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Introduction

This book is intended for all audiences ranging from beginners at machine
learning, to advanced machine learning engineers, or even to machine
learning researchers who wish to learn how to better organize their
experiments.

The first two chapters cover the premise of the problem followed by
the book, which is that of integrating MLOps principles into an anomaly
detector model based on the credit card dataset. The third chapter covers
what MLOps actually is, how it works, and why it can be useful.

The fourth chapter goes into detail about how you can implement and
utilize MLFlow in your existing projects to reap the benefits of MLOps with
just a few lines of code.

The fifth, sixth, and seventh chapters all go over how you can
operationalize your model and deploy it on AWS, Microsoft Azure, and
Google Cloud, respectively. The seventh chapter goes over how you
can host a model on a virtual machine and connect to the server from
an external source to make your predictions, so should any MLFlow
functionality described in the book become outdated, you can always go
for this approach and simply serve models on some cluster on the cloud.

The last chapter, Appendix, goes over how you can utilize Databricks,
the creators of MLFlