network architecture (more on gates soon).

Having longer-term memory is so important because solving an NLP task may
require the memory of an item from many time steps before. Think of the following
passage, taken from the Wikipedia article on George Washington:

George Washington was an American political leader, military general, statesman, and
Founding Father who served as the first president of the United States from 1789 to
1797. Previously, he led Patriot forces to victory in the nation’s War for Independence.
He presided at the Constitutional Convention of 1787, which established the U.S. Con‐
stitution and a federal government. Washington has been called the “Father of His
Country” for his manifold leadership in the formative days of the new nation.

If asked “Who is the first president of the United States?” an NLP model trained
using vanilla RNNs may be able to answer the question correctly (“George Washing‐
ton”) because the number of time steps between the mention of “George Washington”
and the mention of “the first president of the United States” is reasonably low (fewer
than 20 steps).

But, an NLP model trained using vanilla RNNs would have much greater difficulty
answering “Who presided at the Constitutional Convention of 1787?” because of the
number of time steps between the mention of “George Washington” and the mention
of “the Constitutional Convention of 1787” unless the NLP model could hold some
form of longer-term memory.

RNNs | 185

https://oreil.ly/9HVht
https://oreil.ly/V7Sdh

RNNs work perfectly fine when there’s a small gap between the rel‐
evant information and the point where it is needed, but RNNs
begin to struggle as the gap grows and the RNNs’ short-term mem‐
ory is unable to connect the question with information from the
distant past. In other words, since RNNs can’t preserve information
over many time steps, they can only handle tasks that require
short-term memory. An NLP model would have greater success
answering the question, “Who presided at the Constitutional Con‐
vention of 1787,” if it could successfully disambiguate the pronoun
“he” as “George Washington” as it processes the entire paragraph of
text on George Washington. More modern NLP models do this
very well using attention mechanisms. We’ll discuss this in more
detail in “Attention Mechanisms” on page 188.

LSTMs hold long-term memory using a series of three carefully regulated gates,
which control how much information flows into and out of the LSTM’s memory.
These gates enable LSTMs to remember values over arbitrary time intervals. You can
think of the three gates as mechanisms that allow the network to add or remove items
to its memory depending on how relevant the network deems the items to be.

In other words, an LSTM network updates its memory vector at each time step
depending on (a) which information it wants to add from the current input, (b)
which information it deems not relevant anymore and wants to forget, and (c) which
information it wants to keep. The gates are the mechanisms that learn which items in
the sequential data are important to store in the LSTM’s memory and which items are
not. The gates are neural networks in their own regard, learning how to perform their
respective specialized roles best. These three types of gates are as follows:

Input gate
This determines which information from the current input should be used to
modify the memory.

Forget gate
This type of gate determines which information to forget from memory because
the information is no longer relevant.

Output gate
This determines the information to keep in memory (and pass on to the next
time step) given the current input and what the network has chosen to forget.

Using these gates, LSTM allows a neural network to operate on different time scales at
once, capturing longer dependencies much better than RNNs would.

186 | Chapter 8: BERTology: Putting It All Together

The TL;DR is that LSTM is an improved version of RNNs. LSTM
has longer-term memory compared to RNNs. LSTM achieves this
using mechanisms called gates, which learn which information in
the sequential data matters most and which does not.

GRUs
Gated recurrent units (GRUs) are another form of RNNs with gates. They are similar
to LSTM but have a simpler structure, using just two gates instead of three. These two
kinds of gates are the following:

Update gate
The update gate determines whether the memory should be updated with new
information from the current input.

Reset gate
This determines how much of the new memory is important (and should be
retained and passed on) or not (and therefore reset).

In other words, the update gate controls information that flows into memory, and the
reset gate controls information that flows out of memory. The update gate in GRUs is
similar to the combination of the input gate and the forget gate in LSTM, while the
reset gate in GRUs is similar to the output gate in LSTM.

The performance of GRUs is similar to the performance of LSTMs (but generally not
quite as good), but, because of their simpler structure, GRUs are computationally
more efficient. They train faster and are also a better choice than LSTM when you
have limited training data because GRUs have fewer weights and parameters to
update during training.

To recap, RNNs are a family of sequential models that have helped advance the field
of NLP, particularly since 2015. Vanilla RNNs have simple, short-term memory, but
the gated variants (LSTM and GRUs) have longer short-term memory and capture
longer-term dependencies in sequential data better. LSTM and GRUs are the best-
performing RNNs in the field of NLP today. Both have similar performance, but
GRUs are simpler than LSTM (GRUs use two gates instead of the three in LSTM) and
faster to train.

As successful as these RNNs were at the end of 2016, they handled longer-term
dependencies poorly, a problem the next breakthrough in NLP—attention mecha‐
nisms—sought to address.

RNNs | 187

Attention Mechanisms
Although LSTM and GRUs have longer-term memories than RNNs, they still have
shortcomings that hamper their performance on NLP tasks. This is most apparent on
sequence-to-sequence NLP tasks such as machine translation. Both LSTM and GRUs
have a hidden state (“memory”) that is passed on from one time step to the next. In
machine translation, the input sentence is encoded first, and the final hidden state
(“representation”) is passed on to the decoder to decode/translate the sentence into
the output language.

The decoder has only this final hidden state to work off of. It does not have access to
the intermediate hidden states of the encoder. This means that there is information
left on the table (in the form of the intermediate hidden states of the encoder) that the
decoder could use to improve its translation but does not have access to. Because of
this limitation, LSTM, for example, cannot preserve information for more than 20
words in machine translation. The bidirectional version of LSTM was invented to
solve this (known as Bi-LSTMs), but even Bi-LSTM could not preserve information
for more than 40 words.

It should be clear that trying to squeeze the meaning of an entire sentence into one
vector (the final hidden state of the encoder) and passing this to the decoder to trans‐
late the input sentence is suboptimal. It would be better for the decoder to focus on
the relevant locations of the input sentence (via the intermediate hidden states of the
encoder) at every time step as the decoder worked on the translation.

In other words, the decoder should focus its attention on the relevant hidden states of
the encoder at every time step instead of using just one vector (the final hidden state
of the encoder) to perform the translation. Intuitively, this should improve the quality
of translation because the decoder would have more relevant information as it
worked through the translation of the input sentence.

The mechanisms that enable LSTM to focus their attention are known as attention
mechanisms.They helped unleash the major breakthroughs in NLP in recent years,
starting in 2017. Attention mechanisms in LSTM allow the decoder to access all the
hidden states of the encoder, not just the final hidden state. Beyond this, they help the
decoder focus its attention on particular hidden states and ignore the others as it
translates the input sentence into the output sentence.

By being able to access the entire source input, an LSTM with attention mechanisms
can handle longer input sequences better than vanilla LSTM and GRUs (and certainly
much better than RNNs). In a nutshell, LSTM with attention mechanisms are less
forgetful because they are able to have better and more focused memory.

188 | Chapter 8: BERTology: Putting It All Together

In an LSTM with attention, the encoder passes all the hidden states
to the decoder instead of just the last hidden state, which is the case
in an LSTM without attention.

This should feel intuitive. Attention in neural networks mimics cognitive attention in
humans. Whether reading a sentence or driving a car, we as humans are not paying
equal attention to everything around us all the time. Doing so would not only be
mentally exhausting, but it would be impossible for us. We could not hold that cogni‐
tive load at once.

Instead, we focus our attention on items that matter most given the task we are per‐
forming. If we are reading a sentence, we pay more attention to some of the words—
such as the names of the protagonists, where they are, and the activities they are per‐
forming—than to filler words such as articles and prepositions and words from many
sentences ago. The filler words are less relevant and, therefore, not worth as much of
our attention.

This is also true for complex tasks such as driving a car. We focus our attention on the
road in front of us, including stop signs, traffic lights, crosswalks, other nearby vehi‐
cles, pedestrians, cyclists, and other objects we want to avoid hitting. We are much
less focused on what is happening in our peripheral vision or the landscape on the
horizon, especially when there is a lot of active traffic in front of us.

In much the same way, attention mechanisms in machine learning help neural net‐
works focus their attention on what matters most for the task at hand while ignoring
everything else that is less relevant. This enables neural networks to have better per‐
formance on tasks in much the same way that humans who can focus well (free of
cognitive impairments such as drugs or alcohol or other distractions) are able to per‐
form tasks better.

After their early success in improving machine translation, attention mechanisms
became highly in vogue. A flurry of attention mechanisms came onto the market
including self-attention, global/soft attention, and local/hard attention. Moreover,
attention mechanisms were used for more than NLP applications; they became popu‐
lar in computer vision, too. For more on these variants of attention mechanisms and
how they work, refer to Chapter 7.

Attention mechanisms also help make models more interpretable
and explainable. This allows us to learn what the model is focused
on as it translates words or generates a caption for an image, for
example.

Attention Mechanisms | 189

As these became more popular, researchers began to explore neural network architec‐
tures that relied more and more on attention mechanisms and less on the recurrent
neural architecture of RNNs. This resulted in the next big breakthrough in NLP: the
Transformer architecture.

Transformers
LSTM with attention mechanisms was a major improvement over vanilla LSTM and
GRUs, but it had some shortcomings. Most notably, LSTM with attention mecha‐
nisms is computationally intensive to train and hard to parallelize.

Soon after LSTM with attention mechanisms became popular in 2017, researchers
designed an even better architecture, one that was faster to train and eliminated
recurrent networks altogether and relied solely on attention mechanisms. This new
architecture is known as the Transformer architecture (or Transformer, for short).

Instead of using a recurrent network-based encoder-decoder, Transformers use a
feed-forward encoder-decoder with attention.

Transformers were the catalyst for the ImageNet moment in NLP, heralding the
advent of large, pretrained language models such as ULMFiT, ELMo, BERT, GPT-2,
and GPT-3. Transformers are very memory-intensive, but parallelize very well. Given
the parallelization, it is possible to train Transformers on lots of data super fast across
lots of GPUs, which is exactly what has happened at the large tech giants in recent
years.

Let’s dig into the parallelization some more because it helps explain why the Trans‐
former was such a major breakthrough compared to LSTMs with attention. An
LSTM, like all RNNs, needs to process data in order. In other words, the first word of
a sentence needs to be processed before the LSTM can process the second word, and
the third word, etc. Transformers do not have this requirement; they do not need to
process data in order, from beginning to end.

By removing the recurrent processing and relying solely on attention mechanisms,
Transformers pass an entire sequence of data to the decoder at once rather than
sequentially as the older conventional sequential models do. This innovation around
passing blocks of data (such as several sentences) through the network at once was a
game changer.

Compared to conventional sequential models, the Transformer learns from more data
at any given time and has much more parallelization as a result, reducing training
times. Greater parallelization and faster training times have allowed researchers to
train on massively large datasets, much larger than the datasets the conventional
sequential models could have trained on.

190 | Chapter 8: BERTology: Putting It All Together

This enabled research teams at Google, Facebook, and other firms to train on very
large datasets, much larger than what was possible with LSTM. This breakthrough in
parallelization during training led to the advent of very large, pretrained language
models.

With this in mind, let’s explore the Transformer architecture in more detail. Trans‐
formers rely on attention mechanisms alone, without any recurrent sequential pro‐
cessing, to perform tasks. The invention of attention mechanisms made the
Transformer possible.

Like LSTM, the Transformer relies on an encoder-decoder architecture. Specifically,
the encoding component is a stack of encoders that process the input, and the decod‐
ing component is a stack of decoders that process the encodings passed to them by
the encoders. The number of encoders equals the number of decoders. Also, all the
encoders are identical in structure, and all the decoders are identical in structure.

Let’s examine the stack of encoders first. Each encoder has two components (or sub‐
layers): a self-attention mechanism and a feed-forward neural network. The self-
attention mechanism takes in the input encodings from the previous encoder and
weighs the relevance of the encodings to each other to generate a set of output encod‐
ings. The output encodings are fed into the feed-forward neural network, which pro‐
cesses the encodings individually before passing them to the next encoder layers and
the decoder layers.

The self-attention mechanism helps the encoder weigh the relevance of the words in
the input sentence for the word the encoder is processing. For example, in the sen‐
tence, “Washington was the first President of the United States, while Adams was the
first Vice President,” the self-attention mechanism would assign greater relevance to
the words “first” and “President” when processing the word “Washington” than it
would assign to the other words, particularly words related to “Adams.” This helps the
encoder focus on the more relevant information when processing the word at hand,
once again highlighting the beauty of attention mechanisms.

The first encoder takes the word embeddings of the input sentence
and the positional information of the tokens as its input rather than
encodings. Every other encoder uses the encodings generated by
the prior encoder in the stack.

The stack of decoders processes the encodings passed by the encoders and generates
an output. Each decoder has three components: a self-attention mechanism, an atten‐
tion mechanism, and a feed-forward neural network. The decoder has a similar struc‐
ture except for the additional attention mechanism, which helps it weigh the relevant
information from the encodings generated by the encoders. This attention

Transformers | 191

mechanism helps the decoder focus on the relevant parts of the input sentence, simi‐
lar to what the attention mechanism does in LSTMs with attention.

The self-attention layer in the decoder also works a bit differently; the self-attention
mechanism is allowed to attend to only earlier positions in the output sentence. All
future positions are masked so the transformer is not using the current or future out‐
put to generate its output.

After the stack of decoders, the output vector is fed into a final linear transformation
and softmax layer to produce the output probabilities over the vocabulary. The word
in the vocabulary with the highest probability is generated as the final output of the
time step.

After it was introduced in late 2017, the Transformer became the clear standout
architecture for solving many NLP problems. Researchers have used it to advance the
field dramatically over the past three years, starting with the explosion of activity in
2018, the year of NLP’s ImageNet moment.

Transformer-XL
One major limitation of the original 2017 Transformer architecture was the fixed-
length requirement for text strings that were fed into the Transformer as input.
Because of this limitation, text fed into the Transformer was often fragmented. For
example, sentences were split in the middle and fed into the Transformer, meaning
that the Transformer had only partial context in processing the split sentence. The
text was split without awareness of sentence boundaries or other semantic properties
of the text, capping the performance of Transformers.

To address the shortcoming, in 2019, researchers invented the Transformer-XL,
which introduced a recurrence mechanism to learn the dependencies between con‐
secutive segments of fixed-length text fed into the Transformer’s attention mecha‐
nisms. The recurrence mechanism allows the Transformer to access long-term
dependencies in the data, retaining information from previous segments the Trans‐
former had already processed.

What is interesting about the Transformer-XL is that it combines two major concepts
of deep learning: recurrence and attention. While attention mechanisms (in the form
of Transformers) have supplanted recurrent neural networks, the addition of recur‐
rence to Transformers has made recurrence popular again. This highlights how ideas
rise in favor, fall in popularity, and are often rediscovered and recycled in innovative
ways to advance the field of NLP and machine learning, more generally.

The advances in word embeddings (from Word2Vec and GloVe to subword embed‐
dings such as fastText) and in modeling architectures (from vanilla RNNs, LSTM,
and GRUs to attention mechanisms and Transformers) culminated in the watershed
year for NLP (the so-called ImageNet moment in 2018), which we will dive into now.

192 | Chapter 8: BERTology: Putting It All Together

7 J. Howard and S. Ruder, “Universal Language Model Fine-Tuning for Text Classification,” arXiv, May 2018,
https://oreil.ly/DPO8b.

NLP’s ImageNet Moment
The invention of the Transformer in 2017 directly led to NLP’s ImageNet moment. In
2018, large, pretrained language models came onto the market that had been trained
on a lot of data, and these models showed remarkable performance across a variety of
NLP tasks. Previously, an NLP model had to be trained for every NLP task to be per‐
formant; there was no single model that could perform well on all the tasks at once.

This was a watershed moment for NLP. Now, researchers and applied NLP engineers
could leverage the large, pretrained language models released by the likes of Google
and OpenAI and apply them to all sorts of domain-specific NLP tasks. In other
words, transfer learning from large, pretrained language models became possible, and
this led to a flurry of activity in the enterprise in much the same way that computer
vision’s ImageNet moment led to the explosion of commercial activity around image
tagging, object detection, autonomous driving, and more.

A flurry of releases made this moment possible and helped rapidly advance the state-
of-the-art performance of NLP models. These releases include ULMFiT, ELMo,
BERT, and GPT-1. Since then, the number of Transformer-based models has explo‐
ded, including BERT variants such as XLNet and RoBERTa, as well as GPT variants
such as GPT-2 and GPT-3.

Let’s walk through these releases in more detail to see what each contributed to the
field of NLP.

Universal Language Model Fine-Tuning
In May 2018, Jeremy Howard and Sebastian Ruder’s paper on Universal Language
Model Fine-Tuning (ULMFiT)7 showed that it was possible for a pretrained language
model fine-tuned on a new dataset to have good performance on other NLP tasks as
well, not just on the original NLP task the model was trained for. This is possible by
first pretraining a language model on a general domain corpus such as Wikipedia
articles. This pretraining enables the language model to learn the main properties of
language, such as syntax and semantics.

Once the pretraining is complete, the next step is fine-tuning the model to perform a
specific task. Because of the pretraining, the model is able to converge a lot faster than
if the model were trained to perform the specific task at hand from scratch, which
would not only take longer but would require a lot of the domain-specific corpus rel‐
evant for the specific task.

NLP’s ImageNet Moment | 193

https://oreil.ly/DPO8b

Language modeling is an NLP task in which the model is trained to
predict the next word in a sequence of words. Researchers chose
this NLP task to pretrain a model because language modeling does
not need labels; it is a form of unsupervised NLP. Because no labels
are necessary, researchers can pretrain language models on a mas‐
sive amount of text data, which allows the model to learn the prop‐
erties of language very quickly and robustly. If researchers had
chosen machine translation on which to pretrain a model, they
would have needed to assemble and annotate a massive dataset,
which would have been costly and time-consuming.

In other words, pretrained ULMFiT-based models perform very well on small and
medium datasets compared to models that have to be trained from scratch. ULMFiT
opened up NLP applications for companies and use cases where assembling large
amounts of data is difficult (not to mention that the models train much faster).

ELMo
Following the coattails of ULMFiT, AllenNLP released ELMo, which introduced con‐
textualized word representations for the first time. This improved the word embed‐
dings generated by the earlier word embedding algorithms, such as Word2Vec,
GloVe, and fastText. With ELMo, it became possible to generate different word repre‐
sentations for the same word, such as “bank,” depending on the context it appeared in
(financial bank versus river bank).

Moreover, these word representations are character-based, like fastText word embed‐
dings, which allows ELMo-based models to handle OOV tokens that weren’t seen
during training. Unsurprisingly, adding ELMo’s contextualized word representations
to existing NLP systems improved the state-of-the-art performance for every task.

BERT
The breakthroughs of ULMFiT (transfer learning) and ELMo (contextualized word
representations) led to the bombshell moment for NLP in 2018—Google’s open
sourcing of BERT, the large, pretrained language model that shattered performance
records on many NLP tasks. Bidirectional Encoder Representations from Transform‐
ers (BERT) was the culmination of multiple recent advances in NLP (Transformers +
transfer learning + contextualized word representations). BERT was a “wow”
moment for NLP researchers for the following reasons:

• It was pretrained on billions of annotated training examples, learning the proper‐
ties of language from a lot of data.

194 | Chapter 8: BERTology: Putting It All Together

• It could be fine-tuned by anyone in the world to achieve state-of-the-art results
on their specific task.

BERT not only leveraged semi-supervised pretraining (similar to ULMFiT) and con‐
textualized word representations (similar to ELMo), but it introduced a bidirectional
component to the network by cleverly masking some of the words in a sentence and
then havingf the network predict the masked words. BERT was able to do this
masked bidirectional pretraining with a deep neural network and also learned how to
model relationships between sentences.

BERT leveraged these different advances in NLP to develop an approach that would
become the standard process for developing large, pretrained language models. In
2018, Google released two different versions: a base model and a large version. The
large version was similar to the base model but had more of everything: larger feed‐
forward networks, more attention heads, and more encoder layers (24 in the large
versus just 12 in the base). Since then, several other companies have released versions
of large, pretrained language models, each larger than its predecessor.

BERTology
The first BERT-like model to best Google’s BERT was XLNet, released in early 2019.
XLNet trained on more data than BERT, and for longer, but also improved on the
training methodology by predicting tokens in random order (compared to BERT,
where only the masked tokens are predicted). XLNet also leveraged the Transformer-
XL architecture we referenced earlier (which is essentially the original Transformer
architecture with recurrence).

A few months after XLNet and several months after Google released BERT, Facebook
optimized the architecture further and released its own BERT-based version called
RoBERTa. In particular, Facebook modified key hyperparameters in BERT; it
removed BERT’s next-sentence pretraining and trained the model with much larger
mini-batches and learning rates. Facebook also trained on more data and for a longer
amount of time. With the design changes, RoBERTa achieved state-of-the-art perfor‐
mance on many of the tasks BERT had set records in.

GPT-1, GPT-2, GPT-3
OpenAI also entered the NLP race by designing its own Transformer-based models.
These models are known as GPT models, short for Generative Pretrained Trans‐
former. The first of the GPT models, GPT-1, was released in 2018 and used an unsu‐
pervised pretraining and supervised fine-tuning process similar to ULMFiT. GPT-2
was released in 2019; compared to its predecessor, it trained on more data and with
more parameters, helping it achieve state-of-the-art performance on many tasks in
zero-shot settings.

NLP’s ImageNet Moment | 195

In zero-shot learning, a model is given no examples to train on but
must understand the task to perform given the instruction pro‐
vided. For example, a zero-shot learning task may require a model
to translate an English sentence into German, but the model would
not be given English-to-German sentences to learn from. In few-
shot learning, a model is given a few examples to learn from, but
usually not many.

OpenAI released GPT-3 in 2020. Compared to GPT-2, GPT-3 trained on an even
larger dataset and had an even larger number of parameters. GPT-3 bested its prede‐
cessor and set a new standard for zero-shot and few-shot learning. It is considered to
be the most performance-generative NLP model to date.

As you may have noticed, models have gotten bigger and bigger
and have trained on more and more data over the years. This,
along with design changes, larger models, and more data, has hel‐
ped push the state-of-the-art performance in NLP.

Conclusion
In this chapter, we tied all the major concepts in the book together, including word
embeddings, RNNs, attention mechanisms, the Transformer architecture, and con‐
textualized word representations. Collectively these advances helped bring about
NLP’s ImageNet moment in 2018, the year when large, pretrained language models
became available to the public and set new performance records on NLP
benchmarks.

With the rise of the pretrained language models, it has become possible for applied
NLP engineers to fine-tune large models on their domain-specific NLP tasks and
achieve remarkable performance. Now that we’ve covered the major NLP concepts
you need to know to develop NLP models, let’s discuss how to productionize NLP
models once you’ve developed them.

196 | Chapter 8: BERTology: Putting It All Together

PART III

Outside the Wall

Congratulations! You now know enough about NLP to actually read and understand
the latest research and implement every part of the pipeline to solve the most com‐
mon NLP tasks from scratch.

But when deploying models in production, there are many more things to consider.
Where do you run your model—on the client or a server? How do you handle multi‐
ple simultaneous requests? How do you integrate your PyTorch model, which is only
accessible from Python, in a JavaScript web app? How do you train on new, real user
data that comes in? How do you detect and handle errors in your model while it’s in
production? How do you scale training across very large datasets and multiple nodes?

Many of these questions actually do not have a perfect answer, but in this section,
we’ll try to shine some light on the tools and technologies that are important to real-
world productionization of models.

A lot of the topics discussed in these next few chapters are not, strictly speaking,
directly related to NLP. They’re what we called “outside the box” concepts in Chap‐
ter 1. Nonetheless, they are important to consider when taking your NLP models
from a fun side project to large-scale research and a real-world deployment that has
an impact on real humans.

CHAPTER 9

Tools of the Trade

In the preceding section, we covered all the foundational elements of NLP and how to
develop NLP models. Starting with this chapter, we’ll cover what you should begin to
think about as you come out of the wonderful world of training magnificent models
on carefully curated datasets and into the mess that is the real world.

In this chapter specifically, we will discuss mainstream machine learning software
and the choices you will face as you decide what to include in your stack. Then, in
Chapter 10, we build custom web apps for machine learning and data science using
an easy-to-use open source Python library called Streamlit, and we will conclude this
section (in Chapter 11) with model deployment at scale using software from the
industry leader, Databricks. By the end of these three chapters, you will have a good
understanding of how to productionize machine learning models as web apps, APIs,
and machine learning pipelines.

Let’s start with a topic many developers love spending inordinate amounts of time
arguing over: tools.

People who should probably be spending their time coding, love hashing out the
standard TensorFlow versus PyTorch or best programming language debates on end‐
lessly long Twitter threads, but we want to take a step back and talk about some of the
more practical decisions you’ll have to wrestle with in the real world. After all,
“applied” is in the title of this book.

Here are a few obligatory disclaimers:

• It is almost certain that what we recommend today will become outdated over
time. Instead of being overly prescriptive with our advice, we want to help you
develop intuition for what matters when you make decisions about what to
include in your tech stack.

199

https://streamlit.io
https://databricks.com

• We recognize that you probably have your own set of restrictions—for example,
your company may already have a set of tools you are obligated to use. Or, you
might be part of a large team where the choice of programming language, cloud
provider, etc., has already been made for you. But hopefully, this chapter will still
provide you with a sense of what else is out there.

• Making choices for your tech stack can be overwhelming. There are so many dif‐
ferent providers offering similar competing services, and the prices and features
they offer change frequently. This makes picking the absolute best a nearly
impossible exercise. The sheer variety of competing providers can lead to deci‐
sion fatigue. We will try to do our best to keep the choices you have to make to a
minimum. In fact, we will go a step further. We, the authors of this book, will
pick our own favorite tools to work with when building NLP applications!

• The list here is neither comprehensive nor definitive (nor is it in any particular
order or ranking). The tools we list here are simply the ones that we, the authors,
have found useful, popular, or interesting. The decision on what to use is, as
always, up to you.

• What may work for one person in the field may not work for you. Take our sug‐
gestions with a grain of salt, and think critically about what makes the most sense
for you.

• In the end, what’s most important is not what tools you use but how you use
them. In fact, you’ll find that a lot of the deep learning frameworks, program‐
ming languages, etc., are often very similar, and it’s not too hard to learn one
once you’ve learned another.

We’ve split the tools into a few categories and have listed a few under each. At the end
of each section, you’ll find two specific recommendations, labeled “Ankur’s Pick” and
“Ajay’s Pick” in the classic style of The Motley Fool. These are our individual personal
favorites:

Ankur’s picks
These will tend to be more production-oriented, with a focus on tools that are
stable and popular in industry, and that scale well.

Ajay’s picks
These will be more experimental and research-oriented. These tools are designed
for rapid experimentation and prototyping and will help you stay on the bleeding
edge of modern research.

By the end of this chapter, you should be well acquainted with the landscape of tools
available to you as you build NLP applications, both to prototype and to deploy in
production.

200 | Chapter 9: Tools of the Trade

https://www.fool.com

Deep Learning Frameworks
Let’s start with the deep learning frameworks. These frameworks are the core building
blocks for nearly all of NLP (that’s relevant to us), and we will use them extensively
throughout this book. Most deep learning frameworks do the same exact thing—they
perform tensor computations on GPUs.

What differentiates them is the way they implement the various high-level features
and abstractions as well as how they manage the less obvious backend implementa‐
tion that governs the actual performance of your code.

Over the last decade, multiple frameworks have phased in and out of existence. Older
and increasingly less popular ones that you might have heard of in passing are The‐
ano, Chainer, Lua, Torch, and Caffe. As of 2020, we think these smaller frameworks
are, for the most part, obsolete and not worth exploring in great detail.

The big ones that you’re familiar with and perhaps have used already are PyTorch and
TensorFlow. These two frameworks were launched by two of the most successful
technology companies today—Facebook and Google, respectively. Partly because of
their dominance in the tech space, these two companies have been able to spur large
developer communities to adopt and support their deep learning frameworks. Both
frameworks have several things in common: they are both open source and interface
with Python as the primary programming language. But there are a few differences
between the two, which we will highlight in detail.

PyTorch is based on the Torch framework, and TensorFlow is based
on the Theano framework. Even though Torch and Theano have
declined in popularity, their derivatives are now the most dominant
in the deep learning space.

However, there are also a few new kids on the block, which you’re probably less famil‐
iar with. Jax, Julia, and Swift for TensorFlow all promise killer new features, far better
performance/speed, and are fairly drastic departures from what we’ve seen so far.
They are still not as fleshed out as PyTorch and TensorFlow in terms of stability, com‐
munity, and hardware support, but they show a lot of potential and have good devel‐
opment momentum, so be prepared to dip your toes in those as well.

PyTorch
Let’s start with PyTorch, the fastest growing deep learning framework over the past
several years. It was developed by Facebook’s AI Research lab (FAIR) and released
publicly in October 2016. The consensus is that PyTorch is now more popular among
researchers.

Deep Learning Frameworks | 201

At the core of PyTorch lies the torch.tensor object. It’s a type of multidimensional
array, almost identical to a numpy.ndarray, that can live in GPU memory and be used
for fast parallel computation. Almost all of PyTorch is built for manipulating these
tensors with operations such as matrix multiplication, convolution, etc.

The other big component of PyTorch is autograd. This feature automatically calcu‐
lates a quantity called the gradient whenever you use PyTorch tensor operations,
which is extremely useful for training neural networks.

Beyond this, the easiest way to describe PyTorch would be to call it “NumPy on the
GPU” with added convenience functions for deep learning. Typically, deep learning
involves repeatedly performing similar computations on large tensors, which is where
GPUs excel. NumPy performs computation on the CPU, which, in most cases, is
much slower than running lower-precision computations in parallel on the GPU.

For most Python programmers, PyTorch will feel natural and “Pythonic” since its
interface is very similar to NumPy. This is one of the main reasons that PyTorch has
continued rising in popularity over the last few years, despite the fact that it was
released after TensorFlow.

Both PyTorch and TensorFlow offer distributed computation features, but PyTorch
has better optimization for training because it has native support for asynchronous
execution.

The job of deep learning frameworks can be described as executing a “graph” of com‐
putations on tensor data structures. In PyTorch you define the graph at runtime,
which allows you to easily go back and forth between planning and execution. The
ability to evaluate operations immediately, without compiling graphs explicitly, is
known as eager execution.

Eager execution allows you to prototype faster and create new types of architectures,
but at the cost of speed. Think of this as the difference between compiled and inter‐
preted languages.

This used to be a big deal a few years ago since TensorFlow used static graphs back
then, requiring you to define the entire graph first before pushing data through.
However, both frameworks now support eager execution by default, and this has
since been adopted as the go-to industry standard.

Following are itemized lists of things to consider before you start using PyTorch. First
the pros:

• Easier to learn and more intuitive; Python-like coding
• Dynamic graph
• Excellent for fast experimentation and prototyping
• Requires less reading through documentation

202 | Chapter 9: Tools of the Trade

• Better integration with other Python packages
• Rapidly gaining popularity among researchers

Here are some of the cons of using PyTorch:

• Relies on third party for visualization (e.g., Visdom)
• Has a less-robust native system for edge device deployments (requires API

server)

Now, let’s compare PyTorch with TensorFlow, the framework that remains the most
popular in the industry today despite PyTorch’s rapid ascent.

TensorFlow
Developed by the Google Brain team for internal Google use, TensorFlow 1.x was
released in late 2015. It has a larger user base in industry, though this is likely due to
the fact that it was released earlier and many companies have existing TensorFlow
experience and legacy code. For the same reasons, TensorFlow has a larger commu‐
nity base overall.

In general, we would not recommend the 1.x version of TensorFlow, since it has a
very bloated API and is generally more verbose and less user friendly than PyTorch
(and actually slower in some cases due to problems with the backend).

However, with TensorFlow 2.0, the differences between TensorFlow and PyTorch
have narrowed. TensorFlow now offers the ability to build dynamic graphs, instead of
static graphs. TensorFlow 2.0 also fully integrates Keras, a very popular high-level API
for TensorFlow. While TensorFlow 2.0 has resolved a lot of its issues with a complete
redesign of the framework, it has also faced criticism for the drastic changes it intro‐
duced, which breaks nearly all 1.x code.

Compared to PyTorch, TensorFlow has excellent built-in visualization capabilities
(e.g., TensorBoard) and has better support for mobile platforms with TensorFlow Lite
(though this is changing with PyTorch Mobile). Because of this, TensorFlow can be
easier to deploy in a production setting thanks to tools like TensorFlow Serving,
which uses REST client APIs.

TensorFlow, in general, consists of a lot more than the Python framework, though.
There are now more variants than we can count, including TensorFlow Lite, Tensor‐
Flow Extended, TensorFlow Serving, TensorFlow.js, TensorFlow.jl, TensorFlow Prob‐
ability, and many more. This could be a helpful ecosystem or a confusing nuisance to
deal with, depending on your perspective.

Deep Learning Frameworks | 203

We recommend TensorFlow to developers that are ready to build production-ready
applications and who may have existing code/infrastructure built on the TensorFlow
ecosystem.

Following are itemized lists of things to consider before you start using TensorFlow.
First, the pros:

• With Keras in TensorFlow 2.0, has a simple built-in high-level API
• Now supports eager mode
• Excellent visualization (TensorBoard)
• Production-ready (TensorFlow Serving)
• Great mobile support
• Large developer community and comprehensive documentation
• Has better performance at very large scale
• The dominant framework in industry

Following are some cons in using TensorFlow:

• Many people complain that TensorFlow still carries the baggage from its 1.x ver‐
sion, which was completely different from the TensorFlow we have today and was
generally much harder to use.

• It has a steeper learning curve, and can feel at tims like a new language.

While PyTorch and TensorFlow are the two most popular deep learning frameworks
available today, let’s explore some of the fast-rising newcomers that may eventually
challenge the incumbents.

Jax
Jax is a new numerical computing library introduced by Google very recently. It takes
the idea of “NumPy on GPUs” popularized by PyTorch to a whole new level. At its
core, Jax provides autograd functionality (the ability to calculate gradients of chained
functions without explicitly specifying a derivative, which is extremely important for
deep learning frameworks) directly on top of the standard NumPy and Python func‐
tions. This means Jax’s autograd can handle loops, conditionals, closures, and other
native Python constructs without any modification to your code!

But why is Google making a new library that has very similar functionality to Tensor‐
Flow? Who knows? The Jax project uses components and tools like XLA that stem‐
med from TensorFlow, but it seems to be a much cleaner rewrite of it. Will it
eventually replace TensorFlow? Maybe. Only time will tell. But what we have now

204 | Chapter 9: Tools of the Trade

seems to indicate a promising new direction for deep learning frameworks focused
on high performance on accelerators and reducing boilerplate code and syntax.

Julia
Julia, unlike others on this list, is not just another framework or library, it is an
entirely new programming language. Its creators expressed concerns that many sub‐
optimal decisions were made from a performance perspective when Python was cre‐
ated. It was, after all, designed to be easy-to-use first and everything else second.

But today, we’re using Python tools to manage large datasets, run complex scientific
simulations, and train deep neural networks with billions of parameters. This doesn’t
seem like something that should be done in a language that sacrifices performance for
simplicity.

Julia was designed from the ground up for numerical and scientific computation.
While Python has many use cases, including server backends, databases, and script‐
ing, Julia focuses on the traditional “data science stack” that Python programmers use
(i.e., NumPy, pandas, matplotlib, SciPy, etc.).

We won’t be covering Julia extensively in this book, but we highly recommend check‐
ing it out yourself.

Honorable Mention: Swift for TensorFlow
Swift for TensorFlow (sometimes abbreviated to S4TF) attempted to solve an issue
similar to the one Julia does—the fundamental limitations of Python.

The project made valuable contributions to the space of differentiable programming,
compilers, and numerical computing in general, but unfortunately stopped develop‐
ment in 2021. We thank the S4TF team for their efforts, which have now introduced a
number of upstream changes to the Swift programming language itself; its example
has inspired other projects that attempt to build mainstream differentiable program‐
ming languages.

Without further ado, here are our personal picks:

Ankur’s pick
This is a very difficult choice for me. On one hand, I love to prototype in
PyTorch, given how “Pythonic” it is. On the other hand, TensorFlow is so well
entrenched in industry that it’s hard not to invest heavily in learning and devel‐
oping in TensorFlow. My recommendation is to learn TensorFlow because you
will likely come across it if you work in the enterprise. But, for everything else, I
prefer the ease and simplicity of PyTorch, which is my top pick personally.

Deep Learning Frameworks | 205

Ajay’s pick
My deep learning framework of choice is PyTorch. While I’m super excited about
some of the new ones and can’t wait for deep learning frameworks to expand into
other programming languages, PyTorch still seems to be the most reliable solu‐
tion at the moment. It’s a great tool for research, and a lot of the latest academic
literature is implemented in PyTorch, which makes tweaking and testing new
architectures, optimizers, etc., extremely easy.

Next, we will discuss visualization and experiment tracking software for your deep
learning training needs.

Visualization and Experiment Tracking
Often, you’ll start training one model, then another, then the next, and “Oh wait,
maybe if I try this…”

Once you’ve set up your training pipeline, it becomes extremely easy to quickly run
multiple experiments, perhaps even simultaneously. At this stage, most of your effort
as a deep learning practitioner will not go into writing code but into making tweaks
to a few key components of your model, data, or training loop.

As you start this rapid experimentation phase, you might need to run hundreds of
experiments to find the best solution. Without software to visualize and track your
experiments, it would be challenging to keep track of which experiments were most
promising and which directions are worth pursuing further. Debugging these models
is also difficult and time-consuming without good visualization software. Also,
because most of machine learning today is highly collaborative, you’ll need software
to track your work within a team and share progress with others to avoid issues like
redundant experiments.

That’s what this section is all about—tools that help you track experiments, monitor
performance, version control your experiments, and share your results with the rest
of your team.

TensorBoard
TensorBoard is TensorFlow’s built-in visualization software. It’s open source and free
and has a very large community of users. It allows us to visualize the graph, track and
visualize metrics such as loss and accuracy, view histograms of weights and biases
over time, project embeddings into a lower-dimensional space, and display images,
text, and audio data.

With TensorBoard, we can run multiple experiments and track which experiments
are leading to better/worse performance. This helps us optimize model performance

206 | Chapter 9: Tools of the Trade

by tuning hyperparameters more easily, for example. It is also easier to troubleshoot
machine learning models with TensorBoard.

The latest version of TensorBoard, TensorBoard.dev, even allows us to host, track,
and share our experiments with others; this is especially useful for collaboration
within and among teams. Prior to TensorBoard.dev, we had to submit screenshots of
TensorBoard to others to collaborate on work.

While TensorBoard is a good built-in solution for TensorFlow, it lacks a lot of the col‐
laborative features that other players in the space offer. The main advantage of Ten‐
sorBoard lies in the fact that it’s an official, first-party, built-in tool, something that
PyTorch currently does not offer.

Weights & Biases
Some machine learning practitioners rely on tracking ML experiments with a spread‐
sheet. Unless you’re from the 20th century, this approach is both brittle and nonscala‐
ble in industry. Given the need for great deep learning visualization and experiment
tracking software, companies such as Weights & Biases have sprung up.

Founded in 2017, Weights & Biases allows teams to track their ML experiments, visu‐
alize, and optimize model performance, and maintain versioning of datasets and
models with just a few lines of code. TensorBoard was designed for individuals to
experiment independently, but Weights & Biases was designed with collaborative
teams in mind.

Weights & Biases automatically tracks hyperparameters, metrics, etc., and logs them
to the cloud. You can then visualize results through an interactive dashboard that
updates in real time. You can log practically anything you might care about, including
plots, sample predictions, audio, video, 3D models, and even raw HTML. This tool
also offers tags, filtering, grouping, and the ability to export to a wide variety of for‐
mats to keep your experiments well-organized.

Neptune
Much like Weights & Biases, Neptune allows us to track experiments and organize
work for our team. The best part about Neptune is it easily hooks into multiple
frameworks and is a very lightweight tool. It works very easily in notebook environ‐
ments (e.g., Jupyter, JupyterLab, and Google Colab).

Neptune is best for users who want a lightweight experiment management tool for all
model training (classic machine learning, deep learning, reinforcement learning,
etc.). It also offers great notebook tracing (for Jupyter and JupyterLab). If you do
most of your machine learning work in notebooks, Neptune is a top contender for
experiments tracking.

Visualization and Experiment Tracking | 207

Comet
Comet is great for any model training, not just deep learning. It also offers meta
machine learning capabilities (e.g., AutoML) that the other experiment tracking soft‐
ware platforms lack. Like Weights & Biases, Comet is a robust piece of software, one
we recommend to industry practitioners.

MLflow
Developed in 2018 by the creators of Databricks, one of the leading data science plat‐
forms today (more on Databricks soon), MLflow is a free open source technology to
track machine learning experiments, register models, and deploy models. In other
words, MLflow helps manage the entire machine learning life cycle from prototyping
to deployment. While MLflow is helpful to individuals who need to track many
experiments, it really shines with teams. Teams can collaborate better by reproducing
results of their peers and leveraging prior experimentation and the modeling others
have already done. Since models are registered at a central repository, MLflow also
makes it clear to team members which models are in production and how to access
them.

MLflow is unlike TensorBoard and Weights & Biases because it manages the entire
machine learning life cycle; in other words, it is more than just experiments-tracking
software. But, it does have light experiments-tracking features.

The major downside of MLflow is the lack of visualization capabilities that the likes of
TensorBoard, Weights & Biases, Comet, and Neptune offer. In fact, MLflow has a very
limited user interface altogether. Moreover, MLflow works best when used with Data‐
bricks. As a standalone technology, it lacks many of the features enterprises will need,
such as user management.

In Chapter 11, we will revisit MLflow and show where it shines best: model registry
and model deployment.

Here are our picks:

Ankur’s pick
The single best pick here is Weights & Biases. The team there truly understands
how to develop software to help with machine learning work. The founders of
Weights & Biases previously founded a very popular and successful data annota‐
tion firm called Figure Eight (formerly known as CrowdFlower), which I have
used in the past and has since been acquired by Appen. If you want to make your
experimentation process more organized with better process, Weights & Biases is
your solution. Weights & Biases also integrates well with nearly all the major data
science frameworks and platforms, including Databricks, which we use in Chap‐
ter 11.

208 | Chapter 9: Tools of the Trade

Ajay’s pick
I’m biased here, since I’ve been using Weights & Biases much more than anything
else. But that’s because it’s the first tool I tried, and I found it perfect for what I
do. The way I look at it, Weights & Biases really helps you move from working in
code space to idea space. Having all my models and results in one place has really
improved my productivity as a deep learning practitioner.

Now, let’s move on to automated machine learning, which may help you with your
training process.

AutoML
Machine learning has become more mature and increasingly in demand. As a result,
startups that specialize in automated machine learning (AutoML) have become a hot
topic of conversation in the data science community in recent years. Let’s explore the
current major players in AutoML and how they could be helpful in building NLP
applications.

The standard machine learning pipeline includes the following steps:

1. Import data.
2. Preprocess data (e.g., handle missing values and outliers, check and convert data

types, etc.).
3. Perform feature scaling, engineering, and selection.
4. Structure data (e.g., create training, cross-validation, and test sets, etc.).
5. Define evaluation metric and choose which algorithms to test.
6. Set up algorithms, and choose and test models with various hyperparameters.
7. Select model(s) to deploy in production.
8. Refactor code, write tests, and push into production.
9. Monitor and maintain model in production.

10. Collect actual results, and retrain model, as necessary.

AutoML is machine learning that has been automated to some extent, reducing the
effort required from human coders. AutoML may include the following:

• Automated data preparation (e.g., imputation of missing values, feature scaling,
feature selection, etc.)

• Automated grid search and hyperparameter optimization
• Automated evaluation of multiple algorithms

AutoML | 209

• Automated ensembling of models (e.g., ensemble selection and stacking)

By automating some portions of the standard machine learning pipeline, AutoML
frees up time for us to work on data preprocessing, feature engineering, and model
deployment and maintenance.

H2O.ai
Founded in 2012, H2O.ai is an open source machine learning platform that helps
programmers build ML applications very quickly. It is very well-funded, having
raised $151 million as of early 2021. It supports both classic machine learning (e.g.,
random forests, gradient boosting, generalized linear models, etc.) and deep learning.
At the core of the platform is the ability to run multiple algorithms with multiple
hyperparameters to produce a leaderboard of the best models. In other words, it
helps find the best model for your problem, performing tasks such as algorithm selec‐
tion and hyperparameter optimization.

Supporting both Python and R, H2O is robust. It also offers a no-code graphical
notebook–based interactive UI for users to run experiments with a few clicks of a
button; the UI is known as H2O Flow. H2O’s AutoML automatically ensembles indi‐
vidual models to improve overall performance. H2O is built for big data problems,
supporting distributed, in-memory machine learning.

It has some support for NLP; H2O is able to convert text strings into features using
techniques such as TFIDF, CNNs, and GRUs. These features are then fed into either
classic machine learning or deep learning algorithms.

H2O is a useful platform for data scientists to speed up model training and evalua‐
tion, but experienced data scientists and ML engineers will prefer to have more con‐
trol over their models by leveraging deep learning frameworks such as PyTorch or
TensorFlow coupled with their choice of experiment-tracking software.

Dataiku
Dataiku is another major data science platform; it was founded in 2013 and has raised
$247 million as of early 2021. Dataiku is a collaborative data science software plat‐
form, bringing together multiple data players (e.g., data scientists, data analysts, data
engineers, etc.) within an organization.

Whereas H2O is strictly a machine learning platform (to quickly train and evaluate
multiple ML models), Dataiku is built for more generalized data science work,
including data exploration, feature engineering, model building, data analysis, and
deployment of insights and models. Like H2O, Dataiku supports both coders and
noncoders with a no-code, click-friendly UI.

210 | Chapter 9: Tools of the Trade

Dataiku is a great way to quickly move from development to test to preproduction to
production very quickly. It manages a lot of the overhead, such as creating data work‐
flows, automating data pipelines, monitoring performance, versioning models, and
rolling back to prior versions, as necessary. It also manages other thorny elements you
will encounter as you push data pipelines and models into production; this includes
items such as governance, security, and monitoring.

DataRobot
Another well-funded player in this space is DataRobot, having raised $751 million as
of early 2021, just nine years since its founding in 2012. Like Dataiku, DataRobot is
an end-to-end data science platform supporting model building, deployment, and
management. It is a great blend of the AutoML features H2O offers and the full end-
to-end data science and engineering capabilities of Dataiku.

DataRobot has made some amazing acquisitions to build out what we consider is the
single best data science software platform on the market today. Not only does it have
AutoML, it also includes MLOps (via its acquisition of ParallelM in 2019). This
allows us to deploy, monitor, manage, and govern machine learning models in pro‐
duction. It supports all the modern production infrastructures such as Kubernetes
and Spark, either on-premise or on a cloud provider, e.g., Amazon Web Services
(AWS), Google Cloud Platform (GCP), and Azure. It supports real-time monitoring
and alerts and auditing of actions for models, which you will want to have once you
take your ML applications into production.

In other words, DataRobot considerably speeds up the process to prepare our data,
train and evaluate our models, and deploy into production. It also offers us ways to
visualize the data and the model.

Here are our picks:

Ankur’s pick
My top pick is DataRobot, given its string of acquisitions. It has the most robust
capabilities to support the end-to-end data science and machine learning
pipeline.

Ajay’s pick
I personally have never used any AutoML, since I primarily train my own models
from scratch. No pick from me here!

In the next section, let’s explore the options to access compute resources to train our
machine learning models.

AutoML | 211

ML Infrastructure and Compute
The most annoying and expensive part of deep learning is getting access to compute.

If you want to do any serious deep learning today, you’re going to need an Nvidia
GPU. Nvidia is pretty much the only brand you’ll be able to use reliably, since all deep
learning frameworks primarily target CUDA, which is proprietary Nvidia technology.
Hopefully, in the future, there will be plenty of other competitive options for com‐
pute, but that’s not the case today.

You can either invest in your own graphics card for a workstation, or connect to a
cloud instance that has a GPU set up for you. If you’re a beginner, it’s probably better
to get started with a cheap cloud service, rather than pay for your own GPU upfront.
Setting up your workstation also involves a lot more effort than just connecting to a
one-click Jupyter Notebook from your browser. However, when you eventually find
yourself running many experiments daily and are paying out of your pocket for com‐
pute hours, you can save some money by using your own GPUs.

The big three cloud providers—AWS, GCP, and Microsoft Azure—all offer state-of-
the-art GPU hardware for training. For the most part, the decision on which service
to use comes down to one factor: cost. This varies a lot over time, so for a more up-
to-date resource, GitHub user zszazi put together an excellent table that compares
most of the cloud service providers that you’ll see for the next few years.

In this section, we’ll present some of the newer players in the training infrastructure
space, describe the unique features they offer for deep learning engineers, and as
usual, tell you our picks.

Paperspace
Founded in 2014, Paperspace is a niche machine learning–focused cloud computing
company; it provides an ML development platform to individuals and teams that
want to develop and deploy machine learning models using GPUs. Paperspace is a
good choice for teams focused solely on building GPU-based machine learning appli‐
cations. Instead of building custom GPU workstations, which are very expensive
upfront and require a good bit of hardware setup, data scientists can utilize cloud-
based GPUs on demand and pay as they go (typically by the hour).

Compared to the likes of AWS, Azure, and GCP, Paperspace has a more intuitive set
of offerings with more transparent pricing. It allows teams to spin up a virtual
machine with the right set of GPUs, train machine learning models using any frame‐
work (including TensorFlow and PyTorch), version models, share code within teams,
scale out the training and inference operations, and make the models available via
APIs.

212 | Chapter 9: Tools of the Trade

https://oreil.ly/q8wLz

Instead of spending an hour or more setting up the infrastructure on AWS, we can set
up the infrastructure to train machine learning models within minutes using
Paperspace.

Paperspace’s core product is Paperspace Gradient; it offers all the infrastructure we
need to develop and deploy machine learning models. With a few clicks, we can set
up our cloud environment, load and explore data, develop a model via Jupyter Note‐
book (we also have the option to leverage a single instance or scale up with dis‐
tributed training), monitor model performance, and deploy our model as an API
endpoint using either GPUs or CPUs with the ability to scale based on request vol‐
ume. To boot, Gradient also offers continuous integration service with GitHub.

FloydHub
FloydHub is similar to Paperspace, providing data scientists a managed cloud plat‐
form to train, test, and deploy machine learning models. Like Paperspace, FloydHub
provides cloud infrastructure in a nicely packaged product, letting data scientists
code without worrying about managing the infrastructure they need to do their work.
This includes DevOps as well (e.g., provisioning the infrastructure, orchestrating the
jobs, managing logging, security, etc.). Both FloydHub and Paperspace offer
experiment-tracking software, too, allowing us to track, organize, and share our
work.

FloydHub’s core product is FloydHub Workspace, which is powered by JupyterLab
and similar to Paperspace Gradient in terms of capabilities.

Compared to more established players such as AWS, Azure, and GCP, Paperspace and
FloydHub are newer and support much smaller communities. As a result, there is less
community-sponsored documentation and support compared to the cloud comput‐
ing giants.

Google Colab
By far the simplest and cheapest (free!) cloud service for training machine learning
models is Google Colab (“Colaboratory”), a free cloud service hosted by Google.
Google Colab requires zero configuration, offers free access to GPUs, and makes
sharing very easy. At its core, Colab notebooks are online cloud-based Jupyter Note‐
books that use Google’s cloud instances to perform the compute necessary for model
training.

The Colab notebooks are all stored in a Google Drive account, and the notebook
environment allows users to access data and code from Google Drive, GitHub, and
many other sources. Colab comes preinstalled with many major Python libraries used
in data science and machine learning, including NumPy, pandas, TensorFlow,

ML Infrastructure and Compute | 213

PyTorch, and Scikit-learn. Installing new libraries is also very easy; Colab allows shell
commands directly in the notebook environment.

There are some downsides. Colab can run code for up to 24 hours on CPU and for up
to 12 hours on GPU. After this duration, the notebook is disconnected from the VM,
interrupting any ongoing training. We do have the option to connect to our local run‐
time and train for an unlimited duration, though.

Kaggle Kernels
Kaggle, the online machine learning competition platform owned by Google, offers
its own Jupyter Notebook environment for users to find and publish datasets, build
models, and share their work; it is known as Kaggle Kernels. Kaggle Kernels allow
users to write and share code to make their work reproducible and to invite collabo‐
rators to collaborate on ongoing projects. Kaggle Kernels store code, comments, envi‐
ronment variables, required input files, and outputs; all of this runs on Docker
containers.

Docker containers are self-contained packages of code and all necessary dependen‐
cies to run applications in an isolated environment, ensuring that the software works
uniformly regardless of the machine it is run on.

The Docker container is preloaded with the most common data science libraries and
with the project-specific dataset. The Kernel connects to this Docker container over
the web, allowing users to quickly perform their data science and machine learning
work via a web browser, without requiring any setup on their local machine. There
are two Kernel types. You are able to create either a script that runs the entire code
from start to finish or a notebook that supports data exploration and insights.

Compared to Google Colab, Kaggle Kernels is slower and offers even shorter duration
execution times (9 hours of total executions versus 12 for Google Colab using GPUs).
For students, academics, researchers, data science enthusiasts, and data science com‐
petitors, Kaggle Kernels is a great way to learn more about machine learning, develop
and share models, and engage with the broader data science community, but it is not
a viable option to train models in enterprise.

Lambda GPU Cloud
Another newcomer to the GPU cloud space is Lambda Labs. Lambda Labs is best
known for its deep learning workstations and hardware (which might be worth con‐
sidering if you aren’t interested in building your own from scratch), but it recently
also started offering the Lambda GPU Cloud. This is a player to keep an eye on, but it
doesn’t yet offer anything as robust and complete of a solution as the other compute
providers here.

Here are our picks:

214 | Chapter 9: Tools of the Trade

For students and price-sensitive developers, Google Colab is the best place to start
because it’s free and easy to use; it is available to all Gmail users with a single click of
the button.

For moderate, noncompany developers, Paperspace or FloydHub are the best options.
They are easy and intuitive to use and do not require any IT overhead to maintain.

For moderate or heavy developers (e.g., professionals), especially in the enterprise,
AWS, Azure, and GCP are the best options. These companies offer a wide variety of
cloud services that your IT organization will need to support your machine learning
work. If your company is early stage, you might qualify for startup discount pro‐
grams. If your company is well established, you should be able to negotiate discounts
for longer-term contracts.

And here are our individual picks:

Ankur’s pick
Unless you work in a large organization that is already deeply wedded to AWS,
GCP, or Azure, I recommend leveraging GPUs in the cloud through a UI/UX-
friendly platform. That’s why Paperspace is my favorite pick today. It is easy to
spin up GPUs, train multiple ML models in parallel, and then spin down the
GPUs after you’re done. You can also use Paperspace to make the models avail‐
able as APIs; it’s more pain-free to use versus the services offered by AWS, GCP,
and Azure.

Ajay’s pick
I’ve tried plenty of cloud services and set up multiple workstations for deep
learning, but today, I mostly find myself using Colab and a university-provided
compute cluster. Of course, not everyone has access to compute clusters, so in
general, Colab is what I recommend. Apart from the obvious advantage of being
free, what I love about Colab is how easy it is to get into a Jupyter Notebook. In
fact, for me, launching a Colab instance is faster than spinning up a local Jupyter
Notebook server!

Edge/On-Device Inference
When it’s time to deploy your model in production, there are two ways you can run
inference: in the cloud or on-device. For the most part, the advantages/disadvantages
are what you’d expect.

Running inference in the cloud will, in most cases, provide a faster experience for the
end user, since you can leverage cloud GPUs and run inference any way you want.
You also don’t have to worry about supporting multiple platforms, devices, and
hardware configurations because you can use one unified backend that’s accessible via
an API.

Edge/On-Device Inference | 215

But what makes offline or on-device inference appealing is that your users won’t need
an internet connection to use your model, which can be a huge consideration,
depending on your application. Also, by offloading the compute onto the users’ devi‐
ces, you can save a lot in cloud service bills, especially since GPU instances are signif‐
icantly more expensive than traditional web servers.

We will compare on-device inference first, and then we will explore the major cloud
service providers.

ONNX
Open Neural Network Exchange (ONNX) is the most significant project to address
inference on multiple devices and platforms. Instead of a library, framework, etc.,
that’s limited in scope, ONNX presents a new format for storing machine learning
models that can be run on all sorts of inference engines, programming languages,
devices, etc. It’s an approach that splits inference into a “frontend” and “backend,”
with ONNX models being the backend. ONNX supports all major deep learning
frameworks, and there are many popular client implementations that allow you to
run your ONNX models in a browser, mobile device, and more.

Fair warning, though: this is not as straightforward as it seems. The process of
exporting your models to the ONNX format and loading them into your application
can get quite complicated and may not always work. However, the sad truth is that
this is the state of on-device machine learning today. ONNX seems to be the main
tool that has widespread support from deep learning frameworks.

Core ML
Core ML is a framework by Apple designed to work with most Apple devices using
the Swift programming language. It takes advantage of the CPU, GPU, and the “neu‐
ral compute engine” that newer iPhones have. Although Core ML is specific to Apple
devices, it seems to have a fair amount of support. Hugging Face, one of the top NLP
software development companies today, also released a few demos to run state-of-
the-art models like GPT-2 and BERT with Core ML and Swift on an iPhone.

Edge Accelerators
In the last few years, a few companies have started creating custom hardware for
inference on edge devices. Among these are Intel’s Movidius compute stick, Google’s
Edge TPU, and the Nvidia Jetson family of developer boards.

These devices aren’t designed for web or mobile usage. Rather, they’re meant to be
used with custom IoT devices, smart appliances, and robotics applications. If you’re
building a product like this, you probably already know what to use. Also, these are

216 | Chapter 9: Tools of the Trade

generally more relevant for computer vision than NLP, so we won’t discuss these in
detail.

Given how new these tools are, we do not have a favorite yet.

Next, let’s cover the major cloud providers on the market today; this will be one of the
most important decisions you will have to make for your software stack.

Cloud Inference and Machine Learning as a Service
Today, the three most dominant cloud instance providers are AWS, GCP, and Micro‐
soft Azure. Choosing the right cloud provider will require you to consult with your
entire IT organization, which makes it hard to provide a recommendation here. That
being said, let’s review the pros and cons of the cloud providers with respect to
machine learning.

All of the big three offer machine learning as a service (MLaaS), handling tasks such
as data preprocessing, model training, model evaluation, and model deployment, so
we’ll factor this in as well.

AWS
AWS is by far the largest and most dominant of the cloud providers. It has a third of
the entire market share, whereas second-ranked Microsoft has an 18% market share.
Google, however, is particularly strong in AI and is growing rapidly as AI applications
continue to flourish.

AWS has the largest set of available services and the most comprehensive network of
worldwide data centers. It has the most mature, enterprise-ready offering of any of
the cloud providers. That being said, AWS has poor transparency around its cost
structure and is not the easiest for newcomers to understand. It is also entirely in the
public cloud game and does not support hybrid cloud deployments like Microsoft
does.

Amazon’s MLaaS offering is called Amazon SageMaker. It is a fully managed service
and handles end-to-end machine learning work, allowing us to train, fine-tune,
deploy, and manage models. SageMaker also now offers many of the same capabilities
of the experiment-tracking software we discussed earlier.

Amazon has several speech and text processing APIs for out-of-the-box NLP, too.
These include Amazon Lex (chatbot), Amazon Transcribe (speech-to-text), Amazon
Polly (text-to-speech), Amazon Comprehend (text analysis, e.g., named entity recog‐
nition, language recognition, sentiment analysis, and topic modeling), and Amazon
Translate (machine translation).

Cloud Inference and Machine Learning as a Service | 217

Microsoft Azure
Microsoft has a major advantage when it comes to enterprise clients; many of its
enterprise clients are well-accustomed to using Microsoft products such as Windows
and Office 365. Azure is tightly integrated with these other Microsoft products, mak‐
ing it easier for enterprise clients to adopt Azure. Tight product coupling also allows
Microsoft to offer discounts to its enterprise customers.

Microsoft’s MLaaS offering is called Azure Machine Learning. Compared to Sage‐
Maker, Microsoft has more beginner-friendly options, offering a graphical drag-and-
drop interface.

Microsoft also offers high-level NLP APIs for speech and text analysis.

Google Cloud Platform
Google is the newcomer on the block but has among the best offerings for data and
machine learning work. It doesn’t feature nearly the same scale and variety of offer‐
ings as Amazon or Microsoft, however, so the rest of your IT organization may prefer
to use AWS or Azure over GCP.

Google has two MLaaS options: Cloud AutoML and Google Cloud Machine Learning
Engine. Google Cloud AutoML is for beginners, allowing users to upload datasets,
train models, and deploy them as APIs pretty quickly. Google Cloud ML Engine is for
more experienced users, offering more flexibility in exchange for ease of use. It is
pretty similar to Amazon SageMaker.

Google, like Amazon and Microsoft, offers high-level NLP APIs, but its main advan‐
tage over competitors is the ability for users to train custom models using Google’s
AutoML platform.

Here are our picks:

Ankur’s pick
My pick is AWS. It is the most widely adopted cloud provider in enterprise, with
the largest and most robust set of offerings. That being said, which cloud pro‐
vider you pick should be based on what the rest of your organization uses.

Ajay’s pick
In my experience, running inference on a server is the simplest way to deploy
your model because this allows you to run PyTorch code without having to worry
about exporting your model to a special format. With that in mind, my recom‐
mendation would be to use whatever cloud provider your application already
uses. Other than perhaps pricing, there are no significant differences among the
deep learning offerings of AWS, Azure, and GCP. The deciding factor here
should be what benefits the other components of your application best.

218 | Chapter 9: Tools of the Trade

Next, let’s discuss tools to help us automate the process of testing before deploying
any changes to our models in production.

Continuous Integration and Delivery
In this chapter, we have discussed all of the ML infrastructure and software we will
need to train, deploy, and manage machine learning models in production except for
one last item: continuous integration and delivery (CI/CD). CI/CD is a set of practi‐
ces to help developers like us deliver code changes in production frequently and relia‐
bly. You can think of CI/CD as the process that allows us to maintain ML models in
production (e.g., replacing current models with newly retrained models) without a
prolonged interruption in the service our model provides.

Let’s unpack CI/CD. CI is the set of practices that recommends developers implement
small changes to the codebase frequently (as opposed to large changes all at once) and
version their code by frequently pushing it to version code repositories. However, to
support all the small changes developers are pushing to the code base, there needs to
be an automated process that integrates and validates all the changes being made,
accepting changes that comply with certain standards set by the developers and
rejecting changes that fail to pass such tests. This is what CI governs.

It is easier to identify problems with the code changes when the commits are small
and frequent (ideally daily) versus very large and infrequent.

CD is the set of practices responsible for automating the delivery of our applications
to downstream infrastructure environments. CD, for example, may restart services on
the various environments to deploy newer versions of the applications.

Here are our picks:

Ankur’s pick
My pick is GitHub Actions. GitHub is the dominant player among code reposito‐
ries and code versioning, and GitHub Actions integrates well with the existing
features GitHub offers. That being said, keep an eye out for GitLab; it is taking
some market share away from GitHub.

Ajay’s pick
GitHub Actions! Since Actions are already built into GitHub, they are extremely
easy to intergrate with your repos. The GitHub marketplace provides ready-to-
use actions for publishing to pip, testing, style-checking, and more. GitHub
seems to be doing a great job adding new features and functionality to Actions as
well, so expect to see more development in this product. Fun fact: there’s also a
GitHub Action for wandb.

Continuous Integration and Delivery | 219

https://oreil.ly/aDeeO

Conclusion
In this chapter, we explored many of the major machine learning tools you will
encounter during your work in NLP, including deep learning frameworks, visualiza‐
tion and experiment tracking, AutoML, ML infrastructure and compute, edge/on-
device inference, cloud inference and machine learning as a service, and CI/CD. We
also provided our personal picks, which should help inform your own choices. That
being said, be mindful of what others in your organization are adopting/have adop‐
ted, too.

Before we dive into model deployment at scale using Databricks in Chapter 11, let’s
explore simple web app deployment for machine learning using Streamlit. Web apps
are one way for nontechnical audiences to access and interact with machine learning
applications that you build.

220 | Chapter 9: Tools of the Trade

CHAPTER 10

Visualization

In the previous chapter, we covered some of the most popular machine learning tools
on the market today and shed light on the choices you’ll have to make for your ML
software stack. Hopefully we didn’t leave you with a case of analysis paralysis.

But to ensure that you don’t get stuck in the “finding the right tool for the job” phase,
let’s go a step further towards productionization and build a machine learning web
app together. A web app is software that can be run from a web browser. This means
your users don’t have to go through the extra step of installing your app before using
it. More often than not, web apps also interact with web servers, which are remote
computers that do more complicated things that you cannot expect a client to do,
such as managing a database or, in our case, running inference on an NLP model.

Building a web app is useful because most humans do not derive satisfaction from
scouring GitHub repos and dealing with CUDA out of memory errors. Creating a
graphical user interface may seem like something that is not “real” NLP or deep learn‐
ing. But having a simple graphical interface that’s accessible online is the most com‐
mon way to have nontechnical users interact with your model. It’s also a great way to
share your projects online, since most people (including deep learning researchers)
would rather just click a link and see a demo than figure out what version of matplot‐
lib to pip install because you forgot to include a requirements.txt.

Fully built, production-ready web apps require dedicated engineering resources to
develop and deploy (using languages such as JavaScript, Java, and Python and front‐
end frameworks such as React and Angular). As machine learning practitioners, we
would collaborate closely with these engineering teams to stand up a true machine
learning web application.

221

In this chapter, we will use the popular tool Streamlit to build a simple web app for
data and machine learning. Streamlit allows data scientists and ML engineers to turn
their work into web apps without requiring any frontend experience.

It may not be the next Airbnb, but it will allow you to take your spaCy named entity
recognition model, which was, until now, a bunch of numbers and progress bars, and
then deploy it as a web app that people can actually use.

Streamlit is an easy-to-use open source Python library for us to
demonstrate what a machine learning web app looks like and how
to develop and deploy it. Keep in mind that this is more of a proto‐
type web app than anything that we would consider production-
ready. Nevertheless, the web app we build together will be
illustrative of machine learning web apps and their potential.

Our First Streamlit App
We will build and deploy the app using Google Colab. As always, to follow along,
refer to the corresponding notebook in our book’s GitHub repo.

First, let’s connect to our Google Drive, make an apps directory in our Applied-NLP-
in-the-Enterprise directory, and switch to the apps directory.

To read the data successfully in the next snippet, you will need to copy the train_pre‐
pared.csv we created in Chapter 3 (also available on our AWS S3 bucket as /data/
ag_dataset/prepared/train_prepared.csv) into the Applied-NLP-in-the-Enterprise/data/
ag_dataset/prepared/ directory on Google Drive:

Connect to Google Drive
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

Make and switch to Apps directory
%mkdir '/content/drive/My Drive/Applied-NLP-in-the-Enterprise/apps'
%cd '/content/drive/My Drive/Applied-NLP-in-the-Enterprise/apps'

Build the Streamlit App
Next, we will create a new Python script in this apps directory called
ner_app_agnews.py. This app will read in the AG News Dataset (the same one we
used in Chapter 3) and display widgets to allow the user to explore the data. The app
will also perform named entity recognition using both the base spaCy model and the
custom spaCy model we trained in Chapter 3 and display the results.

To write the file, we can add a simple command at the start of the script:

%%writefile ner_app_agnews.py

222 | Chapter 10: Visualization

https://www.streamlit.io
https://github.com/nlpbook/nlpbook

1 If you would like more detail, refer to the official Streamlit API Documentation.

Next, let’s import the libraries we need, set the title of the web app using Streamlit,
and read and cache the AG News Dataset:1

Load libraries
import spacy
import streamlit as st
import spacy_streamlit
import numpy as np
import pandas as pd
import random

Set title
st.title(':star: AG News Dataset')

Define function to read data
@st.cache
def read_data(file):
 read_path = '/content/drive/My Drive/Applied-NLP-in-the-Enterprise'
 data = pd.read_csv(read_path+file)
 return data

Read data
data = read_data('/data/ag_dataset/prepared/train_prepared.csv')

Next, we will define a function to select the category of interest (Business, Sci_Tech,
Sports, or World), and we will surface sidebar widgets to allow the user to select
whether they’d like to view the full data or a single article, which category they’d like
to explore, and which article they’d like to display within that category:

Define function to select category
@st.cache
def select_category(data, category_option):
 return data.loc[data.class_name==category_option]

Set up sidebar widgets
st.sidebar.header("Parameters")
display_selections = st.sidebar.multiselect(
 "Which data would you like to display?",
 ["Full Data","Single Article"], None)

category_option = st.sidebar.radio(
 'Which category would you like to explore?',
 data.class_name.unique())

article_option = st.sidebar.number_input(
 'Which article would you like to explore?',
 data.loc[data.class_name==category_option].index.min(),
 data.loc[data.class_name==category_option].index.max(),

Our First Streamlit App | 223

https://oreil.ly/blbmj

 data.loc[data.class_name
 ==category_option].index.min())

Notice how we set the widgets using very simple Streamlit functions, such as multise
lect, radio, and number_input. Streamlit makes it easy to modify these widgets and
customize them for your own web app.

Let’s set up the display behavior for the data based on what the user selects:

Set display behavior for data
if "Full Data" in display_selections:
 st.header("Full Data")
 st.write(select_category(data,category_option
 .loc[:,["title","description"]],
 width=1980, height=200)

if "Single Article" in display_selections:
 st.header("Single Article")
 st.subheader("Title")
 st.write(data.loc[article_option,"title"])
 st.subheader("Description")
 st.write(data.loc[article_option,"description"])

Finally, let’s perform NER now using our two spaCy NER models (the base and the
custom model):

Set text
default_text = data.loc[article_option,"description"]

Show NER Results
st.header("NER Results")
base, custom = st.beta_columns(2)

Base spaCy model
with base:
 base_model = spacy_streamlit.load_model("en_core_web_lg")
 doc_base = base_model(default_text)
 ner_labels = ["ORG","PERSON","GPE"]
 show_table = True
 title = "Base SpaCy Model"
 sidebar_title = "Base SpaCy Model"
 spacy_streamlit.visualize_ner(doc_base,
 labels=ner_labels,
 show_table=show_table,
 title=title,
 sidebar_title=sidebar_title)

Custom spaCy model
with custom:
 custom_ner_model = spacy_streamlit.load_model(
 '/content/drive/My Drive/Applied-NLP-in-the-Enterprise/
 models/ag_dataset/ner-base-V3/model-best')
 doc_custom = custom_ner_model(default_text)
 ner_labels = ["ORG","PERSON","GPE","TICKER"]

224 | Chapter 10: Visualization

 show_table = True
 title = "Custom SpaCy Model"
 sidebar_title = "Custom SpaCy Model"
 spacy_streamlit.visualize_ner(doc_custom,
 labels=ner_labels,
 show_table=show_table,
 title=title,
 sidebar_title=sidebar_title)

Notice how we take the user-selected text and apply each of the NER models to it. We
then pass in custom titles to Streamlit and display the results using the Streamlit
function visualize_ner.

This will make much more sense when we deploy the web app in the next section.

Deploy the Streamlit App
Now that we’ve built the Streamlit app for performing NER on the AG News Dataset,
let’s deploy it. To follow along, refer to the notebook in our book’s GitHub repo.

To deploy the app, let’s import our basic libraries and install spacy and spacy-
Streamlit:

Import libraries
'''Main Libraries'''
import numpy as np
import pandas as pd

Install spacy
!pip install -U spacy[cuda100]
!pip install -U spacy-lookups-data
!pip install cupy-cuda100==7.3.0

Download pretrained language model (core model)
!python -m spacy download en_core_web_lg

Install spacy-streamlit
!pip install spacy-streamlit

You will need to restart your runtime after installing spacy-
Streamlit.

Our First Streamlit App | 225

https://github.com/nlpbook/nlpbook

We also need to install Streamlit (of course!) and ngrok to create a tunnel to our web
app from Google Colab:

Install Streamlit
!pip install streamlit

Install ngrok
!pip install pyngrok

Let’s also connect to Google Drive:

Connect to Google Drive
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

Next, we will modify the Streamlit config file to remove automatic displays to the web
app. By default, Streamlit displays data that is written on a standalone line, but we
want to control what data gets displayed instead of showing data unnecessarily.

Let’s define a function to deploy our Streamlit app. This function kills any existing
ngrok tunnels and connects a new ngrok tunnel for our web app. Once the function is
defined, let’s deploy the app by calling the function and passing to it the path to the
Streamlit app we created in the previous section:

Define deploy function
def deploy(path):
 # Kill app
 try:
 ngrok.kill()
 print("All ngrok jobs aborted.")
 except:
 print("No ngrok jobs to kill.")

 # Set app location
 app_location = path

 # Import ngrok
 from pyngrok import ngrok

 # Set up a tunnel to the streamlit port 80
 public_url = ngrok.connect(port='80')
 print(public_url)

!streamlit run $app_location --server.port 80 >/dev/null

Deploy app
deploy('/content/drive/"My Drive"/Applied-NLP-in-the-Enterprise/\
 apps/ner_app_agnews.py')

226 | Chapter 10: Visualization

Once you deploy the app, you should see an output in Google Colab similar to the
following ngrok tunnel:

No ngrok jobs to kill.
NgrokTunnel: "http://b45166a8492f.ngrok.io" -> "http://localhost:80"

Click the first URL (http://b45166a8492f.ngrok.io), and you should see the Streamlit
web app open up in a separate web browser tab. The app should look similar to
Figure 10-1.

Figure 10-1. AG News Dataset NER app

Perfect. We have built and deployed a Streamlit web app for our NER models on the
AG News Dataset.

Explore the Streamlit Web App
Let’s explore this app in more detail. It may be helpful for you to review this web app
alongside the Python script we created in “Build the Streamlit App” on page 222.

As you see on the righthand side of the web app (the main panel), there is a title that
we generated (star AG News Dataset) along with the NER results of our two spaCy
models (the base and the custom).

Our First Streamlit App | 227

http://b45166a8492f.ngrok.io

On the lefthand side of the web app, there is a sidebar panel with the various widgets
we created. The first widget allows you to select whether you wish to view the “Full
Data” or a “Single Article.” You could select one or both. If you select both, you
should see the righthand side of the app load both the full data and a single article
(see Figure 10-2).

Figure 10-2. AG News Dataset sidebar

You could also select the category to explore and the article number on which to per‐
form NER. For instance, if we select “Sports” and “article 457,” the spaCy models will
generate the NER outputs of the following sentence:

KOHLER, Wisconsin (Reuters)—Tiger Woods failed to make the
most of a red-hot start in the U.S. PGA Championship third round on
Saturday, having to settle for a three-under-par 69.

Figure 10-3 shows the results from the web app.

You could also select or deselect the entity labels you’d like to display using the side‐
bar in the web app.

228 | Chapter 10: Visualization

Figure 10-3. Single article

This concludes the exploration of our first Streamlit web app. Next, we will build a
Streamlit web app to perform NER on custom, user-input text rather than on the AG
News Dataset.

Build and Deploy a Streamlit App for Custom NER
Now, instead of performing NER on the AG News Dataset, let’s perform NER on cus‐
tom text that the user enters. We want to show how easy it is to modify the Streamlit
app we built earlier and deploy it using Streamlit. To follow along, refer to the
ch10_build_streamlit_app.ipynb in our book’s GitHub repo.

We will use the same process we used before to build a Streamlit app with slightly
different code. The most significant difference is the following line:

default_text = st.text_area("Enter text to analyze.", heights=500)

We also removed the lines that load the AG News Dataset and allow the user to
explore it:

Our First Streamlit App | 229

https://github.com/nlpbook/nlpbook

%%writefile ner_app_custom.py
Load libraries
import spacy
import streamlit as st
import spacy_streamlit
import numpy as np
import pandas as pd
import random

Set title
st.title(':star: Custom NER')
st.header("Custom Text")
default_text = st.text_area("Enter text to analyze.",
 height=250)

Show NER results
st.header("NER Results")
base, custom = st.beta_columns(2)

Base spaCy model
with base:
 base_model = spacy_streamlit.load_model("en_core_web_lg")
 doc_base = base_model(default_text)
 ner_labels = ["ORG","PERSON","GPE"]
 show_table = True
 title = "Base SpaCy Model"
 sidebar_title = "Base SpaCy Model"
 spacy_streamlit.visualize_ner(doc_base,
 labels=ner_labels,
 show_table=show_table,
 title=title,
 sidebar_title=sidebar_title)

Custom spaCy model
with custom:
 custom_ner_model = spacy_streamlit.load_model(
 '/content/drive/My Drive/Applied-NLP-in-the-Enterprise/
 models/ag_dataset/ner-base-V3/model-best')
 doc_custom = custom_ner_model(default_text)
 ner_labels = ["ORG","PERSON","GPE","TICKER"]
 show_table = True
 title = "Custom SpaCy Model"
 sidebar_title = "Custom SpaCy Model"
 spacy_streamlit.visualize_ner(doc_custom,
 labels=ner_labels,
 show_table=show_table,
 title=title,
 sidebar_title=sidebar_title)

Now, let’s deploy it using the deploy function in our other Google Colab notebook
called ch10_deploy_streamlit_app.ipynb. Remember to kill the web app that is already
running by clicking the stop button in the Google Colab notebook:

230 | Chapter 10: Visualization

Deploy NER App for Custom Text
deploy('/content/drive/"My Drive"/Applied-NLP-in-the-Enterprise/\
 apps/ner_app_agnews.py')

Once you click the ngrok URL, you should see a Streamlit web app screen similar to
the one in Figure 10-4.

Figure 10-4. Custom NER app

Notice that the app provides a blank text box for the user to enter in the text of their
choice. Let’s enter in the following text and see the NER results from our two spaCy
models:

The book you are reading is published by O'Reilly Media and is written by
 Ankur Patel and Ajay Arasanipalai.

Our First Streamlit App | 231

Go ahead and press Ctrl-Enter, and you should see output similar to that in
Figure 10-5.

Figure 10-5. Custom NER app output

Now, let’s build two more Streamlit apps: one for text classification on the AG News
Dataset and one for text classification on custom, user-defined text.

Build and Deploy a Streamlit App for Text Classification on
AG News Dataset
Let’s go back to our notebook and write the code to build a Streamlit app for text clas‐
sification on the AG News Dataset.

Here is the code:

232 | Chapter 10: Visualization

%%writefile textcat_app_agnews.py
Load libraries
import spacy
import streamlit as st
import spacy_streamlit
import numpy as np
import pandas as pd
import random

Set title
st.title(':star: AG News Dataset')

Define function to read data
@st.cache
def read_data(file):
 read_path = '/content/drive/My Drive/Applied-NLP-in-the-Enterprise'
 data = pd.read_csv(read_path+file)
 return data

Read data
data = read_data('/data/ag_dataset/prepared/train_prepared.csv')

Define function to select category
@st.cache
def select_category(data, category_option):
 return data.loc[data.class_name==category_option]

Set up sidebar widgets
st.sidebar.header("Parameters")
display_selections = st.sidebar.multiselect(
 "Which data would you like to display?",
 ["Full Data","Single Article"], None)

category_option = st.sidebar.radio(
 'Which category would you like to explore?',
 data.class_name.unique())

article_option = st.sidebar.number_input(
 'Which article would you like to explore?',
 data.loc[data.class_name==category_option].index.min(),
 data.loc[data.class_name==category_option].index.max(),
 data.loc[data.class_name==category_option].index.min())

Set display behavior for data
if "Full Data" in display_selections:
 st.header("Full Data")
 st.write(select_category(data,category_option)
 .loc[:,["title","description"]],
 width=1980, height=200)

if "Single Article" in display_selections:
 st.header("Single Article")
 st.subheader("Title")

Our First Streamlit App | 233

 st.write(data.loc[article_option,"title"])
 st.subheader("Description")
 st.write(data.loc[article_option,"description"])

Set text
default_text = data.loc[article_option,"description"]

Custom spaCy model
custom_model = spacy_streamlit.load_model(\
'/content/drive/My Drive/Applied-NLP-in-the-Enterprise/\
models/ag_dataset/textcat-prodigy-V3-base-full/model-best')
doc= custom_model(default_text)
title = "Text Classification"
spacy_streamlit.visualize_textcat(doc, title=title)
prediction = max(doc.cats, key=lambda key: doc.cats[key])
confidence = str(np.round(doc.cats[prediction],2))
st.header("Prediction: " + prediction)
st.subheader("Confidence: " + confidence)

Notice that the overall structure is similar to the structure for the first two Streamlit
web apps we built. Walk through the code and, if you have questions, do not hesitate
to reach out to us over Slack, or via email at authors@appliednlpbook.com.

Now, let’s deploy the web app using the ch10_deploy_streamlit_apps.ipynb notebook:

Deploy text classification app for AG News
deploy('/content/drive/"My Drive"/Applied-NLP-in-the-Enterprise/\
 apps/textcat_app_agnews.py')

Once the app is up and running, you should see a screen similar to that in
Figure 10-6.

Figure 10-6. AG News Dataset text classification app

234 | Chapter 10: Visualization

mailto:authors@appliednlpbook.com

Notice that the web app loads our custom spaCy text classification model and applies
it to the AG News Dataset article of our choice. For the first article description, the
model outputs a prediction of “Sci_Tech” with a confidence score of 0.66, which is
wrong. Fortunately, for the second article, the model outputs a prediction of “Busi‐
ness” with a confidence score of 0.78, which is right. You can explore the widgets on
the sidebar panel on your own time; by now, you should have a good feel for how
easy it is to use Streamlit.

Build and Deploy a Streamlit App for Text Classification on
Custom Text
Finally, let’s build and deploy a text classification app on custom text. In the
ch10_build_streamlit_app.ipynb notebook, let’s run the following code:

%%writefile textcat_app_custom.py
Load libraries
import spacy
import streamlit as st
import spacy_streamlit
import numpy as np
import pandas as pd
import random

Set title
st.header(":star: Text Classification")
default_text = st.text_area("Enter text to analyze.")

Custom SpaCy Model
custom_model = spacy_streamlit.load_model(\
'/content/drive/My Drive/Applied-NLP-in-the-Enterprise/\
models/ag_dataset/textcat-prodigy-V3-base-full/model-best')
doc= custom_model(default_text)
title = "Text"
spacy_streamlit.visualize_textcat(doc, title=title)
prediction = max(doc.cats, key=lambda key: doc.cats[key])
confidence = str(np.round(doc.cats[prediction],2))
st.header("Prediction: " + prediction)
st.subheader("Confidence: " + confidence)

This code is considerably simpler since we do not have to load the AG News Dataset.

Let’s now deploy this using the deploy function and app file path in the
ch10_deploy_streamlit_app.ipynb notebook. The web app has a blank text box to start,
but let’s enter the opening paragraph of Elon Musk’s Wikipedia bio and see what pre‐
diction our model generates. The results are shown in Figure 10-7.

Our First Streamlit App | 235

https://oreil.ly/YAdyw

Figure 10-7. Custom text classification app

The model successfully predicts “Business” with nearly 100% confidence.

Congratulations! This concludes our work in Streamlit. You have successfully built
and deployed several Streamlit web apps for our spaCy models.

Conclusion
Visualizations are a powerful, useful, and simple way to present your results to other
humans without bogging them down in technical details and numbers. In this chap‐
ter, we introduced a new tool—Streamlit—that allows you to quickly prototype web
apps to show off your model.

236 | Chapter 10: Visualization

What makes Streamlit so useful to machine learning practitioners is that it allows you
to build cool dashboards and visualizations using only Python. No HTML, CSS, or
design skill required. We demonstrated this by building web apps for:

• NER on the AG News Dataset
• NER on custom text
• Text classification on the AG News Dataset
• Text classification on custom text

All in just one Jupyter Notebook!

In the next chapter, we will explore one of the single best platforms for data science
and machine learning work today: Databricks, the so-called unified data analytics
platform. Databricks is a platform to develop and deploy machine learning models
using any deep learning framework you choose. It leverages cloud infrastructure from
either AWS or Azure (your choice) and offers MLflow to manage the entire machine
learning life cycle. We will use it to deploy machine learning APIs and machine learn‐
ing pipelines, adding two more options for us to productionize machine learning in
addition to the web deployment that we covered in this chapter.

Conclusion | 237

CHAPTER 11

Productionization

The difficulty of the move from prototyping to production is where many companies
fail and is one of the main reasons many companies derive such a low return on
investment on machine learning initiatives they launch. In the previous chapter, we
discussed how to productionize machine learning as a web app. However, the pri‐
mary way for companies to productionize machine learning and truly unlock the
value of these models in a production setting is not via a simple web app; it is via
APIs and automated pipelines, both of which we will cover in this chapter. We will
also discuss the various roles that are involved in deploying, maintaining, and moni‐
toring machine learning models in production, and explore Databricks, one of the
current market-leading platforms to perform data science and machine learning work
in the enterprise.

Data Scientists, Engineers, and Analysts
Before we dive into how to productionize machine learning models, let’s review the
different individuals who will be involved during the entire machine learning devel‐
opment and deployment cycle. Understanding the roles of these individuals and their
preferences for programming language and programming environment is important
because we want to reduce the friction in moving from prototyping models to
deploying them in production; in other words, we need to consider ease of collabora‐
tion to ensure success in running machine learning in production.

239

Prototyping, Deployment, and Maintenance
There are three distinct technical stages in the machine learning cycle: prototyping,
deployment, and ongoing monitoring and maintenance. In the prototyping stage,
data scientists take into consideration the objectives of the business (usually informed
by a product manager) and prepare data, perform feature engineering, choose algo‐
rithms to test, define cost functions, train and evaluate multiple models, and select
the best-performing model as the winner—all of which you are very familiar with.

During this prototyping stage, data engineers may help with some of the extraction,
transform, and load (ETL) work required to consolidate the data from multiple sour‐
ces into one centralized location and make it available to data scientists for machine
learning development. Data analysts may perform data exploration and preparation
to assist the data scientists and may help evaluate the results of the machine learning
models. But, data scientists are largely the primary players during this model devel‐
opment phase, while engineers and analysts perform support roles.

During the model deployment stage, data and machine learning engineers become
the primary players, supported by the data scientists who developed the machine
learning models during the prototyping stage. The engineers typically refactor the
code developed by the data scientists so that the model is performant (i.e., can scale to
large datasets) and robust (i.e., can handle errors and edge cases gracefully). The
engineers also need to position the model in the company’s software architecture so
the model does what it needs to in the larger workflow. These data and ML engineers
are the crucial players in getting models from prototype to production.

Data scientists support the engineers by pair programming, working alongside each
other as the engineers write a more performant, robust version of the data scientist’s
original code. The data scientist explains how the model works and answers any other
questions the engineers may have.

During model deployment, data analysts have a very limited role to play. However,
once the model has been deployed, data analysts take on the primary role of inter‐
preting the model’s outputs and interfacing with the nontechnical consumers of the
model, both internally in the organization and potentially externally with clients.

The data and ML engineers and analysts are also the first line of defense in case the
model behaves poorly. Data and ML engineers will monitor the model to ensure it
has near-100% uptime, is scaling well to large volumes of data, and is generating suc‐
cessful responses instead of errors. Data analysts also help identify when there are
errors in the model’s outputs and flag when the model’s performance deteriorates,
which will happen over time as new data flows through the model that perhaps is not
well-represented by the training data used to develop the model.

240 | Chapter 11: Productionization

1 Recently, many people have been comparing Jupyter Notebooks to the idea of literate programming, a para‐
digm proposed by Donald Knuth, where model code is something to be interpreted first and foremost by
humans, not computers. In literate programming, code is interspersed with its own natural language docu‐
mentation, and parts of it are generated through macros. Don’t you think notebooks embody this idea? Knuth
was way ahead of his time.

If the issues with the model are engineering-related, the engineers will resolve the sit‐
uation themselves. But, if the issues are model-related, the engineers and analysts will
engage the data scientists to dig deeper into why the model is performing poorly. One
common resolution is model retraining: the data scientists will have to periodically
retrain the model on new data that is representative of the data the model is perform‐
ing inference on in production.

Once the data scientists finish retraining the model, the data and ML engineers will
deploy it in production, and the data analysts will interpret the results and confirm
that the model is indeed performing better. And, the cycle goes on.

Notebooks and Scripts
A common point of contention is using Jupyter Notebooks for production work. As a
consequence of history, notebooks have gotten a bad rep for encouraging poor soft‐
ware engineering practices and nonreproducible code. For the most part, a lot of
these concerns have now been mitigated, but it’s still important to think about where
it might be useful to use notebooks versus scripts.

During the prototyping stage, most data scientists develop models in a notebook-
based environment, such as Jupyter Notebook, JupyterLab, IPython, Google Colab,
and even a VS Code extension. Notebook-based environments are great for prototyp‐
ing because you can write short blocks of code and run them immediately using the
Shift-Enter keystroke and see an output right below the block of code you edited.

This has a very surprising and profound impact on developer productivity. It allows
programmers to iterate quickly and run many experiments very fast, which is the key
to success in machine learning. Notebooks, in general, are excellent for fast prototyp‐
ing and experimentation. They really do bring us close to the “code at the speed of
thought” adage.1

However, your “thoughts” may not necessarily have unit tests or PEP compliance, and
they generally don’t need to work with a distributed version control system with fre‐
quent force pushes to main…

Data Scientists, Engineers, and Analysts | 241

So after the data scientists are finished developing the model in these notebook-based
environments, engineers typically refactor the code into scripts, writing functions and
organizing them into classes to make it easier to reproduce results, experiment at
scale, and debug in production.

Data scientists prefer notebooks because it allows them to experiment and iterate
quickly. Engineers prefer scripts because they work with the broader set of tools
required for deployment. Once the models are in production, the data and ML engi‐
neers still need to monitor the models for performance and robustness, and the data
scientists still need to maintain the quality of the model by occasionally retraining it,
so the desire to go back and forth between notebooks and scripts still exists.

Data analysts, who typically interface more with business functions and are less
involved in developing and deploying machine learning models, will need to engage
with the model’s outputs and interpret the results. The needs of these data analysts
will also need to be accommodated.

Companies that want to do machine learning in production need to be aware of these
various roles—data scientists, data and ML engineers, and data analysts—and how to
establish a unified platform for work across all three functions. Note that different
organizations may refer to these roles by different names. There is no standardized
convention, and many times a single person may wear many hats. But at the end of
the day, the crucial tasks can be split into building new models, integrating them into
a production pipeline, and analyzing/interpreting results to produce valuable insights
to the organization.

Databricks: Your Unified Data Analytics Platform
Fortunately there is a platform today that accommodates these varying needs and
makes it easier to push machine learning models into production: Databricks. Data‐
bricks is the industry leader for collaborative data science and machine learning work
for large-scale production use cases today. It accommodates data scientists, data and
ML engineers, and data analysts and supports the entire ML life cycle from model
development to testing and deployment to monitoring and maintenance.

Let’s explore Databricks and use it to deploy one of the machine learning models we
developed earlier in the book.

242 | Chapter 11: Productionization

While there are alternatives to Databricks, such as Amazon Sage‐
Maker and Saturn Cloud (discussed later in the chapter), Data‐
bricks is by far the market leader today for several reasons:

• It has been around the longest, which means that many practi‐
tioners are already familiar with the technology.

• It currently has the most mature offering for organizations,
including the security and compliance features most compa‐
nies will need.

• It is built for big data and continues to innovate on this front;
in fact, the creators of Databricks were the original creators of
the most popular big data processing framework today (Spark,
which we’ll cover in the next section).

We expect the landscape to become more competitive in the com‐
ing years, so spend time exploring alternatives to Databricks, too,
as you advance in your career.

Support for Big Data
When developing machine learning models, many data scientists do not fully con‐
sider how to make them performant on very large datasets or how to handle stream‐
ing use cases (e.g., where data is flowing through the model for real-time inference).
Data scientists typically work on small to medium-sized datasets that are prepared for
model training. But, once in production, these models may need to perform inference
quickly on orders of magnitude larger datasets.

To perform machine learning at scale, it is impractical to use a single machine to per‐
form inference. Rather, many machines are required; these machines, when linked
together for a task, are often referred to as a cluster of machines.

This is also where big data technologies such as Hadoop and Spark come into play.
Hadoop is the original big data technology, starting out as a Yahoo project in 2006.
Hadoop allows users to perform data operations in parallel across many machines in
a cluster and string them back together as an output; this mechanism to farm out data
operations and generate results is known as MapReduce. For example, if a user
wanted to add a scalar to every element in a 10-billion row dataset, the user could use
a 10-machine cluster to perform the task nearly 10 times faster than if the task had
been performed on a single machine.

Spark, the newer big data technology, was developed in 2012 at the AMPLab at UC
Berkeley. It is similar to Hadoop in many ways; Spark processes data in parallel across
a cluster, just like Hadoop. However, Spark performs these data operations in mem‐
ory (also known as RAM), whereas Hadoop reads and writes files to its filesystem for‐
mat (Hadoop Distributed File System, or HDFS), which is on disk.

Databricks: Your Unified Data Analytics Platform | 243

2 For more on Hadoop versus Spark, check out this excellent piece on Logz.io.

While Hadoop is still popular, Spark is the clear winner and rising star in big data.
Spark can run 100 times faster in-memory and 10 times faster on disk compared to
Hadoop. Spark is also much faster on machine learning applications and supports
abstractions that are preferred by data scientists (Spark DataFrames, which are simi‐
lar to Python’s pandas and R packages) and by data analysts (Spark SQL, which is
similar to SQL tables in relational data stores).2

Databricks is built on Spark, and one of Databricks’ cofounders, Matei Zaharia, is also
the founder of Spark. Although Spark is an open source framework and supported by
the Apache Software Foundation, the Databricks version of Spark is a commercially
focused and further optimized instance of Spark and yet another reason Databricks is
the preferred platform for data and machine learning work.

Support for Multiple Programming Languages
One of the major challenges for data scientists, engineers, and analysts is the discon‐
nect in programming languages. Data scientists typically code in Python (and R,
although decreasingly so), data and machine learning engineers prefer Scala or
PySpark (both of which leverage Spark), and data analysts prefer SQL.

Databricks makes it easy to transition from one programming language to another
(from Python to Scala to SQL) and supports a notebook-based environment (which
data scientists typically prefer) as well as scripts, programmatic access, and APIs
(which engineers will need to deploy, monitor, and maintain systems in production
efficiently).

The beauty of this multilanguage approach is that data scientists, engineers, and ana‐
lysts can all work on a single platform. Once the models are developed, Databricks
makes it easy to deploy these models fast; no need to switch from one platform to
another to take a model from prototype to production. Databricks dissolves the
organizational and technological silos that data scientists, engineers, and analysts tra‐
ditionally encounter.

Support for ML Frameworks
Figure 11-1 shows how Databricks describes the challenges and their solutions. The
challenges include the need to support multiple programming languages, multiple
machine learning frameworks, and multiple DevOps tools as well as the need to
reduce friction among teams that are preparing data, building models, and moving
the models into production. And, security and compliance are crucial considerations
for any mature organization.

244 | Chapter 11: Productionization

https://oreil.ly/mf1Uy

Figure 11-1. Databricks platform (courtesy of Databricks)

Databricks’ solution to these challenges is a ready-to-use, optimized, and scalable
machine learning environment with built-in support for the most common data sci‐
ence programming languages and many of the most popular machine learning
frameworks, such as PyTorch, TensorFlow, and Scikit-learn. This environment is
available for use with just a few clicks (after some initial setup), allowing data scien‐
tists to quickly spin up clusters of machines to perform data science and develop
machine learning models and then spin the clusters down once the work is done.
These environments are also customizable, allowing data science and ML teams to
import libraries and run init scripts, as necessary.

Spark also comes with its own Spark-optimized machine learning library, MLlib,
which is available for use on Databricks. MLlib supports the more common machine
learning algorithms such as classification, regression, clustering, and collaborative fil‐
tering, and allows data scientists to develop more performant machine learning
pipelines.

Support for Model Repository, Access Control,
Data Lineage, and Versioning
Finally, Databricks provides the ability to track experiments, register and version
machine learning models, grant access and permissions based on roles, and track how
data flows through the data pipeline. Databricks comes with many of the compliance
features larger enterprises will need as they scale their machine learning operations.

Databricks: Your Unified Data Analytics Platform | 245

https://oreil.ly/iX7SW

To sum up, see Figure 11-2, whiich shows the ML life cycle on Databricks. This figure
shows how data from multiple data sources (e.g., flat files, big data, and streaming
data) flows into Databricks, which has multiple layers to support the work required
(everything from collaborative workspaces, AutoML features, feature engineering
stores, experiment tracking, model registry, model deployment options, and security
and compliance support). The work done on Databricks powers both analytical use
cases such as reports and dashboards as well as operational AI via APIs, batch scor‐
ing, and edge device deployment.

Figure 11-2. Machine learning life cycle (courtesy of Databricks.)

Databricks provides a unified platform for data scientists, engineers, and analysts to
develop and deploy machine learning models at scale, work in multiple programming
languages, access a variety of ML frameworks and libraries with a few clicks, and col‐
laborate on every stage from model prototype to production.

Databricks Setup
With that overview, let us get started with Databricks.

First, let’s register for Databricks. Once you submit your details to register, you
should see a screen similar to the one in Figure 11-3.

246 | Chapter 11: Productionization

https://oreil.ly/iMuq7
https://oreil.ly/NQmX6

Figure 11-3. Register for Databricks

Databricks offers two versions of its product: the full-fledged Databricks Platform,
and the free, lightweight Community Edition. This latter version is a fine one to use
to get started with Databricks; it offers a single cluster with 6 GB of RAM.

However, to support machine learning in production, you will need access to the full-
fledged Databricks Platform. This is what we will use. Databricks leverages cloud
compute from cloud computing giants Azure and AWS; Databricks does not operate
its own cloud computing infrastructure but instead runs its software on top of these
cloud providers.

To proceed with the Databricks Platform, you will need to choose one of the cloud
providers. Both offer comparable prices, so the selection is dependent on your com‐
pany’s choice (or your personal choice, if you are learning how to productionize
machine learning on your own). We will proceed with AWS.

Databricks Setup | 247

You will have to pay for the cloud compute instances you use at
Azure or AWS as well as the Databricks Platform. Both Azure/AWS
and Databricks charge by the hour, and the cost per hour depends
on the size of the cluster you use.

Next, you will receive an email, requiring you to validate your email address and cre‐
ate a new password. Once you are done, you’ll see a page similar to the one shown in
Figure 11-4.

Figure 11-4. Databricks plan

Here you will have to select a Databricks plan type. For more details, visit the Data‐
bricks on AWS pricing page. To get started, we will select the Standard Plan. Note the
rates you will be charged: $0.40/DBU for all-purpose compute and $0.07/DBU for
jobs compute.

The pricing here can become quite complex, but here’s a high-level overview. One
DBU (Databricks unit) is approximately one hour on a standard cloud compute
instance (e.g., a cloud compute EC2 instance on AWS). In other words, if you use
Databricks for one hour on a standard cloud compute instance, you will consume one
DBU.

All-purpose compute is compute associated with code running on an interactive envi‐
ronment such as a notebook, while jobs compute is compute consumed by an auto‐
mated data or machine learning pipeline. Typically, most of the coding data scientists
will do (e.g., in a notebook-based environment) will be classified as all-purpose com‐
pute, while pipelines deployed by data and ML engineers will be classified as jobs

248 | Chapter 11: Productionization

https://oreil.ly/dZML2
https://oreil.ly/dZML2

compute. All else being equal, it is considerably cheaper to consume cloud compute
on Databricks using automated pipelines rather than working in notebooks.

Once you choose Standard Plan and click Select Plan, you will be prompted to enter
your billing details. Next, we will set up AWS access for Databricks. You should see a
page similar to the one shown in Figure 11-5.

Figure 11-5. AWS account settings

To configure AWS access for Databricks, you will need to have access to an AWS
account (or create a new AWS account, if you don’t have one).

For those without an AWS account, you can create one using the AWS account cre‐
ation page. As a new user, you will have 12 months of free-tier access to basic services
such as compute and storage.

Once you have created an AWS account, log in to the account. Now, let’s go back to
the Databricks page and begin linking Databricks to AWS. For detailed step-by-step
instructions on how to perform the configuration, visit the official AWS configura‐
tion page on Databricks.

After you complete the AWS Account Setup, Databricks will have access to your AWS
account. With this access, Databricks will spin up cloud compute clusters (called EC2
instances) on AWS and use the clusters to run code you develop and deploy on
Databricks.

Next, you will be prompted to set up the AWS storage for your account-wide Data‐
bricks assets such as libraries, logs, registered models, etc. Just like before, follow the
official step-by-step instructions to get the storage set up properly.

After you complete the AWS Storage Setup, Databricks will be able to read and write
to cloud storage on AWS (called S3 buckets). The storage access you have just set up
allows Databricks to read and write account-wide Databricks assets to a single S3

Databricks Setup | 249

https://oreil.ly/asqPY
https://oreil.ly/asqPY
https://oreil.ly/O0lZB
https://oreil.ly/O0lZB
https://oreil.ly/OW4mD

bucket (which you created), but does not grant read and write privileges to all of your
S3 buckets on AWS. In other words, if you want Databricks to have access to training
data on S3, for example, you will have to configure read and write access to the S3
bucket with training data later on (which we will cover soon).

Great! Now, your deployment should be active, and you should see a link to your
active Databricks deployment. This should be similar to the link shown in
Figure 11-6. We can now get started with the Databricks Platform.

Figure 11-6. Active deployment

Set Up Access to S3 Bucket
Once you log in to your Databricks deployment, you should see a “Welcome to Data‐
bricks” home page similar to the one shown in Figure 11-7.

250 | Chapter 11: Productionization

Figure 11-7. Welcome to Databricks

To get started quickly, click Explore the Quickstart Tutorial and try importing and
exporting data using the Import & Export Data widgets on the Databricks home page.
You can do this on your own, following the step-by-step instructions provided by
Databricks. Once you’ve finished these tutorials, let’s proceed.

As we mentioned in the previous section, we granted Databricks access to your AWS
account and provided it read and write access to a single S3 bucket. However, Data‐
bricks does not have access to any other S3 buckets. Let’s grant Databricks access to
an S3 bucket that has the training data for the AG News Dataset we introduced in
Chapter 3.

Before we proceed, let’s set up an S3 bucket on AWS with the training data for the AG
News Dataset. First, log into your AWS account. Search for S3 in the search bar at the
top of the page. Once you navigate to the S3 Management Console, click the orange
button that says “Create bucket.” Enter in a bucket name (we named ours nlp-demo,
which you will see us refer to later), select your region, and click the orange “Create
bucket” at the bottom of the page. Within the newly created bucket, create a folder
called ag_dataset, and upload the train_prepared.csv under data → ag_dataset → pre‐
pared folder on our book’s GitHub page to this newly created S3 bucket.

While we are here, let’s also create a folder called models in our bucket and upload the
three models under models → spaCy → packages on this book’s GitHub repository.
We will use these packages (tar.gz files) to install our models on a Databricks cluster
soon.

Let’s return to the instance profiles. AWS identities are known as Identity and Access
Management (IAM) roles, and these roles have permission policies that determine

Databricks Setup | 251

https://oreil.ly/vsIpx
https://github.com/nlpbook/nlpbook

what the identities can and cannot do in AWS. To give Databricks access to additional
S3 buckets, we have to create a new IAM role with the proper S3 privileges.

To make this easier for us, we will use instance profiles. Instance profiles are contain‐
ers for IAM roles that we can pass to EC2 instances we spin up. In other words, when
we spin up a cluster, the instance profile attached to the cluster will dictate the S3
access permissions the EC2 instance will have based on the IAM role the instance
policy contains. To set up an instance profile, use Databricks’ step-by-step guide.

Excellent! Now, you will be able to use instance profiles to access data on S3 directly
from your Databricks notebooks.

Set Up Libraries
Before we spin up an EC2 cluster to begin coding, let’s add libraries to our Databricks
workspace. From the Databricks home page, click Workspace on the lefthand bar (see
Figure 11-8).

Figure 11-8. Workspace

Next, navigate from Workspace to Users to your email address. Create a new folder
called Workspace Libraries.

252 | Chapter 11: Productionization

https://oreil.ly/nI4Vo

In the Workspace Libraries folder, right-click to create a library. You should see a
prompt similar to the one in Figure 11-9.

Figure 11-9. Create library

We need to install spaCy for use in our EC2 cluster. To make spaCy available as a
library to install, click PyPI on the Create Library widget, enter spacy in the Package
search bar, and click Create. If this is successful, you should see “spacy” under Work‐
space Libraries in the Workspace tab.

You can add more libraries using the same widget.

Databricks Setup | 253

Create Cluster
We have now established S3 access using an instance profile and created libraries for
our Workspace. This is where the fun really begins. Let’s now spin up a cluster.

From the Databricks home page, click Clusters on the lefthand bar (see Figure 11-10).

Figure 11-10. Clusters

In the Clusters view, you will see three tabs: All-Purpose Clusters, Job Clusters, and
Pools. We want to create a cluster for use in a notebook, so the All-Purpose Clusters
(which should be the default choice) is the correct selection.

Click the blue Create Cluster button. There are a lot of potential selections available,
but let’s cover the basics. First, enter the Cluster Name. Next, select the Cluster Mode.
The “Standard” Cluster mode is the default choice if you want to leverage multiple
machines in an EC2 cluster (e.g., if you need many machines working simultaneously
to process your data operations). For our small AG News training dataset, we can
select Single Node but, for larger datasets in production, you will want to select Stan‐
dard. Let’s select Standard to demonstrate how to work with large datasets.

254 | Chapter 11: Productionization

3 Note that these rates change all the time.

Next, select the Databricks Runtime Version. These are constantly updated, but let’s
select the latest ML runtime as of January 2021 (7.5 ML). In the Autopilot Options
section, enable autoscaling, autoscaling local storage, and set a termination period (if
the cluster is inactive for this period of time, it will automatically shut off, saving you
from experiencing unnecessary costs for inactive, idle machines).

Next, let’s select the Worker and Driver Types. The driver is the primary node, and it
sends instructions to the worker nodes to execute commands. We can scale the num‐
ber of workers if we want to speed up the time for data operations, which is the magic
of distributed computing and why Spark is really well-suited for machine learning in
large-scale production.

The default number of minimum workers is 2, and the maximum number is 8. Let’s
select an EC2 instance. Since our needs for the AG News Dataset are modest, let’s
select the m4.large Worker Type. The Driver Type is set to the same as the worker.
Note, that this machine has 8 gigabytes of memory and 2 cores and costs 0.4 DBUs
per hour. We will pay 0.4 DBUs × $0.40 per DBU per hour ($0.16 per hour) per EC2
instance.3 In other words, if we want to have 1 driver and 8 workers, we will need to
spin up 9 EC2 instances (with 2 cores per instance), which would cost 9 instances ×
0.4 DBUs × $0.40 per DBU per hour ($1.44 per hour), which is pretty reasonable.

Your configuration for the new cluster should now look similar to the one shown in
Figure 11-11.

Databricks Setup | 255

Figure 11-11. Cluster configuration

Next, let’s set the instance policy for the cluster under Advanced Options. The default
value is None. From the drop-down, select the instance profile you’ve created. In our
case, it is called databricks-nlp-demo (see Figure 11-12).

Figure 11-12. Instance profile

256 | Chapter 11: Productionization

Perfect. Now we are ready to start the cluster. Go ahead and click the blue Create
Cluster button at the top.

Your cluster will take a few minutes to spin up. While it is starting up, let’s go ahead
and install the spacy library. From the Clusters view, navigate to the Libraries tab,
click Install New, select Workspace, navigate to the spacy library you saved, and click
Install. Your navigation pane should look similar to the one shown in Figure 11-13.

Figure 11-13. Install library

If you did this successfully, you should soon see spacy installing on the cluster (see
Figure 11-14).

Figure 11-14. Successful installation

Databricks Setup | 257

Create Notebook
Now, let’s create our first Databricks notebook. Our first Databricks notebook will
create an init script to pip install the spacy libraries we will use, and then we load the
script into the Databricks File System (DBFS). We will add this init script to our clus‐
ter configuration so that the init script will run every time we spin up a cluster. In
other words, the cluster will run the init script (pip installing the spacy libraries we
need), and we will then be able to load the spacy libraries for the NLP work we will
do on Databricks.

DBFS is mounted into a Databricks workspace and available on
Databricks clusters. Think of it as storage mounted onto the cluster
you create. It is storage that persists files even after you terminate a
cluster.

On the navigation pane to the left, click Workspace (shown in Figure 11-8). From the
Workspace, navigate to your user folder and right-click to create a notebook. Let’s
name the notebook “create-init-scripts.” When you open the notebook, attach it to
the cluster you just created. If successful, the top of your notebook should resemble
Figure 11-15.

Figure 11-15. New notebook

Perfect. Let’s write some code now.

First, let’s make a directory for our models on DBFS:

Make directory in DBFS
dbutils.fs.mkdirs("dbfs:/databricks/models/spacy")

Next, let’s copy the model packages we uploaded to S3 to the directory you just cre‐
ated on DBFS:

Copy files from S3 to DBFS
dbutils.fs.cp("s3a://nlp-demo/models/spacy/",
 "dbfs:/databricks/models/spacy/", True)

You can confirm that the files successfully copied over to DBFS using the following
command:

Confirm files in DBFS
display(dbutils.fs.ls("dbfs:/databricks/models/spacy/"))

If successful, you’ll see output similar to the one in Figure 11-16.

258 | Chapter 11: Productionization

Figure 11-16. spaCy models on DBFS

Let’s create a directory for our init script on DBFS, too:

Make directory in DBFS
dbutils.fs.mkdirs("dbfs:/databricks/scripts/")

Finally, let’s create an init script that pip installs the spaCy packages we just uploaded:

Put script in DBFS
dbutils.fs.put("dbfs:/databricks/scripts/spacy_with_models.sh", \
"""pip install /dbfs/databricks/models/spacy/en_core_web_lg-2.3.1.tar.gz \
pip install /dbfs/databricks/models/spacy/en_ner_base_V3-0.0.0.tar.gz \
pip install /dbfs/databricks/models/spacy/\
en_textcat_prodigy_V3_base_full-0.0.0.tar.gz""", True)

Let’s confirm that this init script is now on DBFS:

Confirm file in DBFS
display(dbutils.fs.ls("dbfs:/databricks/scripts/spacy_with_models.sh"))

If successful, you’ll see output similar to the one in Figure 11-17.

Figure 11-17. Init script

Excellent! We have now uploaded the spaCy model packages and an init script to
install these packages to DBFS.

Enable Init Script and Restart Cluster
Now that the spaCy models and init script are ready, let’s go back to the Clusters tab.
Navigate to the cluster you created. Under Advanced Options, navigate to Init Scripts
and copy the path to the init script you uploaded in the previous section. Your init
script path should be similar to the one in Figure 11-18. Click Add to add the init
script to the cluster configuration.

Databricks Setup | 259

Figure 11-18. Adding init script

Let’s now restart the cluster. When the cluster restarts, it will run the init script we
just configured. This init script will pip install the three spaCy model packages we
uploaded in the previous section (recall that we copied these packages from S3 to
DBFS, which will persist the files even after you terminate your cluster). The cluster
will also install the spacy library we configured earlier.

Run Speed Test: Inference on NER Using spaCy
Once the cluster is up and running, we are ready to perform an inference speed test
using our spaCy NER model on the AG News Dataset. We will compare how fast the
spaCy NER model runs on Databricks versus the same model on Google Colab. We
should find the time to perform inference to be considerably shorter on Databricks
compared to Google Colab, highlighting the power of distributed computing and
showcasing how to develop machine learning pipelines in production.

Once the cluster is ready to go, let’s create a new notebook using the Workspace →
Create Notebook flow we went through earlier. We will name this notebook “nlp-
demo-notebook.”

Let’s load the libraries that we will need for our work:

Load libraries
Python
import spacy
import numpy as np
import pandas as pd

PySpark
from pyspark.sql.functions import udf
from pyspark.sql.types import *

Load data into a PySpark DataFrame. You will need to modify the S3 path depending
on your directory structure and directory names on S3:

Load data
inputPath = "s3a://nlp-demo/ag_dataset/prepared/train_prepared.csv" \
 # path to your S3 bucket
df = spark.read.format('csv').options(header='true', inferSchema='true', \
 quote="\"", escape= "\"").load(inputPath)

260 | Chapter 11: Productionization

Although not necessary, we can cache this data in memory using the following
command:

Cache
df.cache()

To confirm that the data loaded properly, we can print the shape of the data:

View shape of data
print((df.count(), len(df.columns)))

Now, we are ready to perform inference using our spaCy model. We will perform
inference using the en_core_web_lg spaCy model, which we already pip installed
using the init script in the previous section.

Before we define the function to apply the spaCy model to our PySpark DataFrame,
let’s define the output schema for the model. For each of the 120,000 article descrip‐
tions in the AG News Dataset, we want to tag each entity in the text with the appro‐
priate entity label. We also want to extract the relevant text and the starting and
ending characters for each entity. In other words, for each of the 120,000 descrip‐
tions, we will generate an array of text, starting character, ending characters, and an
entity label.

Here’s the code to define the schema:

Define schema
schema = ArrayType(StructType([
 StructField("text", StringType(), False),
 StructField("start_char", IntegerType(), False),
 StructField("end_char", IntegerType(), False),
 StructField("label", StringType(), False)
]))

Let’s now define the function to generate the entities per this schema using the spaCy
model:

Define function to get entities
def get_entities(text):
 global nlp
 try:
 doc = nlp(str(text))
 except:
 nlp = spacy.load('en_core_web_lg')
 doc = nlp(str(text))
 return [[e.text, e.start_char, e.end_char, e.label_] for e in doc.ents]

get_entities_udf = udf(get_entities, schema)

The get_entities function should be fairly straightforward and similar to what we
did in Chapter 3. The only difference is that we have to create a user-defined version
of this function (UDF) to apply it to the PySpark DataFrame. We also need to pass
our desired output schema to the UDF.

Databricks Setup | 261

Let’s create a new PySpark DataFrame called documents_df that takes the original
data and applies the spaCy model to generate a new column called “entities”:

Get entities
documents_df = df.withColumn('entities', get_entities_udf('description'))

Spark has lazy execution, so this function won’t execute until we run an action that
requires performing this inference.

To force this inference, let’s write the documents_df PySpark DataFrame as a Parquet
file. This will determine how long it takes Spark to perform inference on our 120,000-
row dataset:

Write parquet
documents_df.write.parquet(\
 "s3a://nlp-demo/ag_dataset/prepared/write_test.parquet", \
 mode="overwrite")

Depending on how large your multi-node cluster is and what node type you selected,
this should take between 5 and 15 minutes to run. It took us less than 7 minutes to
run on a modest cluster of 8 workers and 1 driver using an m4.large instance/node
type.

Let’s now run the same inference in Google Colab and test how long it takes.

First, let’s load the necessary libraries, connect to Google Drive, and install spacy:

Import libraries
'''Main Libraries'''
import numpy as np
import pandas as pd

Connect to Google Drive
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
write_path = '/content/drive/My Drive/Applied-NLP-in-the-Enterprise'

Install spaCy
!pip install -U spacy
!python -m spacy download en_core_web_lg

Now, let’s run a simple code snippet to time how long it takes to run inference using
the same spaCy model on the same 120,000-row AG News training dataset:

Load libraries
import spacy
import numpy as np
import pandas as pd
import time

Start timer
start_time = time.time()

262 | Chapter 11: Productionization

Define function to read data
def read_data(file):
 read_path = '/content/drive/My Drive/Applied-NLP-in-the-Enterprise'
 data = pd.read_csv(read_path+file)
 return data

Read data
data = read_data('/data/ag_dataset/prepared/train_prepared.csv')

Load model
nlp = spacy.load("en_core_web_lg")

Load time
load_time = time.time()
print("Time to load data and model: ", np.round(load_time-start_time,2))

Apply NLP model
data["entities"] = data["description"].apply(lambda x: \
 [(e.text, e.start_char, e.end_char, e.label_) for e in nlp(x).ents])

End timer
end_time = time.time()
print("Time to perform NER: ", np.round(end_time-load_time,2))
print("Total time: ", np.round(time.time()-start_time,2))

Great. This will take a while, but the code should finish in 20 to 30 minutes.

As you can see for yourself, the same model took considerably less time on Data‐
bricks than it did on Google Colab. Speed, however, is only one of the considerations
for deploying machine learning models in production. We also need to have the
means to trigger machine learning models automatically based on events or a sched‐
ule; we cannot rely on running our code snippets in a notebook like we would do
during the model prototyping phase.

Machine Learning Jobs
Now that we’ve finished showcasing the speed of Databricks in running machine
learning models, let’s build a machine learning pipeline on Databricks. We will show
how to trigger the machine learning pipeline based on two mechanisms: (1) a sched‐
ule we set and (2) events.

One of the beautiful things about Databricks is that we can select a notebook to run
as part of a machine learning pipeline. Although it is best practice to create a script to
run your machine learning model in production (with CI/CD, etc.), we can get
started with a simple machine learning pipeline for production with just notebooks.

Machine Learning Jobs | 263

Production Pipeline Notebook
Let’s first create a notebook to run as part of our machine learning pipeline. This will
be very similar to the notebook we created earlier. Click “Workspace,” on the lefthand
tab in Databricks, navigate to the notebooks directory under your name, and create a
new notebook called “nlp-demo-pipeline.”

In this notebook, let’s enter some basic building blocks for the application of our
spaCy model to the AG News Dataset. Let’s load libraries first:

Load libraries
Python
import spacy
import numpy as np
import pandas as pd

PySpark
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType, ArrayType
from pyspark.sql.types import *

Next, let’s load the data. Note that the inputPath is a parameter that we will define
later when we configure our machine learning pipeline job:

Load data
inputPath = getArgument("inputPath", "default")
df = spark.read.format('csv').options(header='true', inferSchema='true', \
 quote="\"", escape= "\"").load(inputPath)

Here’s our schema as before:

Define schema
schema = ArrayType(StructType([
 StructField("text", StringType(), False),
 StructField("start_char", IntegerType(), False),
 StructField("end_char", IntegerType(), False),
 StructField("label", StringType(), False)
]))

Here’s our function to perform inference and retrieve named entities:

Define function to get entities
def get_entities(text):
 global nlp
 try:
 doc = nlp(text)
 except:
 nlp = spacy.load('en_ner_base_V3')
 doc = nlp(text)
 return [[e.text, e.start_char, e.end_char, e.label_] for e in doc.ents]

get_entities_udf = udf(lambda x: get_entities(x), schema)

264 | Chapter 11: Productionization

Next, we apply the function on the “description” column of the AG News Dataset:

Get Entities
documents_df = df.withColumn('entities', get_entities_udf('description'))

Finally, we will write the PySpark DataFrame as a Parquet file. Note that the output
path is also a parameter (similar to the input path), which we will define in the next
section:

Write Parquet
outPath = getArgument("outputPath", "default")
documents_df.write.format("parquet").mode("overwrite").save(outPath)

We are now ready to create a scheduled job.

Scheduled Machine Learning Jobs
From the Databricks home page, click Jobs (see Figure 11-19). From here, click the
Create Job button. Let’s now set up the job details. Enter “NLP Demo” for the job
name. Select the notebook we created before (nlp-demo-pipeline) to apply the spaCy
model to the AG News Dataset and perform inference.

Figure 11-19. Jobs

Under Parameters, click Edit. Let’s now enter the inputPath and outputPath. The
paths should be locations on your S3 bucket where the input data resides (train_pre‐
pared.csv) and where you would like the output file (the Parquet file) to be written,
similar to what is shown in Figure 11-20.

Machine Learning Jobs | 265

Figure 11-20. Set parameters

Under Dependent Libraries, click Add, navigate to the spacy library we added to your
Workspace, and click OK.

For Cluster, click Edit. Here you can define a new cluster configuration for jobs. You
could opt for an existing all-purpose cluster (such as the one we configured earlier),
but it is better to create a new job cluster because, as we discussed earlier, job com‐
pute is considerably cheaper than all-purpose compute on Databricks, $0.07 per DBU
for job compute versus $0.40 for all-purpose compute.

Under Cluster Mode, select either Standard or Single Node; Standard is more expen‐
sive but will be faster. Select 7.5 ML or a more up-to-date ML runtime. Enable
autoscaling and autoscaling local storage. Let’s select the same worker and driver
types as before (m4.large).

Under Advanced Options, we need to select our instance profile under Instance Pro‐
file. We also need to add the init script path under the Init Scripts tab. We did all of
this before for our first cluster configuration, but we have to repeat these steps for our
new cluster configuration.

Once you are ready, click the blue Confirm button at the top.

Finally, click Edit next to schedule the frequency at which you would like the note‐
book to run.

Great job! You’ve now scheduled an automated machine learning pipeline.

If you would rather run the job now, you can click Run Now under Active Runs. Go
ahead and test this out for yourself.

Your runs will automatically generate logs, which you can view at the bottom of the
page (see Figure 11-21).

266 | Chapter 11: Productionization

Figure 11-21. Completed runs

Event-Driven Machine Learning Pipeline
While scheduled machine learning jobs are very helpful for recurring machine learn‐
ing tasks in production, often you will want to have the machine learning jobs trigger
only on events such as new writes to an S3 bucket. Event-driven pipelines are better
to use when you want your machine learning model to run and refresh the outputs as
soon as new data is available for use; otherwise, if you choose a scheduled job, the
machine learning model will not run on new data immediately and will rely on a
schedule instead. There are many instances where you would much rather have an
event-based pipeline than a scheduled process; for example, if you had a news recom‐
mendation app, you would want the app to refresh news recommendations as soon as
news updates were available rather than wait for the scheduled job to run.

Instead of a scheduled job, let’s set up an event-driven machine learning pipeline that
is triggered based on new data hitting an S3 bucket on AWS. To set this up, we will
use an AWS Lambda Function, which will trigger our machine learning job on Data‐
bricks whenever new writes occur to the S3 bucket of our choice.

AWS Lambdas are great because they trigger compute resources only when we need
it, and once the work is done, the compute resources are released.

Let’s set up the Lambda function. Navigate to the Lambda Service on your AWS
account and click the orange Create function button. We will author a function from
scratch so make sure the Author from scratch tab is selected.

Enter a name for your function. We will use Node.js to write the function. Hit the
orange Create function button.

Machine Learning Jobs | 267

https://aws.amazon.com/lambda
https://oreil.ly/V2iN8
https://oreil.ly/V2iN8

In the body of the Function code section, enter in the following snippet. You will need
to modify the script in three places. First, enter in the Job ID from the Jobs tab in
Databricks. This should be the Job ID for the job we created together in the previous
section (see Figure 11-22). Then enter your Databricks URL under Host.

Figure 11-22. Job ID

Third, you will need to secure a personal access token in Databricks and pass this
token to AWS in order to grant AWS access to run the Databricks job. Enter your per‐
sonal access token next to Bearer in the following script:

const https = require("https");

exports.handler = (event, context, callback) => {
 var data = JSON.stringify({
 "job_id": XXX
 });

 var options = {
 host: "XXX-XXXXXXX-XXX.cloud.databricks.com",
 port: 443,
 path: "/api/2.0/jobs/run-now",
 method: "POST",
 // authentication headers
 headers: {
 "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
 "Content-Type": "application/json",
 "Content-Length": Buffer.byteLength(data)
 }
 };

 var request = https.request(options, function(res){
 var body = "";

 res.on("data", function(data) {
 body += data;
 });

 res.on("end", function() {
 console.log(body);
 });

 res.on("error", function(e) {

268 | Chapter 11: Productionization

https://oreil.ly/drg2u

 console.log("Got error: " + e.message);
 });

 });

 request.write(data);
 request.end();
};

Once you are done modifying the script, let’s add a trigger. Under Designer, in the
Lambda Function page, click Add trigger, and then under Trigger configuration,
select S3. Under Bucket, enter the name of the bucket that you would like the Lambda
function to monitor.

We will trigger the Lambda function on all object create events, so you can leave the
Event type as is.

Under Prefix, enter the prefix of the path in the bucket where you would like to drop
the train_prepared.csv file to kick off the Lambda function. We used ag_dataset/
input/ as a prefix. Enter .csv under Suffix, since the file will end in .csv. You don’t
have to enter a suffix, but doing so will prevent your Lambda function from trigger‐
ing erroneously. Finally, click Add at the bottom of the page.

Great, we are almost ready to test the Lambda function.

First, let’s go back to Databricks and modify the inputPath parameter under Parame‐
ters for our Job. You can navigate to this by clicking Jobs on the lefthand pane on
Databricks, selecting the job we created earlier, and clicking Edit next to Parameters.
Make sure the outputPath parameter is set to where you would like the output Par‐
quet to be written.

Now, we are ready to go. To test the Lambda function, upload train_prepared.csv to
the S3 bucket and path you chose for the Lambda function trigger. In our case, this is
<bucket-name>/ag_dataset/input/.

If everything worked successfully, you should see a newly created run under Active
Runs under the Job we created in Databricks (see Figure 11-23). This will take several
minutes to run, but, once the run completes, you should see the output parquet file in
the output path you set under Parameters for the Job.

Figure 11-23. Active runs

Also note that the cluster that gets spun up for this job is a Job Cluster. You can check
this by navigating to Clusters → Job Clusters on Databricks (see Figure 11-24).

Machine Learning Jobs | 269

4 For more, read the introductory blog post on MLflow.

Figure 11-24. Job clusters

Congratulations! You’ve built both a schedule-based and an event-based machine
learning pipeline, and this pipeline can scale to very large datasets in production
using the appropriate cluster configurations on Databricks and AWS.

MLflow
Now that we have showcased Spark’s speed in handling ML operations and deployed
scheduled and batch-based ML pipelines, let’s serve our model as a REST API using
the open source machine learning platform known as MLflow. The creators of Data‐
bricks also created MLflow (in 2018), which is available for use both as a free open
source technology and packaged into the commercial offering at Databricks.4

MLflow helps manage the entire machine learning life cycle, including experiment
tracking, model registry, and deployment. While MLflow is good for individuals, too,
teams are the primary beneficiaries of the capabilities MLflow brings to machine
learning. Teams can collaborate better by reproducing results of their peers and lever‐
aging prior experimentation and modeling others have already done. Since models
are registered at a central repository, MLflow also makes it clear to the members of
the team which models are in production and how to access them.

Before we deploy our model and serve it as a REST API, let’s log and register our
model with MLflow.

Log and Register Model
Instead of our spaCy named entity recognition model, we will log and register the
spaCy text classification model we trained on the AG News Dataset in Chapter 3.
Recall that this model takes in article descriptions and generates a classification pre‐
diction for four classes: Business, Sci_Tech, Sports, and Business. If you need a
refresher, review the relevant sections in Chapter 3.

270 | Chapter 11: Productionization

https://oreil.ly/JQ5d7

5 Visit the official MLflow documentation if you’d like more detail than what is provided here.
6 For more on this command, visit the MLflow documentation for spaCy models.

Let’s get started. From the Databricks home page, create a new notebook under
Workspace called mlflow_spacy_model. Next, go ahead and open the
mlflow_spacy_model notebook.

Make sure you have a cluster up and running; if not, go ahead and
start the cluster we created earlier under the list of available Clus‐
ters and connect your notebook to the cluster. Make sure the clus‐
ter runs with the init script we created earlier.

Let’s load the necessary libraries for MLflow and our spaCy model:

Load libraries
spaCY
import spacy

MLflow
import mlflow
import mlflow.spacy

Load model
nlp = spacy.load("en_textcat_prodigy_V3_base_full")

We can review the metadata for the model to confirm the text classification details:

Print metadata
nlp.meta

The description of this model reads: “Text classification model using AG News Data‐
set training labels.” The model has a textcat_score of 91.774875419.

Let’s now use MLflow to log the model.5 To start the MLflow run, we use the prompt
mlflow.start_run and pass a run_name. Now, we can log parameters for the run,
such as tags for the run (these are key-value pairs such as model_flavor: spacy):

MLflow tracking
with mlflow.start_run(run_name='SpaCy-TextCat-Prodigy-V3-Base-Full'):
 mlflow.set_tag('model_flavor', 'spacy')
 mlflow.spacy.log_model(spacy_model=nlp, artifact_path='model')
 mlflow.log_metric('textcat_score', 91.774875419)
 my_run_id = mlflow.active_run().info.run_id

To log our model, we can use the MLflow command for logging spaCy models; this
command is called mlflow.spacy.log_model.6 We pass to this command our spaCy
model (“nlp”) and the artifact path (“model”). We can also log the accuracy metric

MLflow | 271

https://oreil.ly/4fHIT
https://oreil.ly/LJ8uw

(textcat_score of 91.774875419). Finally, let’s capture the run_id of our active MLflow
run.

Once the code finishes running, click the Experiment tab in the upper righthand cor‐
ner of the page. You should see the Experiment tab open up, and it should display
your run and details similar to what is shown in Figure 11-25.

Figure 11-25. Experiment

Next, click the expand window icon next to the latest run (the icon highlighted by the
red circle in Figure 11-25). This will open a separate window with all of your run
details, including your notes, parameters, metrics, and tags. You should see the metric
you recorded earlier (textcat_score: 91.77 under Metrics) as well as your tag
(model_flavor: spacy under Tags).

Navigate to the bottom of the page and find the Artifacts section. Select “model.” You
should see the details of the MLflow model appear in the righthand section of the
widget, similar to Figure 11-26.

Figure 11-26. Artifacts

Now, click the blue Register Model button in this widget. Yes, it’s that simple. We have
finished loading our model, logging it using MLflow, and registering it to the Models
Repository. Before we proceed, note that you can load the model as a Spark UDF or
as a PyFuncModel using the instructions shown in the widget (see Figure 11-26). In

272 | Chapter 11: Productionization

other words, this model is available for use in your Databricks notebooks, if you
desire.

MLflow Model Serving
Instead of using the model as a Spark UDF, let’s deploy the model and serve it via
REST API. To start, click Models in the lefthand panel on Databricks (see
Figure 11-27).

Figure 11-27. Models

Here, you should see the spaCy text classification model we just registered. It should
have the name “nlp-demo-textcat-prodigy-V3-base-full.” Click the model name, then
click Version 1. Here you can see all the details for this version of the model. These
details are great for collaboration within and across teams at your organization. We
won’t dig into too much of this here, but note the types of details that can be logged
and tracked. For instance, we can change the stage of the model from “None” to
“Staging” to “Production” to help track where in the model testing and model deploy‐
ment cycle we are. Let’s move the model to Staging.

MLflow | 273

7 For more on MLflow model serving on Databricks, visit the official guide.

Now, let’s return to the previous screen. Click the Serving tab, highlighted in red in
Figure 11-28.

Figure 11-28. Serving

In the Serving tab, we have the option to enable serving by clicking on the blue
Enable Serving button. Note that this will launch a single-node cluster.7

Click the button. You will see an amber Pending status, which means the cluster to
perform model serving is starting. This will take several minutes to boot up.

Once the cluster is up, we are ready to test the REST API surfaced by MLflow. There
are three options to call the model: via the browser, cURL, or Python.

Let’s try the browser method first. In the Request box, we need to enter text in a prop‐
erly formatted list such as this (which are also the first 10 article descriptions from
the AG News Dataset):

[
 "Reuters - Short-sellers, Wall Street's dwindling band of ultra-cynics, are
 seeing green again.",
 "Reuters - Private investment firm Carlyle Group, which has a reputation for
 making well-timed and occasionally controversial plays in the defense
 industry, has quietly placed its bets on another part of the market.",
 "Reuters - Soaring crude prices plus worries about the economy and the outlook

274 | Chapter 11: Productionization

https://oreil.ly/fkn4l

 for earnings are expected to hang over the stock market next week during the
 depth of the summer doldrums.",
 "Reuters - Authorities have halted oil export flows from the main pipeline in
 southern Iraq after intelligence showed a rebel militia could strike
 infrastructure, an oil official said on Saturday.",
 "AFP - Tearaway world oil prices, toppling records and straining wallets,
 present a new economic menace barely three months before the US
 presidential elections.",
 "Reuters - Stocks ended slightly higher on Friday but stayed near lows for
 the year as oil prices surged past \\$46 a barrel, offsetting a positive
 outlook from computer maker Dell Inc. (DELL.O)",
 "AP - Assets of the nation's retail money market mutual funds fell by $1.17
 billion in the latest week to $849.98 trillion, the Investment Company
 Institute said Thursday.",
 "USATODAY.com - Retail sales bounced back a bit in July, and new claims for
 jobless benefits fell last week, the government said Thursday, indicating the
 economy is improving from a midsummer slump.",
 "Forbes.com - After earning a PH.D. in Sociology, Danny Bazil Riley started to
 work as the general manager at a commercial real estate firm at an annual base
 salary of $70,000. Soon after, a financial planner stopped by his desk to
 drop off brochures about insurance benefits available through his employer.
 But, at 32, \"buying insurance was the furthest thing from my mind,\"
 says Riley.",
 "NEW YORK (Reuters) - Short-sellers, Wall Street's dwindling band of
 ultra-cynics, are seeing green again.",
 "NEW YORK (Reuters) - Soaring crude prices plus worries about the economy
 and the outlook for earnings are expected to hang over the stock market next
 week during the depth of the summer doldrums."
]

Once you copy this into the Request box and click the blue Send Request button, you
should see the predictions in the “Response” box on the righthand side (see
Figure 11-29).

MLflow | 275

Figure 11-29. Call the model

Here are the responses. Note that for each of the 10 article descriptions we sent, the
model returned predictions for each of the four classes (World, Sci_Tech, Business,
and Sports) as expected:

[
 {
 "predictions": {
 "World": 0.0957181304693222,
 "Sci_Tech": 0.6589348912239075,
 "Business": 0.24223914742469788,
 "Sports": 0.0031078553292900324
 }
 },
 {
 "predictions": {
 "World": 0.002171833999454975,
 "Sci_Tech": 0.21052186191082,

276 | Chapter 11: Productionization

 "Business": 0.7844370007514954,
 "Sports": 0.002869191113859415
 }
 },
 {
 "predictions": {
 "World": 0.003616414498537779,
 "Sci_Tech": 0.0010920974891632795,
 "Business": 0.9949613809585571,
 "Sports": 0.00033012236235663295
 }
 },
 {
 "predictions": {
 "World": 0.8058245182037354,
 "Sci_Tech": 0.0005569260101765394,
 "Business": 0.19326980412006378,
 "Sports": 0.00034875082201324403
 }
 },
 {
 "predictions": {
 "World": 0.2849672734737396,
 "Sci_Tech": 0.007292506285011768,
 "Business": 0.7071781158447266,
 "Sports": 0.0005621095770038664
 }
 },
 {
 "predictions": {
 "World": 0.0023397665936499834,
 "Sci_Tech": 0.00239493977278471,
 "Business": 0.9952585101127625,
 "Sports": 0.000006784629476896953
 }
 },
 {
 "predictions": {
 "World": 0.003856266150251031,
 "Sci_Tech": 0.02379118837416172,
 "Business": 0.9723222255706787,
 "Sports": 0.000030239543775678612
 }
 },
 {
 "predictions": {
 "World": 0.00020332192070782185,
 "Sci_Tech": 0.00014183521852828562,
 "Business": 0.9996367692947388,
 "Sports": 0.00001810084722819738
 }
 },

MLflow | 277

 {
 "predictions": {
 "World": 0.00003446835762588307,
 "Sci_Tech": 0.0063316719606518745,
 "Business": 0.9936137795448303,
 "Sports": 0.000020146884708083235
 }
 },
 {
 "predictions": {
 "World": 0.196404829621315,
 "Sci_Tech": 0.375182181596756,
 "Business": 0.4262356758117676,
 "Sports": 0.002177357906475663
 }
 },
 {
 "predictions": {
 "World": 0.004218680318444967,
 "Sci_Tech": 0.00035350999678485096,
 "Business": 0.99529629945755,
 "Sports": 0.00013148739526513964
 }
 }
]

This is great news. The model served via the REST API works as expected. Now, let’s
send a request via cURL using Google Colab. To follow along, refer to the corre‐
sponding notebook in our book’s GitHub repo.

First, connect to your Google Drive:

Connect to Google Drive
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

To send a request via cURL, let’s prepare a JSON file of the article descriptions. To do
so, load the AG News Dataset:

Load libraries
import numpy as np
import pandas as pd

Define function to read data
def read_data(file):
 read_path = '/content/drive/My Drive/Applied-NLP-in-the-Enterprise'
 data = pd.read_csv(read_path+file)
 return data

Read data
data = read_data('/data/ag_dataset/prepared/train_prepared.csv')

Let’s convert the first 10 descriptions to JSON and save the file:

278 | Chapter 11: Productionization

https://github.com/nlpbook/nlpbook

Convert to JSON
data.loc[:10,"description"].to_json(path_or_buf= \
 '/content/drive/My Drive/Applied-NLP-in-the-Enterprise/data/\
 ag_dataset/prepared/sample.json', orient="records")

Now, we are ready to send the cURL request. On the Databricks page, select the
“Curl” tab under “Call The Model.” You should see a sample cURL request that looks
like this:

curl \
 -u token:$DATABRICKS_TOKEN \
 -H "Content-Type: application/json; format=pandas-records" \
 -d@data.json $MODEL_PATH

To make our cURL request in Colab, we will use a similar format. Note the different
parameters we need to pass in. First, we need to pass in our Databricks token. Sec‐
ond, we need to reference a JSON file. Finally, we need to pass the path to the model,
which is a URL that begins with the URL to your specific Databricks instance.

Let’s go back to Google Colab and submit the cURL request using this format:

Call the Model - CURL
MODEL_VERSION_URI = XXXXXX #the model path
DATABRICKS_TOKEN = XXXXXX #secret access token
JSON_PATH = XXXXXX #path to the JSON we created earlier in Colab

!curl -u token:$DATABRICKS_TOKEN -H \
 "Content-Type: application/json; format=pandas-records" \
 -d@$JSON_PATH $MODEL_VERSION_URI

To send this request successfully, fill in the values for your parameters (MODEL_VER
SION_URI, DATABRICKS_TOKEN, and JSON_PATH). Once you submit the request, you
should see the following response in Google Colab. This is the same response we
received earlier when we sent the request via our browser:

[
 {
 "predictions": {
 "World": 0.0957181304693222,
 "Sci_Tech": 0.6589348912239075,
 "Business": 0.24223914742469788,
 "Sports": 0.0031078553292900324
 }
 },
 {
 "predictions": {
 "World": 0.002171833999454975,
 "Sci_Tech": 0.21052186191082,
 "Business": 0.7844370007514954,
 "Sports": 0.002869191113859415
 }
 },

MLflow | 279

 {
 "predictions": {
 "World": 0.003616414498537779,
 "Sci_Tech": 0.0010920974891632795,
 "Business": 0.9949613809585571,
 "Sports": 0.00033012236235663295
 }
 },
 {
 "predictions": {
 "World": 0.8058245182037354,
 "Sci_Tech": 0.0005569260101765394,
 "Business": 0.19326980412006378,
 "Sports": 0.00034875082201324403
 }
 },
 {
 "predictions": {
 "World": 0.2849672734737396,
 "Sci_Tech": 0.007292506285011768,
 "Business": 0.7071781158447266,
 "Sports": 0.0005621095770038664
 }
 },
 {
 "predictions": {
 "World": 0.0023397665936499834,
 "Sci_Tech": 0.00239493977278471,
 "Business": 0.9952585101127625,
 "Sports": 0.000006784629476896953
 }
 },
 {
 "predictions": {
 "World": 0.003856266150251031,
 "Sci_Tech": 0.02379118837416172,
 "Business": 0.9723222255706787,
 "Sports": 0.000030239543775678612
 }
 },
 {
 "predictions": {
 "World": 0.00020332192070782185,
 "Sci_Tech": 0.00014183521852828562,
 "Business": 0.9996367692947388,
 "Sports": 0.00001810084722819738
 }
 },
 {
 "predictions": {
 "World": 0.00003446835762588307,
 "Sci_Tech": 0.0063316719606518745,

280 | Chapter 11: Productionization

 "Business": 0.9936137795448303,
 "Sports": 0.000020146884708083235
 }
 },
 {
 "predictions": {
 "World": 0.196404829621315,
 "Sci_Tech": 0.375182181596756,
 "Business": 0.4262356758117676,
 "Sports": 0.002177357906475663
 }
 },
 {
 "predictions": {
 "World": 0.004218680318444967,
 "Sci_Tech": 0.00035350999678485096,
 "Business": 0.99529629945755,
 "Sports": 0.00013148739526513964
 }
 }
]

Finally, you can also send a request to the REST API using Python. This is the func‐
tion to call the model:

Define Function to Call the Model in Python
import requests

def score_model(model_uri, databricks_token, data):
 headers = {
 "Authorization": 'Bearer '+ databricks_token,
 "Content-Type": "application/json; format=pandas-records",
 }
 data_json = data if isinstance(data, list) else data.to_list()
 response = requests.request(method='POST', headers=headers,
 url=model_uri, json=data_json)
 if response.status_code != 200:
 raise Exception(f"Request failed with status {response.status_code},
 {response.text}")
 return response.json()

Let’s use the function to return a response:

Score the Model
MODEL_VERSION_URI = XXXXXX # the model path
DATABRICKS_TOKEN = XXXXXX # secret access token

score_model(MODEL_VERSION_URI, DATABRICKS_TOKEN, data.loc[:10,"description"])

Once you enter values for the two parameters (MODEL_VERSION_URI and DATA
BRICKS_TOKEN), you should receive a JSON response that is similar to the responses
we received via the browser and cURL.

MLflow | 281

Congratulations! You just deployed the model and served it via REST API and
accessed it across all three methods (browser, cURL, and Python).

Remember to stop serving the model once you are done; otherwise
the cluster to serve the model will remain up and running, and you
may incur unnecessary Databricks expenses as a result.

This concludes our tour of Databricks. You have seen firsthand the ability of Spark to
help perform machine learning at scale (with larger and larger clusters, as necessary).
You also set up pipelines to perform both scheduled and event-based batch inference.
Finally, you deployed a model using MLflow, served it via REST API, and used the
REST API to perform inference. You now know the basics of productionizing
machine learning models!

Alternatives to Databricks
Although we have spent all of this chapter discussing how to productionize machine
learning models using Databricks, Databricks is not the only major player in town;
there are several other good alternatives. Although we cannot review all of them in
detail, here are the two top alternatives for you to consider.

Instead of using a third-party vendor, you could choose to deploy
Spark on your own, either on prem or in the cloud; it is, after all, an
open source technology. Note that it is a considerable engineering
feat to deploy on premise for an organization, but high data privacy
industries such as finance and healthcare regularly deploy Spark on
prem, so it is certainly an option.

Amazon SageMaker
Amazon’s cloud machine learning platform, SageMaker, integrates nicely with AWS
services. SageMaker allows developers to create, train, and deploy machine learning
models in the cloud, much like Databricks does. SageMaker even supports deploy‐
ment on edge devices and has pretrained ML models that can be deployed as is.
Although not as user friendly (especially to nonengineers) as Databricks, it is one of
the strongest competitors of Databricks today for machine learning model training
and deployment, especially given the dominant market share of AWS in cloud
services.

282 | Chapter 11: Productionization

https://oreil.ly/D3h1J

8 But, if you’re interested to learn more, drop us a note via Slack or our email.

Saturn Cloud
Saturn Cloud is similar in many ways to Databricks; it is a platform for data science
and machine learning that runs on AWS and is built to help you run machine learn‐
ing up to 100x faster. But, instead of running on Spark, it runs on Dask, the open
source distributed Python framework. Dask is very new; it was initially released in
October 2018. Dask is a Python-based alternative to Spark and is gaining a strong fol‐
lowing, especially among developers who want to stay with Python instead of having
to use PySpark or Scala as required for Spark. It is not as mature of an offering and
does not have as much of an adoption as Databricks, but it is worth closely following
and investing some time in.

Other alternatives include Microsoft Azure Machine Learning Studio, the Google
Cloud AI Platform, and up-and-coming MLOps players such as Algorithmia.

Conclusion
In this chapter, we explored how to productionize machine learning models. First, we
established the different roles that are involved in deploying, maintaining, and moni‐
toring machine learning models in production. Data scientists, data and machine
learning engineers, and data analysts are all involved in machine learning work, and
their specific needs (such as programming environment and programming language
of choice) need to be considered when choosing the appropriate platform for your
organization to do machine learning.

The platform that we recommend is Databricks, especially since it is built on top of
Spark, which is the best distributed machine learning technology available today; it is
the optimal choice when doing machine learning at scale. We used Databricks to cre‐
ate both scheduled and event-based machine learning pipelines, and we then used
these pipelines to perform batch inference with our spaCy NER model. We also used
MLflow on Databricks to deploy and serve our spaCy text classification model via a
REST API, and we then tested the REST API using the browser, cURL, and Python.
And, in the previous chapter, we used Streamlit to build and deploy multiple web
apps using our spaCy models.

This concludes our section of productionizing machine learning models; at this point
we’ve covered web apps, APIs, and scheduled and event-based batch pipelines. What
we have not covered is how to perform machine learning on streaming data, which is
beyond the scope of this book.8

Prior to this section, we had developed machine learning models, but we had not
pushed any into production. The push into production is essential to seeing a return

Conclusion | 283

https://www.saturncloud.io
https://dask.org
https://oreil.ly/Qg1Wm
https://oreil.ly/7DLGR
https://oreil.ly/7DLGR
https://algorithmia.com

on investment from all the machine learning research and development you do. We
cannot emphasize this enough: the difficulty of the move from prototyping to pro‐
duction is where many companies fail and is one of the main reasons many compa‐
nies derive such a low return on investment on the machine learning initiatives they
launch. The more you learn how to productionize your machine learning work, the
more value you will be able to deliver to your organization. While we were able to
give you a quick introduction to machine learning production, we sincerely hope you
devote many more hours to learn more. If you would like additional resources or
help, reach out to us.

In the next chapter, we will conclude with 10 final lessons to help you take what
you’ve learned in this book and build NLP applications of your own.

284 | Chapter 11: Productionization

CHAPTER 12

Conclusion

This brings us to the end of our journey together. Over the course of 11 chapters, we
introduced the origins of natural language processing and retraced how the field has
advanced over the past decade. We delved into the nitty-gritty details of the space,
including preprocessing and tokenization and several types of word embeddings,
such Word2Vec, GloVe, and fastText.

We covered everything from vanilla recurrent nets to gated variants such as LSTM
and GRUs. And, we explained how attention mechanisms, contextualized word
embeddings, and Transformers helped shatter previous performance records. Most
importantly, we used large, pretrained language models to perform transfer learning
and fine-tune models and discussed how to productionize the models using various
tools of the trade.

Instead of getting bogged down in theory, we focused mostly on applying state-of-
the-art NLP techniques to solve real-world problems. We hope this helped you build
greater intuition about NLP, how it works, and how to apply it well.

By now it should be clear that getting up and running with NLP is relatively easy,
partly thanks to the open sourcing of large, pretrained language models by research
teams at Google, Facebook, OpenAI, and others. Companies such as spaCy, Hugging
Face, AllenNLP, Amazon, Microsoft, and Google have introduced great tooling for
NLP, too, making it less painful to develop NLP models of your own from scratch or
fine-tune existing models.

285

Ten Final Lessons
But, as we said in the Preface, many organizations today still struggle with developing
and productionizing NLP applications and fail to get a good return on the investment
in time, effort, and money that they make. With this in mind, we want to share with
you some parting advice from hard-learned lessons we’ve experienced along the way.

Lesson 1: Start with Simple Approaches First
While it is tempting to turn to the latest state-of-the-art models to build NLP applica‐
tions and to strive to beat industry benchmarks in performance, it is generally better
to start with simple approaches first. Based on our experience, the newer and the
more complex the modeling approach, the longer it will take to build the application
and push it to production.

This is bad for several reasons:

1. First, it delays the time to tangible impact from any modeling you do. Your orga‐
nization could benefit faster from a simpler model that takes less time to develop
and push to production.

2. Next, a long model development cycle may be demoralizing not only to the
machine learning team but to the leadership team and to the investors that have
backed the machine learning initiatives at your organization. It is best to ship
early and often in the early stages of any machine learning initiative to deliver
quick wins to all interested parties and to show that machine learning can help
the organization, even if the gains are more modest at first.

3. Finally, you learn a lot more about the problem at hand by working on the
machine learning solution end to end. You may also get more real-world intel on
the problem once your simple model is in production and you begin to see how it
performs on live data. You may begin to ask and answer questions such as: what
edge cases did we fail to account for during the development process? Where
does the simple model fail most dramatically? How could we better design the
model given what we know now?

Simple models are not only simpler to develop and deploy, but they are also easier to
interpret than more complex models. For example, a simple NLP model using Light
Gradient Boost Machine (LightGBM) with some NLP-specific feature engineering is
a lot easier to interpret than a more complex neural network-based model. Simple
models also require far less compute resources and time to train, whereas the latest
state-of-the-art models are generally much larger and more compute-intensive.

Of course, the definition of what is simple changes over time. For example, BERT was
state of the art in 2018 and considerably more difficult to use back then than it is
today. Contextualized word representations and Transformer-based pipelines are now

286 | Chapter 12: Conclusion

https://oreil.ly/9xiBY
https://oreil.ly/9xiBY

the norm in NLP model development, too. If you started your model development
with these techniques today, it would be fairly straightforward and simple (but not
necessarily in 2018 when the techniques were first publicly released).

While neural networks are now the norm, there is also room for classical, non-neural,
network-based NLP applications in enterprise, too. To develop classical NLP models,
you will need to perform your own feature engineering using steps such as prepro‐
cessing, tokenization, and vectorization. Sometimes these classical NLP approaches
quickly lead to pretty good results for the problem at hand, whereas the latest neural
networks would take considerably longer.

Even rule-based methods might have a place and should not be shunned in enter‐
prise; not everything has to be model-based. The goal should be to deliver value to
the organization fast and reliably, eventually replacing the stopgap measures with bet‐
ter performing ones. As Voltaire said, perfect is the enemy of good.

Lesson 2: Leverage the Community
This brings us to another reason for starting with simple approaches first. The more
simple approaches today are the ones that have been tried and tested over at least
some reasonable amount of time. They are not purely theoretical and experimental;
rather, they are battle-tested. Tried and tested is better than new and flashy for
applied work.

These approaches have better documentation and fewer bugs, and they support a
larger community of practitioners on sites such as Stack Overflow, which you will be
able to tap into when you run into issues with your model development and deploy‐
ment. These communities are full of helpful tips and suggestions.

There is comfort knowing that others have tried and tested the more simple
approaches you are starting your NLP build with today, so you are unlikely to have to
pave the way for others from scratch. You are going down a well-paved road with
open community support along the way.

Once you have achieved some modest success with the simpler approaches and
deployed your model to production, you will have bought yourself more time, and
you can invest more energy in the more complex and more experimental state-of-
the-art approaches. Even if you run into issues building the more complex model, at
least your organization has a modest-performing model delivering tangible value in
production as a stopgap measure.

This should be your mantra: ship models early and often in the early days to buy
yourself more time to invest in longer R&D cycles. You will get more believers and
champions for your initiatives as you show tangible impact along the way.

Ten Final Lessons | 287

https://stackoverflow.com

Lesson 3: Do Not Create from Scratch, When Possible
Before you invest a substantial amount of time and resources into building a solution
to solve your problem, spend a modest chunk of time and resources exploring open
source or third-party alternatives. Perhaps there is a decent pre-built model available
as an API for your particular problem; why build a model from scratch when you
could cheaply access an existing model?

Even if the open source or third-party solution is not a perfect long-term fit for your
problem, it is generally better to use the solution in the interim since it will deliver
immediate value to your organization while you build the in-house solution for your
organization’s long-term strategic needs.

Do not build what already exists. At the very least, do not start building until you’ve
done the research to evaluate and rule out third-party options. It is very tempting as a
programmer to want to build models and applications from scratch, wholly owning
the process from start to finish. Building from scratch feeds the ego, but the better
option may be to buy what you can from existing players and build only what you
cannot find in the market.

The more generic and universal your problem is (such as receipt extraction), the
more likely that a decent solution already exists for you to buy. The more custom and
specific your problem is, the more likely that you will have to build in-house. Choose
wisely what to spend your time working on.

Lesson 4: Intuition and Experience Trounces Theory
Our stance here remains consistent throughout the book: get your hands dirty fast
with code and data if you want to advance in the field quickly. While it is certainly
important to learn the theory, it is not where you should spend the majority of your
time as an applied NLP practitioner.

Theory is most vital for researchers that want to build on top of the work of prior
researchers and develop newer state-of-the-art approaches. But, if your goal is to
deliver tangible value to your organization fast, it’s best to start working with code
and data as early as you can.

Our recommendation is for you to start with applied books such as this one (kudos to
an excellent start already!) and software that have wrappers that allow you to easily
work with large, pretrained language models. Our favorite places to start include
spaCy, Hugging Face, and fast.ai, all of which we have explored in this book.

These companies have toy datasets and starter code to help you advance in your NLP
journey fast. All three players, like us, favor intuition over theory and are biased
toward action. Of the three, fast.ai has the best course materials and will help you
build more of your foundational knowledge of NLP. spaCy and Hugging Face are

288 | Chapter 12: Conclusion

better to explore once you have worked your way through several toy datasets and are
ready to transition to performing NLP on larger datasets.

Even if you are a seasoned vet, you will likely need a resource to absorb the latest
advances in NLP since the field is constantly changing; fast.ai is the place to go to
make this continuing education as painless as possible. Afterward, you can turn to
the official blog posts, research papers on arXiv, third-party blog posts, Medium, You‐
Tube, and other resources.

One last caveat: while we recommend that you start on toy datasets if you are new to
NLP, it is critical that you transition to a real-world project before long. Working on a
real-world problem (and all the other issues that come from working with data in the
wild) will really push you to develop as an applied practitioner in a way that working
on toy datasets simply won’t.

Lesson 5: Fight Decision Fatigue
As a newcomer to NLP, it is easy to succumb to decision indecision, especially when
choosing among all the various tools of the trade that we explored in Chapter 9. Do
not succumb; fight the urge. We recommend starting simply and being biased toward
action, as always.

Start with fast.ai as a resource. Choose one of the two main frameworks; we recom‐
mend PyTorch if you are new to machine learning. Begin coding on Google Colab or
on your local environment. Do not worry about all the different cloud compute pro‐
viders or experiment tracking or productionizing models just yet. All of this can
come later with experience and practice. The main goal is getting started as fast and
painlessly as possible.

Lesson 6: Data Is King
While we have spent the majority of the book discussing how to develop and produc‐
tionize NLP models, what makes or breaks performance on many applied use cases is
not the modeling approach, but rather the quality and quantity of data you have
available to train the model. The more data, the better.

It is best to leverage publicly available datasets for your problem, where possible. You
may also find datasets available for purchase online. But, to develop a truly perform‐
ant model, you will likely need to build first-party data capture into your application
so that you control the data off of which you build models. At the very least, you will
likely need to have a partnership with a player that has great data capture.

Once you have data, annotations are vital. You could perform the annotation your‐
self, which we recommend you do initially to get started fast and to learn more about
how to annotate the data well. Or you could hire an annotation firm, such as Appen
or Scale AI. You could also hire low-cost labor through firms such as Invisible

Ten Final Lessons | 289

Technologies or Odetta to perform the annotation. Amazon Mechanical Turk is also a
good option, but requires more hands-on oversight than the other annotation
companies.

There is good off-the-shelf and open source annotation software to perform the
annotations, including Prodigy, which we explored in Chapter 3. However, to have
the highest-quality annotations, you may need your organization to build a custom
annotation UI. But again, start with off-the-shelf third-party tools, where possible.
Don’t build from scratch unless you absolutely need to.

Lesson 7: Lean on Humans
When developing an ML-based product, you will need to leverage humans in the
loop to handle edge cases that the model fails on and to perform active learning,
which is the process of having humans annotate data points where the model per‐
forms poorly. Without the human in the loop, even if your NLP application is 90%
good, it may not be ready for production because your users demand more than 99%
accuracy. To deliver this accuracy to your users, you can leverage the humans in the
loop to deal with the 10% of cases in which your model performs poorly. AI is not
magic. For AI to be production ready, you will likely need to pair it with humans, at
least initially.

More generally, build fault-tolerant experiences for your users when building NLP
applications. Your model will fail in ways that you may never have anticipated, and,
unless your application gracefully handles the failure, the model’s failures may frus‐
trate or anger your users. For example, Google Assistant asks users to confirm a ques‐
tion that is being asked when Google is not sure, and Google responds with a “I’m not
sure I can help with you that” when it is truly befuddled. This softens the poor experi‐
ence for the user.

Lesson 8: Pair Yourself with Really Great Engineers
If your strongest skill set is in developing NLP models, pair yourself with really great
engineers to help you more robustly and easily productionize your NLP models.
Great engineers will bring much needed systems thinking to your NLP pipeline,
designing tests, managing MLOps, and more. In general, pair yourself with others
who complement your particular skill sets best because you will not be able to master
everything on your own.

Lesson 9: Ensemble
Ensembling is the closest thing to a free lunch in machine learning. Once you have a
good model in production, design more models to complement what you have and
include all the models together in an ensemble. To the extent the models have simi‐
larly good performance but uncorrelated errors, the ensemble will outperform any of

290 | Chapter 12: Conclusion

the standalone models in the ensemble. It’s one of the easiest ways to improve the
overall performance of your application in the enterprise.

Lesson 10: Have Fun
This brings us to our very final piece of advice: have fun and enjoy the journey you
are on. NLP is hard, and the path to mastery is long. Much like neural nets learn layer
by layer to solve pretty complex problems, you will learn how to master NLP a step at
a time. Just be patient, start simple, and, most importantly, celebrate the small wins
along the way. The more you allow yourself to experience joy, the greater the sense of
flow you will experience and the faster you will become a true master of NLP.

Final Word
With that, we truly thank you for taking the time to read our book and to share a bit
of your journey with us.

Please stay tuned for more content at https://www.appliednlpbook.com, and we hope
to see you again soon!

Final Word | 291

https://www.appliednlpbook.com

APPENDIX A

Scaling

As we’ve mentioned several times in this book, large language models have had a big
impact on the field of NLP, and current trends suggest that this isn’t going to stop any
time soon, as Figure A-1 suggests.

Figure A-1. Language model growth trend

The great thing about this, even if you’re not particularly enthusiastic about training a
large model yourself, is that most researchers are generally interested in open sourc‐
ing their code and releasing the trained model weights as well. Better language mod‐
els trained on larger datasets for longer means that you, the developer building NLP

293

1 Not accounting for the cost of running a larger model, of course…

applications, has a stronger baseline to work off of. It’s almost like a free performance
boost!1

Because of this rapid progress and general interest in open sourcing the best models,
we generally wouldn’t recommend training your own large language model from
scratch. It is often counterproductive when many researchers have spents years of
GPU time optimizing a specific language model on an existing large dataset. Our very
first lesson in Chapter 2 was that being prudent with fine-tuning can reap huge
rewards. In practice, you always want to use transfer learning wherever you can.

However, if you do have the luxury of being able to access large amounts of compute,
there are some things you should know about scaling your model training to ensure
optimal performance.

Multi-GPU Training
If you have multiple GPUs accessible from the same machine (typically found in
high-end workstations, academic compute clusters, and AWS p3.XLarge instances),
setting your network to use them is fairly straightforward in PyTorch.

All you have to do is wrap your model in an nn.DataParallel class, and PyTorch
automatically takes care of the multi-GPU complexity for you:

from torch import nn

model = nn.Transformer()
model = nn.DataParallel(model)

One small, somewhat annoying detail with this is that if you plan to
then use the exported weight of your model, the keys in the state
dict will all have a pesky model. prefix in front of them that you’ll
need to remove manually. (There are also scripts to do this auto‐
matically, which you can find online.) Various PyTorch users also
have suggestions on the forums. This might save you a lot of trou‐
ble. Thank us later!

Distributed Training
Most workstations and data centers have some fundamental hardware limitation that
makes it impractical to scale above a fixed upper bound on the number of GPUs.
More often than not, that number is 8. The reality is that CPUs have a fixed number
of PCIe lanes, which limits the number of GPUs it can connect to simultaneously.

294 | Appendix A: Scaling

Apart from this, there are other hardware constraints, such as size, availability, power
consumption, and cooling.

Most practitioners shouldn’t face this challenge. You should always try to avoid using
extra hardware to solve your problems. Even if your model becomes unreasonably
large, you can often decrease the batch size accordingly, to a point where everything
fits on the GPUs that you can fit into a single machine. But if you ever find yourself in
a situation where scaling across multiple compute nodes is the simplest path forward,
PyTorch has the tools to accommodate that.

The language surrounding distributed training is intentionally a bit abstract. We say
“node” instead of “process,” “computer,” “GPU,” or “cluster” because, technically, a
node can be any of these!

The key idea with distributed training is that you can scale your computations across
multiple things that can compute, whether that’s multiple GPUs on a single machine,
data centers communicating with each other over a high-bandwidth network, or
maybe even a completely decentralized collection of low-powered, independent com‐
puters. The challenges with all of these are the same:

• How do you communicate information like gradients, loss, etc., efficiently across
nodes?

• How can you minimize the amount of expensive message passing between
nodes?

• What happens if one of your nodes fails? Do you end training and lose all pro‐
gress, or find some way to continue?

• Do you split your model weights across multiple nodes, or do you split your
batches?

• How do the training dynamics of your model change at very large batch sizes?

If there is a silver lining to the complexity of distributed training, it’s that many peo‐
ple have already done it before. Distributed training is a very common practice at
most research labs where researchers often train on the largest academic datasets rou‐
tinely to benchmark new ideas. More generally, the paradigm of distributed systems
is something that’s very important outside of deep learning—scaling databases across
regions for high availability and fault tolerance is one example.

Because of the demand, there are now tools you can use to simplify distributed train‐
ing, and the entire process is relatively straightforward. One setup that is particularly
powerful is Docker and PyTorch distributed.

Scaling | 295

What Makes Deep Training Fast?
Contrary to popular belief, splurging on the latest Nvidia GPUs isn’t always the
smartest thing to do if you want to speed up and scale your training jobs. In practice,
there’s a lot you can do in just software, and GPUs are not the only component of
your computer that is used during training.

But let’s assume that you’ve done everything you possibly can to make the most effi‐
cient gains in PyTorch or a higher-level library. You’re confident that you have the
perfect model, the perfect amount of data, the perfect hyperparameters, and so on. Is
there anything else you can do?

The answer is yes. There are a number of small improvements that you can imple‐
ment in your training pipeline to speed things up. Here are some suggestions:

GPU preprocessing
Try to move as many preprocessing steps onto the GPU as possible. This allows
you to apply transformations to batches in parallel. Many codebases we’ve seen
still use CPU transformations when it could easily work on the GPU. Look for
libraries to help with this.

Use archives
Use HDF files if you have a very large number of small files in your dataset. If
your training loop involves reading a large number of files very quickly, your I/O
performance can also become a bottleneck. HDF files are a format that allows
you to archive a lot of data into a single file. This means that your system doesn’t
waste time acquiring a lock for every new piece of data it has to load.

Mixed-precision training
Mixed-precision training is a great way to speed up training, and it doesn’t even
require too many changes to your codebase. Implementations differ from frame‐
work to framework, but the general idea is that you use a lower floating-point
precision for some steps during training. Nvidia’s most recent GPUs also include
“Tensor Cores” that are explicitly designed to make these lower-precision matrix
multiplications faster.

Eliminate native Python code
Try to remove Python control flow from your code and use libraries like PyTorch
and NumPy instead. These libraries use much faster, fine-tuned implementations
of different functions. Whenever you can avoid writing something from scratch,
it’s usually a good idea to do so.

Use a faster language/framework
Finally, no matter what libraries you use, interfacing with Python is still, unfortu‐
nately, a bottleneck. Python was a language designed to be easy to use first and
foremost. Performance has always been a second-class citizen. Many people in

296 | Appendix A: Scaling

the community have realized this, and there are now efforts to develop new pro‐
gramming languages and compilers that help speed up general-purpose tensor
computation like the type we do in PyTorch. Julia is the most prominent and
fastest-developing example of this.

Implementing many of these sounds like a lot of busy work, and it
probably is. But thankfully, the fastai library implements almost
all of them by default. This is one of the reasons we recommend it
so highly—it allows researchers to quickly implement new ideas
and iterate fast and abstract away all the engineering effort that’s
not related to deep learning.

Scaling | 297

APPENDIX B

CUDA

Throughout the book, we’ve mostly been using PyTorch or tools built on top of it,
such as fastai and Hugging Face transformers. When we first introduced it in this
book, we pitched PyTorch as a low-level framework, where you build architectures
and write training loops “from scratch” using your knowledge of linear algebra.

But PyTorch may not be the lowest level of abstraction you deal with in machine
learning.

PyTorch itself is written in C++, to which the CUDA language is an extension. CUDA
is self-described as a “programming model” that allows you to write code for Nvidia
GPUs. When writing your C++ code, you include certain functions called “CUDA
kernels” that perform a portion of the work on the GPU.

Who’s That Pokémon? CUDA Kernels

A kernel is a function that is compiled for and designed to run on
special accelerator hardware like GPUs (graphics processing units),
FPGAs (field-programmable gate arrays), and ASICs (application-
specific integrated circuits). They are generally written by engi‐
neers who are very familiar with the hardware architecture, and are
extensively tuned to perform a single task very well, such as matrix
multiplication or convolution. CUDA kernels are kernels run on
devices that use CUDA—Nvidia’s GPUs and accelerators.

PyTorch and many other deep learning frameworks use a handful of CUDA kernels
to implement their backend, and then build a higher-level interface to a language like
Python. This allows you to run super-fast, hand-tuned code on specialized hardware
that experts have spent years optimizing without having to think about memory,
pointers, threads, etc.

299

1 PyTorch recently added support for this, so it might be a great option to keep your eye on in the near future!

There are many other similar platforms, like AMS’s ROCm,1 SYCL (an open source
alternative from the Khronos Group), and, with AI hardware startups showing up in
every nook and corner, many more.

But CUDA is, by far, the most mature and well-developed GPU programming inter‐
face available today. In fact, it’s mostly the reason that we’re all forced to use Nvidia’s
GPUs—its software stack is just so much better than everyone else’s, which makes it
easier to develop libraries like PyTorch on top of it.

Unless you have the bandwidth, it’s not always a great idea to look for kernel-level
improvements. This is probably very low on the list of things you should do if your
focus is on deploying an NLP application using existing tools and technology.

But…it is useful to understand how such a critical component of the infrastructure
that powers deep learning today works, and it’s certainly interesting and fun. An
understanding of some of the ideas in CUDA may also help you debug obscure errors
in your deep learning framework, and can help you make more informed purchasing
decisions for hardware.

Threads and Thread Blocks
The fundamental atom of CUDA is the thread. A thread represents a single unit of
execution of a computation. Every instruction that runs in a single thread will be exe‐
cuted sequentially. To get massive parallelism, CUDA devices usually have a lot of
threads, which all run independently.

Crucially, communication between threads is hard (even on regular CPUs), and so we
try to avoid this as much as possible. If you don’t believe this, try to get a hundred
people to agree on whether or not pineapples belong on pizza. It’s hard, which is why
CUDA attempts to sidestep the problem to a large degree, and is much better suited
for problems that are embarrassingly parallel.

Yes, “embarrassingly parallel” is a somewhat widely accepted tech‐
nical term that you’ll likely hear in a few situations. In general, it
means that the problem you’re trying to solve is composed of mul‐
tiple smaller tasks that don’t depend on each other. This is true in
deep learning, where we have natural parallelism across hyperpara‐
meter sets, samples in a training batch, and even across tokens in a
sequence for transformers.

Threads in CUDA are arranged into what are called blocks, which are themselves
arranged into grids.

300 | Appendix B: CUDA

2 The technical term is “launch” a CUDA kernel.

Writing CUDA Kernels
Before you start writing your own CUDA kernel, it’s a good idea to gain familiarity
with C/C++ and some of the ideas that are common in low-level programming lan‐
guages, such as the memory model, pointers, and static types.

CUDA kernels are interleaved with C++ code, and are implemented as functions with
the special __global__ decorator. Here’s an example of a kernel that adds two vectors:

__global__ void add(int n, float* a, float *b, float *b)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < n) c[i] = a[i] + b[i];
}

Some of these constructs might seem a little strange and new, especially if you’re com‐
ing from just Python. But the main logic here is intuitive: c[i] = a[i] + b[i] isn’t
very different from what you’d write in Python. Given this information, how would
you modify this kernel to do an element-wise multiplication instead?

The answer is probably what you’d expect:

__global__ void mul(int n, float* a, float *b, float *b)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < n) c[i] = a[i] * b[i];
}

That seems simple enough! Time to write an ultra-parallelized operating system?
Unfortunately, no.

There are other things you need in your code to run CUDA kernels.2 The kernel code
itself, marked with the __global__ keyword, is run on the GPU, but we still need to
have something that instructs the CPU to invoke or launch the kernel with the right
data.

A lot of this code is boilerplate, and you’ll see it repeated again and again. But such is
the case with low-level code that aims to provide fine-tuned access to hardware.

First, we should initialize the vectors (arrays) we want to add:

 N = 256
 for (int i = 0; i < N; i++) {
 a[i] = 1.0f;
 b[i] = 2.0f;
 }

CUDA | 301

Since a and b are on the CPU, we need to move them to the GPU. This is done
through cudaMemcpyHostToDevice:

 cudaMemcpy(d_a, a, N*sizeof(float), cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, N*sizeof(float), cudaMemcpyHostToDevice);

After we finish the computation, we’ll need to fetch our result back from the GPU.
This is done with cudaMemcpyDeviceToHost:

 cudaMemcpy(c, d_c, N*sizeof(float), cudaMemcpyDeviceToHost);

To actually launch the kernel (which is the equivalent of a function call from the CPU
to GPU), we use a kernel launch:

add<<<(N+255)/256, 256>>>(N, d_a, d_b, d_c);

The things inside the funky-looking triple angle brackets are called launch parame‐
ters. We won’t be going too much into what they mean, but the short version is that
they tell the GPU how many threads to use. Tuning these parameters can lead to big
differences in the final performance of your kernel.

Putting it all together with a few memory allocations and frees, your final code
might look something like this:

__global__ void add(int n, float* a, float *b, float *c)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < n) c[i] = a[i] + b[i];
}

int main(void)
{
 int N = 1<<20;
 float *a, *b, *c, *d_a, *d_b, *d_c;
 a = (float*)malloc(N*sizeof(float));
 b = (float*)malloc(N*sizeof(float));
 c = (float*)malloc(N*sizeof(float));

 cudaMalloc(&d_a, N*sizeof(float));
 cudaMalloc(&d_b, N*sizeof(float));
 cudaMalloc(&d_c, N*sizeof(float));

 for (int i = 0; i < N; i++) {
 a[i] = 1.0f;
 b[i] = 2.0f;
 c[i] = 0.0f;
 }

 cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
 cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

 add<<<(N+255)/256, 256>>>(N, d_a, d_b, d_c);

302 | Appendix B: CUDA

 cudaMemcpy(c, d_c, N*sizeof(float), cudaMemcpyDeviceToHost);

 cudaFree(d_x);
 cudaFree(d_y);
 free(x);
 free(y);
}

Finally, you can compile your kernel by invoking nvcc, the Nvidia CUDA compiler.
The syntax is similar to compiling C code with gcc or clang:

nvcc -o kernel kernel.cu

CUDA in Practice
Writing CUDA kernels, profiling them, and tweaking your code can be fun, but you
don’t always need to work at this level of abstraction to extract the benefits of CUDA.
The examples we showed you are much simpler than the CUDA code that is currently
deployed in the real world.

In Python, when we want to do matrix multiplication, we look up the docs. Maybe
there are a few syntax variations, like a.matmul(b), matmul(a, b), and a@b, but that’s
about it. We generally don’t give these methods too much thought.

CUDA is on an entirely different plane of existence. There are multiple competing
matrix multiplication algorithms, with complex heuristics for deciding which kernel
to call in which scenarios. The implementation of matrix multiplication that’s used
can vary significantly depending on the shape of the matrices, memory bandwidth,
and other hardware-specific details.

Thankfully, there’s a slightly better abstraction layer for general-purpose GPU code:
CUDA libraries. This includes cuFFT, cuDNN, cuSPARE, and more. The CUDA libraries
contain highly optimized implementations of the most common algorithms you
might want to run on a GPU, like convolution, Fourier transforms, matrix multiplica‐
tion, and more.

There’s also the PyTorch C++ library, libtorch, which provides even higher-level
primitives like torch::Tensor. PyTorch C++ code looks surprisingly similar to
PyTorch code in Python. Here’s an example of a layer from the official guide to cus‐
tom extensions that the PyTorch documentation refers to as long long-term memory
(LLTM):

#include <vector>

std::vector<at::Tensor> lltm_forward(
 torch::Tensor input,
 torch::Tensor weights,
 torch::Tensor bias,
 torch::Tensor old_h,

CUDA | 303

https://oreil.ly/IEdxH

 torch::Tensor old_cell) {
 auto X = torch::cat({old_h, input}, /*dim=*/1);

 auto gate_weights = torch::addmm(bias, X, weights.transpose(0, 1));
 auto gates = gate_weights.chunk(3, /*dim=*/1);

 auto input_gate = torch::sigmoid(gates[0]);
 auto output_gate = torch::sigmoid(gates[1]);
 auto candidate_cell = torch::elu(gates[2], /*alpha=*/1.0);

 auto new_cell = old_cell + candidate_cell * input_gate;
 auto new_h = torch::tanh(new_cell) * output_gate;

 return {new_h,
 new_cell,
 input_gate,
 output_gate,
 candidate_cell,
 X,
 gate_weights};
}

This is still much higher-level than the pointer manipulation you’ll do in CUDA, but
it can actually be very useful if you need to implement a new custom layer and find
that cobbling up Python code incurs a significant performance penalty. The act of
simply writing your layers with libtorch, linking into Python, and using that instead
can produce a noticeable speed improvement, and this is an optimization that may
definitely be worth your time.

If you want take the first steps toward writing low-level GPU code in practice, but
don’t want to burn your precious hours trying to figure out what the most efficient
access pattern is for a half-precision Fourier transform in shared memory, CUDA
libraries and libtorch are wonderful tools that you can use as you craft your next
NLP creation.

304 | Appendix B: CUDA

Index

A
access control, Databricks, 245
adaptive attention span, 162
AG News Dataset, 63-67

spaCy model, 69-71
Streamlit app

custom NER, 229-232
text classification, 232-235

AI (artificial intelligence), 3
Turing test, 8

algorithms
computational complexity, 154
subword tokenization, 101

alignment scores, dot product attention, 158
all-attention layer, 164-166
AllenNLP, 14, 285

ELMo, 194
ALPAC (Automatic Language Processing Advi‐

sory Committee), 8
AlphaStar, 132
Amazon Alexa, 10
Amazon Mechanical Turk, 290
Amazon SageMaker, 217, 282
AMPLab at UC Berkeley, 243
Angular, 221
API (application programming interface)

fastai, 37-42
Appen, 208, 289
Apple Siri, 10
arrays versus vectors, 112
ASCII table, 108
attention mechanisms

adaptive attention span, 162
computational cost, 162

deep neural networks, 153-170
dot product attention, 154-159

scaled dot product attention, 159-160
GRUs (Gated Recurrent Units) and, 188-190
information router, 153
LSTM (long short-term memory) and,

188-190
masking functions, 163
Multi-Head Self-Attention, 160-162
product-key memory, 167-170
self-attention, all-attention layer, 164-166
visualization, 170

attention weights, dot product attention, 156
audio generation, 7
autograd, 202, 204
AutoML, 209

Dataiki, 210
DataRobot, 211
H20.ai, 210

AWD LSTM
fastai, 39
transfer learning, 39

AWS (Amazon Web Services), 217
account setup, 249
Databricks and, 249
S3 buckets, 249

Azure Machine Learning, 218

B
BERT (Bidirectional Encoder Representations

from Transformers), 10, 117, 190
open sourcing, 194
pretrained language models, 179
tokenizers and, 98

305

BERTology, 173, 195
bidirectional RNN, 143-144
big data, 243

Hadoop and, 243
Spark, 243

Big Oh notation, computational complexity,
154

BLEU, 62
BPE (byte-pair encoding), 102, 116

C
C, tokenization and, 104
Caffe, 201
causal language modeling, 61
CBOW (continuous bag of words), 177
Chainer, 201
Charizard, 157
chatbots, 6
chunking, 15

spacy, 27
CI/CD (Continuous Integration/Continuous

Delivery), 219
classical machine learning, 11
cloud computing

Colab (Google), 213
FloydHub, 213
Google Cloud AutoML, 218
Lambda GPU Cloud, 214
Paperspace, 212

clusters, Databricks, 254-257
CNN (convolutional neural network), 131
CODA

kernels, launch parameters, 302
matrix multiplication, 303

codebase, 219, 296
Colab (Google), 17, 213, 241, 262
Comet, 208
comma.ai, 132
community support, 287
computational complexity, 154
computational cost, attention mechanisms, 162
computer vision

ImageNet, 173
tasks, 170

conda environment, 72, 76
context, Word2Vec, 115
context-aware word representation, 179
Core ML, 216
CPU tokenizers, 103

CrowdFlower, 208
CTRL, 167
CUDA, 95, 299

device setup, 118
kernels, 299

boilerplate code, 301
writing, 301-303

libraries, 303
thread blocks, 300
threads, 300

D
Dask, 283
Databricks, 242, 270

(see also MLflow)
access control, 245
all-purpose compute, 248
AWS (Amazon Web Services) and, 249

Lambdas, 267-269
big data and, 243
clusters, 254-257
data lineage and, 245
DBFS (Databricks File System), 258

directory, 258
DBU (Databricks unit), 248
Driver types, 255
email validation, 248
libraries, setup, 252
machine learning

event-driven, 267-270
notebooks and, 264-265
scheduled jobs, 265-266

ML frameworks, 244
model repository and, 245
notebooks, 258-259
plans, 249
pricing, 248
programming languages, 244
PyTorch and, 245
run speed test, 260-263
S3 Buckets, access setup, 250-252
Scikit-learn and, 245
spaCy model, 258-259
Spark and, 244
TensorFlow and, 245
versioning, 245
Worker types, 255

Databricks Community Edition, 247
Databricks Platform, 247

306 | Index

Dataiku, 210
DataRobot, 211
datasets, 289
DBFS (Databricks File System), 258

directory, 258
decision fatigue, 289
deep learning, 9, 59

CNNs (convolutional neural networks), 131
LSTM (long short-term memory), 9
type signatures, 152

deep learning frameworks, 201
Jax, 204
Julia, 205-206
PyTorch, 201-203
Swift for TensorFlow, 205
TensorFlow, 203-204

deep neural networks, 59
attention mechanisms, 153-170

deep training
GPU preprocessing, 296
mixed-precision training, 296
speed, 296

DeepMind, 132
dependency parsing, 14

spacy, 24-27
deployment, 240-241
DETR (detection with transformers), 170
dictionary, one-hot vectors, 113
distributed computation, 202
distributed training, 294-295
Docker containers, Kaggle Kernels and, 214
dot product attention, 154-159

alignment scores, 158
attention weights, 156
Multi-Head Self-Attention, 160-162
scaled dot product attention, 159-160

dunder methods (Python), 53

E
eager execution, 202
Edge accelerators, 216
Edge TPU (Google), 216
ELMo, 190, 194
embeddings

custom, 127-128
Fortnite, 124
MIDI protocol, 125
one-hot vectors, 113
preprocessing, 118-119

pretrained word embeddings, 175-179
RNN model, 120
stock pricing, 124
training and, 121
transfer learning and, 117
validation, 122
vectorized music, 125

encoders
language models, 45
text classification, 46

engineers, 290
ensemble, 290
entailment, 60
entity linking, 16
event-driven machine learning, Databricks and,

267-270
experience versus theory, 288
experiment tracking tools

Comet, 208
MLflow, 208
Neptune, 207
Weights & Biases, 207

Explosion AI
Prodigy, 18
spaCy, 18

F
FAIR (Facebook AI Research lab), 164, 201
fast.ai, 17, 18, 288

MOOCs (massive open online courses), 18
fastai, 37

accuracy hyperparameter, 39
AWD LSTM, 39
drop-multi hyperparameter, 39
Learner object, 39
RNN models, 136
transfer learning, 37-42
versions, 137

fastText, 115, 176, 178
feed-forward layer, 135
feed-forward network, 164-166
Figure Eight, 208
fine tuning, 60

language models, 43
IMDb and, 43-45

first principles, transformers and, 151
Flair, 115
FloydHub, 213

Index | 307

G
GitHub, 17, 72, 221

Gradient and, 213
repo, 222, 225, 229

GitHub Actions, 219
GloVe, 115, 176, 178
GLUE (General Language Understanding Eval‐

uation) benchmark, 61
Google

BERT, 10
(see also BERT)

Edge TPU, 216
speech recognition and, 9

Google Assistant, 10
Google Brain, 203
Google Cloud AutoML, 218
Google Colab, 17, 241, 262

GPUs, 63-67
Google Translate, 4, 5, 10, 62, 180
GPT (Generative Pretrained Transformer), 195
GPT-1, 195
GPT-2, 10, 51, 61, 117, 190, 195
GPT-3, 190, 195
GPUs

CUDA, 299-304
Google Colab, 63-67
Lambda GPU Cloud, 214
multi-GPU training, 294
preprocessing, 296

Gradient, GitHub and, 213
GRUs (Gated Recurrent Units), 132, 141, 187

attention mechanisms and, 188-190
reset gate, 187
RNNs and, 147-148
update gate, 187

H
H20.ai, 210
Hadoop, 243
HSL color space, 128
Hugging Face, 17, 18

tokenization, 98
Decode module, 99
Model module, 99
Normalizer module, 98
Post-Processor module, 99
PreTokenizer module, 98
Trainer module, 99

training, 48-54

human-annotated data points, 290

I
ImageNet, 173, 175, 193-196

pretrained language models, 174-175
IMDb, 118

dataset, 140
language models, fine tuning, 43-46
sentiment analysis, 137
Wikipedia English and, 42

inference, machine learning, 58
edge devices, 152
NER (named entity recognition)

spaCy, 260-263
information extraction, 7
information router, attention mechanisms, 153
init script, Databricks, 258-260
intuition versus theory, 288
Invisible Technologies, 289
iPython, 241

J
Jax, 204
JSON, named entity recognition (NER) output,

75
Julia, 205-206
Jupyter Notebook, 118, 207, 212, 241

documentation and, 153
Kaggle Kernels, 214

JupyterLab, 207, 213, 241

K
Kaggle, 214

AG News Classification Dataset, 63
AG News Topic Classification Dataset, 63

Keras, 203
key-value vector pairs, 166
Khronos Group, 300

L
Lambda GPU Cloud, 214
Lambda Labs, 214
language modeling

causal language modeling, 61
masked language modeling, 61
natural language generation (NLG), 61

language models, 36
encoder, 45

308 | Index

fine-tuning, 43
IMDb and, fine tuning, 43-46
loading, 50-52
pretrained, 10, 36, 174

fine tuning, 39
raw data, 43

language, encoding in numbers, 110
lemmatization, 15

spacy, 27-29
lessons learned, 286-291
libraries

Databricks, 252
spaCy, 18

LightGBM, 286
Linformer, 169
linguistics, 3

NLP and, 4
Longformer, 169
LSTM (long short-term memory), 9, 132, 141

attention mechanisms and, 188-190
DeepMind products, 132
forget gate, 186
input gate, 186
output gate, 186
PyTorch and, 146
RNNs (recurrent neural networks) and,

145-147, 185-186
Lua, 201

M
machine learning, 58, 209

(see also automated machine tools)
classical, 11
Databricks

AWS Lambdas, 267-269
event-driven, 267-270
notebooks, 264-265
scheduled jobs, 265-266

inference, 58
infrastructure tools

Colab (Google), 213
FloydHub, 213
Kaggle Kernels, 214
Paperspace, 212

labeled/unlabeled data, 58
model parameters, 58
NLP and, 58
reinforcement learning, 58
RNNs (recurrent neural networks) and, 182

sequential models, 180
supervised learning, 58
traditional, 11
training on data, 58
unsupervised learning, 58

machine translation, 5, 8
rules-based machine translation, 8

MapReduce, 243
Markovian sequences, 132
masked language modeling, 61
Master Shifu, 125
matplotlib, 205
matrix multiplication, vectors and, 113
meaning, 110
memory

persistent memory, 164-166
product-key memory, 167-170

MHSA (Multi-Head Self-Attention), 171
Microsoft Azure, 218
Microsoft Cortana, 10
MIDI protocol, 125
mixed-precision training, 296
ML (machine learning) (see machine learning)
ML frameworks, Databricks and, 244
MLaaS (machine learning as a service), 217

Amazon SageMaker, 217
Azure Machine Learning, 218

MLflow, 208, 270
model serving, 273-282
spaCy text classification model, 270-273

MLlib, 245
MLOps, 211, 290
model parameters, machine learning and, 58
model repository, Databricks, 245
models

character-level, tokenization and, 116
inference, edge devices, 152

MOOCs (massive open online courses), 18
Morse code, 107
Movidius, 216
Multi-Head Self-Attention

dot product attention, 160-162
MuseNet, 126
music, vectorized, 125

N
n-gram characters, 178
named entity linking (NEL), 31-33
named entity recognition (NER), 16, 57, 62, 67

Index | 309

annotation output, 75
annotation, Prodigy and, 72-76
custom, 71

training model, 76-80
custom model compared to original, 80-83
custom, Streamlit app, 229-232
GPE (geopolitical entity), 69
inference, spaCy and, 260-263
model training, transfer learning and, 76
ORG (organization) entity, 69
PERSON entity, 69
precision, 69
recall, 69
spacy, 29
spaCy, 67-71

TICKER, 71
template, 77

natural language dataset, 62, 63
natural language generation (NLG), 61
natural language processing (see NLP (natural

language processing))
natural language understanding (NLU), 61
negative entailment, 60
Neptune, 207
neural networks, 11, 59

deep neural networks, 59
NLP tasks, 13
RNNs (recurrent neural networks), 18
training, 13

NeurIPS, 153
neutral entailment, 60
ngrok, 226-227
NLP (natural language processing), 3

applications, 5-7
artificial intelligence and, 4
computer science and, 4
deep learning, 9
definition, 4
growth in, 4
history, 8-10
ImageNet moment, 193-196
inflection points, 10
linguistics and, 4
machine learning and, 58
overview, 5
rule-based, 11
tasks, 12

chunking, 15, 16
dependency parsing, 14, 16

entity linking, 16
language modeling, 61
lemmatization, 15, 16
named entity recognition (NER), 16, 62
POS (part-of-speech) tagging, 14, 16
question answering, 61
sequence classification, 60
spacy, 19-33
stemming, 16
summarization, 62
text classification, 60
text generation, 61
tokenization, 13, 16
translation, 62

text classification, 83
Prodigy and, 83-88

NLTK (Natural Language Toolkit), 18
NNP (singular proper noun), 14
nominal subject (NSUBJ), 14
notebooks

Databricks
creating, 258-259
init script, 258-260
machine learning, 264-265

productionization and, 241-242
NSUBJ (nominal subject), 14
NumPy, 159, 202, 204, 205, 213, 296
Nvidia, 166, 170, 296
Nvidia GPU, 212
Nvidia Jetson, 216

O
object of preposition (POBJ), 14
Odetta, 289
on-device inference tools

Core ML, 216
Edge accelerators, 216
ONNX (Open Neural Network Exchange),

216
one-hot vectors, 112

limitations, 176
ONNX (Open Neural Network Exchange), 216
open source resources, 288
out of vocabulary (OOV) words, 177

P
pandas, 205, 213
Papers with Code, 62
Paperspace, 212

310 | Index

Paperspace Gradient, 213
ParallelM, 211
Parquet, 262, 265
parsing, dependency parsing, 14
Perceiver, 169
Performer, 169
persistent memory, 164-166
personal pronoun (PRP), 14
POBJ (object of preposition), 14
POS (part-of-speech) tagging, 14

spacy, 22-23
tag list, 23

positive entailment, 60
predictions, generating, 52-54
PREP (prepositional phrase), 14
prepositional phrase (PREP), 14
pretrained language models, 10, 36, 174

fine-tuning, 39
loading, 50-52
neural networks, 59
spacy, 19
tasks and, 57

pretrained word embeddings (see word embed‐
dings)

Prodigy, 18, 72, 80
loading data, 73
named entity recognition (NER), 72-76
spaCy, 73
text classification models, 89
virtual environment, 72

product-key memory, 167-170
productionization

analysts, 239-242
data scientists, 239-242
deployment, 240-241
engineers, 239-242
maintenance, 240-241
notebooks, 241-242
prototyping, 240-241
scripts, 241-242

programming environment setup, 17
programming languages, Databricks and, 244
prototyping, 240-241
PRP (personal pronoun), 14
PySpark DataFrame, 260-262
Python

dunder methods, 53
tokenization and, 104

PyTorch, 95, 201-203, 213

CUDA device setup, 118
Databricks and, 245
distributed computation, 202
eager execution, 202
embeddings and, 118
LSTMs and, 146
multi-GPU training, 294
RNNs (recurrent neural networks), 133
transformers and, 152

MultiheadAttention layer, 153
PyTorch Mobile, 203

Q
question answering, 6, 61

R
Rapids AI, 103
React, 221
reading, 3
reading text, 107
recordings, speech, 124
Reformer, 169
reinforcement learning, 58
ReLU, 165
RNNs (recurrent neural networks), 18, 131, 141

bidirectional, 143-144
cells, 135, 137

vanilla cell, 137
cycling, 183
embeddings and, 120
GRUs (gated recurrent units) and, 187
GRUs and, 147-148
looping, 134, 137
LSTM (long short-term memory), 185-186
LSTM network and, 145-147
machine learning and, 182
models, 120

components, 139
fastai, 136
Learner object, 141

parameters, 134
PyTorch and, 133, 136-143
sequence modeling, 132
sequential data and, 182
state, 135
text classification, 122
transformers, 136
transformers and, 133
vanilla, 183-185

Index | 311

RoBERTa model, 76
text classification training, 88

rule-based NLP, 11
rules-based machine translation, 8
Rust, 104

S
S3 (Simple Storage Service)

buckets, 249
access setup, 250-252

Sagemaker, 282
Saturn Cloud, 283
Scale AI, 289
scaled dot product attention, 159-160
scaling, 293

deep training and, 296-297
distributed training, 294-295

Scikit-learn, 213
Databricks and, 245

SciPy, 205
scripts

DBFS (Databricks File System), 258
productionization and, 241-242

self-attention
all-attention layer, 164-166
Multi-Head Self Attention, 160-162
transformers, 158

SentencePiece, 102
sentiment analysis, 7, 60
sequence classification, 60

entailment, 60
GLUE (General Language Understanding

Evaluation) benchmark, 61
sentiment analysis, 60

sequence modeling
Markovian, 132
RNNs (recurrent neural networks), 132

sequential data, 181-182
RNNs (recurrent neural networks) and,

182-187
sequential models, 179

decoders, 180
encoders, 180
RNNs, 183
scenarios, 180
sequential data and, 181-182

sigmoid, 120
simple versus complex approach, 286
singular present verb (VBP), 14

singular proper noun (NNP), 14
skip-gram, 177
softmax, 156, 158, 165
spaCy, 12, 17, 18

AG News Dataset, 69-71
Databricks, 258-259
GPU and, 68
named entity recognition (NER), 67-71

custom model training, 76-80
precision, 69
recall, 69
TICKER, 71

NER model, 260-263
Prodigy, 73
RNNs (recurrent neural networks), 18
runtime, restart, 68
text classification models

log and register, 270-273
training, 88-92

tokenizer, 98
visualization, NER model compare, 81

spacy, 17, 18
chunking, 27
data-to-spacy Prodigy recipe, 75
dependency parsing, 24-27
Explosion AI, 18
lemmatization, 27-29
NEL (named entity linking), 31-33
NER (named entity recognition), 29-31
POS (part-of-speech) tagging, 22-23
pretrained language models

downloading, 19
tokenization, 20-22

Spark, 243
Databricks and, 244
MLlib, 245
PySpark DataFrame, 260-262

Spark DataFrames, 244
Spark SQL, 244
speech recognition, 4, 5, 9

cars, 10
Google and, 9
NSA (National Security Agency), 9
Tangora, 9
voice-activated typewriter, 9

speech recordings, 124
speech-to-text, 6
SQuAD, 57, 61
statistical machine translation, 8

312 | Index

human rules and, 9
stemming, 16
Streamlit, 222

apps
building, 222-225
deploying, 225-227
NER (named entity recognition),

229-232
text classification, 232-236
web app, 227

subword tokenization, 100-102, 116
algorithms, 101

summarization, 62
summarizing text, 6
supervised learning, 58
Swift, 216
Swift for TensorFlow, 201, 205

T
Tangora, 9
templates, NER (named entity recognition), 77
TensorBoard, 203, 206
TensorFlow, 18, 201, 203-204, 213

Databricks and, 245
distributed computation, 202
Swift for TensorFlow, 205

TensorFlow Extended, 203
TensorFlow Lite, 203
TensorFlow Probability, 203
TensorFlow Serving, 203
TensorFlow.jl, 203
TensorFlow.js, 203
text

encoding in numbers, 110
meaning, 110
reading, 107
understanding, 107

text classification, 46-48, 60, 83
annotation, Prodigy and, 83-88
encoders, 46
model training, spaCy, 88-92
Prodigy, annotation, 89
RNN-based, 122
Streamlit app, 232-235

custom text, 235-236
text classification model, 47
text generation, 7, 61

GPT-2, 61
text summarization, 6

text-to-speech, 6
TFIDF, 210
Theano, 201
threads, CUDA, 300
time step, 144
Token2Vec, 116
tokenization, 13, 95

BPE (byte-pair encoding), 116
C and, 104
CPU and, 103
garbage collection and, 104
Hugging Face, 98

Decode module, 99
Model module, 99
Normalizer module, 98
Post-Processor module, 99
PreTokenizer module, 98
Trainer module, 99

models, character-level, 116
printing tokens, 20
Python and, 104
Rust and, 104
spacy, 20-22
subword, 100-102, 116

algorithms, 101
tokenizers, 96

BERT and, 98
building, 102-104
description, 97
initializing, 49
input, 97
output, 97
spaCy, 98

Torch, 201
torchtext, 118
traditional machine learning, 11
training, 19, 35

(see also fine-tuning)
(see also transfer learning)
deep training, speed, 296-297
distributed training, 294-295
embeddings and, 121
fastai, 37
Hugging Face, 48-54
language models, encoders, 45
mixed-precision, 296
multi-GPU training, 294
NER, custom model, 76-80
neural networks, 13

Index | 313

predictions, generating, 52-54
text classification models, spaCy, 88-92
text classifiers, 46-48
tokenizers, 102
transformers, 36
unfreezing, 47

transfer learning, 35, 35
(see also training)
AWD LSTM, 39
embeddings and, 117
fastai, 37-42
language models, encoders, 45
NER model training, 76
neural networks, 59
predictions, generating, 52-54
raw data, 43
transformers, 132
ULMFiT, 42

Transformer architecture, 10, 152
all-attention layer, 164
variants, 169

Transformer-XL, 192
transformers, 36

computer vision tasks, 170
detection with transformers (DETR),

170
vision transformer (ViT), 170

first principles and, 151
ImageNet and, 190-192
Linformer, 169
Longformer, 169
Perceiver, 169
Performer, 169
PyTorch and, 152

MultiheadAttention layer, 153
Reformer, 169
RNNs (recurrent neural networks) and, 133,

136
self-attention, 158
training, 36
transfer learning and, 132
word vectors, hidden representation/state,

155
translation, 62
Turing test, 8
Turing, Alan, 8
type signatures, deep learning and, 152

U
ULMFiT (Universal Language Model Fine-

Tuning), 190, 193
transfer learning, 42

understanding text, 107
unsupervised learning, 58

V
vanilla RNN cell, 137
vanilla RNNs, 183-185
VBP (singular present verb), 14
vectorized music, 125
vectors

key-value pairs, 166
matrix multiplication and, 113
one-hot vectors, 112
versus arrays, 112

versioning, Databricks, 245
Visdom, 203
visualization

attention mechanisms, 170
TensorBoard, 206

ViT (vision transformer), 170
voicebots, 6
VS Code, 241

W
Weights & Biases, 207, 208
Wikipedia English, 42
WikiText-103 dataset, 102
word embeddings

CBOW (continuous bag of words), 177
context-aware word representations, 179
fastText, 176, 178
GloVe, 176, 178
pretrained, 175-179
Word2Vec, 176

word vectors, 111-123
CBOW (continuous bag of words), 177
dictionary, one-hot vectors, 113
GloVe, 115
n-gram characters, 178
one-hot vectors, 112

limitations, 176
transformers, hidden representation/state,

155
Word2Vec, 115, 177

Word2Vec, 115-117, 176-177

314 | Index

context and, 115
OOV (Out of Vocabulary) words, 177

WordPiece, 102
writing, 3

X
XLM, 167

XLNet, 193, 195

Z
Zaharia, Matei, 244
zero shot learning, 196

Index | 315

About the Authors
Ankur A. Patel is an AI entrepreneur, thought leader, and author. He is currently the
cofounder and head of data at Glean and the cofounder of Mellow. Glean uses natural
language processing to deliver vendor spend intelligence within an accounts payable
solution. Mellow develops easy-to-use natural language processing APIs for develop‐
ers to use as part of their product build.

Previously, Ankur was the vice president of data science at 7Park Data, a Vista Equity
Partners portfolio company. Ankur used alternative data to build alternative data
products for hedge funds and developed a natural language processing-based entity
recognition, resolution, and linking platform for enterprise clients. Prior to 7Park
Data, Ankur led data science efforts in New York City for Israeli artificial intelligence
firm ThetaRay, a pioneer in applied unsupervised learning.

Ankur began his career as an analyst at JPMorgan, and then became the lead emerg‐
ing markets sovereign credit trader for Bridgewater Associates, the world’s largest
global macro hedge fund. He later founded and managed R-Squared Macro, a
machine learning–based hedge fund.

A graduate of the Woodrow Wilson School at Princeton University, Ankur is the
recipient of the Lieutenant John A. Larkin Memorial Prize. He currently resides in
New York City.

Ajay Arasanipalai is a deep learning researcher and student at the University of Illi‐
nois at Urbana-Champaign. He has extensive experience in building and training
deep learning models for a variety of computer vision and natural language process‐
ing tasks such as text/image classification, object detection, semantic segmentation,
language modeling, and more.

For two consecutive years, he achieved state-of-the-art results on the popular Stan‐
ford DAWNBench competition, where he trained an image classifier on the CIFAR10
dataset to 94% accuracy in under 10 seconds, setting a new speed record for 4 GPU
training time.

In 2020, Ajay worked with members of the Event Horizon Telescope collaboration to
apply deep learning and computer vision to solve the problem of parameter extrac‐
tion in black holes, which includes recovering quantities like spin that to this day are
not measurable with astronomical observations.

Ajay has authored multiple well-received technical articles published by industry-
leading deep learning startups like FloydHub and Weights & Biases. In them, he
breaks down the latest, most important papers in the field and helps readers imple‐
ment cutting-edge algorithms like GPT-2, making deep learning research more enter‐
taining and accessible.

Colophon
The bird on the cover of Applied Natural Language Processing in the Enterprise is the
southern hill myna (Gracula indica). This member of the starling family (myna comes
from the Hindi word for starlings, maina) is native to the forests of southwest India
(the Western Ghats) and Sri Lanka.

This glossy, iridescent black myna has bright yellow wattles on its head, of a distinct
pattern and size that distinguishes this bird from other hill myna species. It also has
an orange bill, legs, and feet, and small white patches on its wings. Adults average 9
inches in length, including the short tail. As with other starling species, the southern
hill myna travels with others of its kind, whether in pairs or flocks, vocalizing in its
shrill natural voice.

Their diet consists mainly of fruit and nectar, including figs and sapu berries, though
they are omnivorous and will also consume insects and other small prey.

In the wild, these mynas have a wide variety of calls, learning some of these from
other flock members. Hill mynas have long been known as an excellent mimic of the
human voice, and because of this are bred by humans but also regularly removed
from the wild (sometimes by the thousands every year) for the international caged
bird trade.

Though numbers of southern hill mynas are declining, these birds are still currently
listed by the IUCN as being of Least Concern. Many of the animals on O’Reilly covers
are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from English Cyclopedia: Natural History. The cover fonts are Gilroy and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://www.oreilly.com/online-learning/

	Copyright
	Table of Contents
	Preface
	What Is Natural Language Processing?
	Why Should I Read This Book?
	What Do I Need to Know Already?
	What Is This Book All About?
	How Is This Book Organized?
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Ajay
	Ankur

	Part I. Scratching the Surface
	Chapter 1. Introduction to NLP
	What Is NLP?
	Popular Applications
	History
	Inflection Points
	A Final Word

	Basic NLP
	Defining NLP Tasks
	Set Up the Programming Environment
	spaCy, fast.ai, and Hugging Face
	Perform NLP Tasks Using spaCy

	Conclusion

	Chapter 2. Transformers and Transfer Learning
	Training with fastai
	Using the fastai Library
	ULMFiT for Transfer Learning
	Fine-Tuning a Language Model on IMDb
	Training a Text Classifier

	Inference with Hugging Face
	Loading Models
	Generating Predictions

	Conclusion

	Chapter 3. NLP Tasks and Applications
	Pretrained Language Models
	Transfer Learning and Fine-Tuning
	NLP Tasks
	Natural Language Dataset
	Explore the AG Dataset

	NLP Task #1: Named Entity Recognition
	Perform Inference Using the Original spaCy Model
	Custom NER
	Annotate via Prodigy: NER
	Train the Custom NER Model Using spaCy
	Custom NER Model Versus Original NER Model

	NLP Task #2: Text Classification
	Annotate via Prodigy: Text Classification
	Train Text Classification Models Using spaCy

	Conclusion

	Part II. The Cogs in the Machine
	Chapter 4. Tokenization
	A Minimal Tokenizer
	Hugging Face Tokenizers
	Subword Tokenization

	Building Your Own Tokenizer
	Conclusion

	Chapter 5. Embeddings: How Machines
“Understand” Words
	Understanding Versus Reading Text
	Word Vectors
	Word2Vec
	Embeddings in the Age of Transfer Learning

	Embeddings in Practice
	Preprocessing
	Model
	Training
	Validation

	Embedding Things That Aren’t Words
	Making Vectorized Music
	Some General Tips for Making Custom Embeddings

	Conclusion

	Chapter 6. Recurrent Neural Networks
and Other Sequence Models
	Recurrent Neural Networks
	RNNs in PyTorch from Scratch
	Bidirectional RNN
	Sequence to Sequence Using RNNs

	Long Short-Term Memory
	Gated Recurrent Units
	Conclusion

	Chapter 7. Transformers
	Building a Transformer from Scratch
	Attention Mechanisms
	Dot Product Attention
	Scaled Dot Product Attention
	Multi-Head Self-Attention
	Adaptive Attention Span
	Persistent Memory/All-Attention
	Product-Key Memory

	Transformers for Computer Vision
	Conclusion

	Chapter 8. BERTology: Putting It All Together
	ImageNet
	The Power of Pretrained Models

	The Path to NLP’s ImageNet Moment
	Pretrained Word Embeddings
	The Limitations of One-Hot Encoding
	Word2Vec
	GloVe
	fastText
	Context-Aware Pretrained Word Embeddings

	Sequential Models
	Sequential Data and the Importance of Sequential Models

	RNNs
	Vanilla RNNs
	LSTM Networks
	GRUs

	Attention Mechanisms
	Transformers
	Transformer-XL

	NLP’s ImageNet Moment
	Universal Language Model Fine-Tuning
	ELMo
	BERT
	BERTology
	GPT-1, GPT-2, GPT-3

	Conclusion

	Part III. Outside the Wall
	Chapter 9. Tools of the Trade
	Deep Learning Frameworks
	PyTorch
	TensorFlow
	Jax
	Julia

	Visualization and Experiment Tracking
	TensorBoard
	Weights & Biases
	Neptune
	Comet
	MLflow

	AutoML
	H2O.ai
	Dataiku
	DataRobot

	ML Infrastructure and Compute
	Paperspace
	FloydHub
	Google Colab
	Kaggle Kernels
	Lambda GPU Cloud

	Edge/On-Device Inference
	ONNX
	Core ML
	Edge Accelerators

	Cloud Inference and Machine Learning as a Service
	AWS
	Microsoft Azure
	Google Cloud Platform

	Continuous Integration and Delivery
	Conclusion

	Chapter 10. Visualization
	Our First Streamlit App
	Build the Streamlit App
	Deploy the Streamlit App
	Explore the Streamlit Web App
	Build and Deploy a Streamlit App for Custom NER
	Build and Deploy a Streamlit App for Text Classification on
AG News Dataset
	Build and Deploy a Streamlit App for Text Classification on
Custom Text

	Conclusion

	Chapter 11. Productionization
	Data Scientists, Engineers, and Analysts
	Prototyping, Deployment, and Maintenance
	Notebooks and Scripts

	Databricks: Your Unified Data Analytics Platform
	Support for Big Data
	Support for Multiple Programming Languages
	Support for ML Frameworks
	Support for Model Repository, Access Control,
Data Lineage, and Versioning

	Databricks Setup
	Set Up Access to S3 Bucket
	Set Up Libraries
	Create Cluster
	Create Notebook
	Enable Init Script and Restart Cluster
	Run Speed Test: Inference on NER Using spaCy

	Machine Learning Jobs
	Production Pipeline Notebook
	Scheduled Machine Learning Jobs
	Event-Driven Machine Learning Pipeline

	MLflow
	Log and Register Model
	MLflow Model Serving

	Alternatives to Databricks
	Amazon SageMaker
	Saturn Cloud

	Conclusion

	Chapter 12. Conclusion
	Ten Final Lessons
	Lesson 1: Start with Simple Approaches First
	Lesson 2: Leverage the Community
	Lesson 3: Do Not Create from Scratch, When Possible
	Lesson 4: Intuition and Experience Trounces Theory
	Lesson 5: Fight Decision Fatigue
	Lesson 6: Data Is King
	Lesson 7: Lean on Humans
	Lesson 8: Pair Yourself with Really Great Engineers
	Lesson 9: Ensemble
	Lesson 10: Have Fun

	Final Word

	Appendix A. Scaling
	Multi-GPU Training
	Distributed Training
	What Makes Deep Training Fast?

	Appendix B. CUDA
	Threads and Thread Blocks
	Writing CUDA Kernels
	CUDA in Practice

	Index
	About the Authors
	Colophon

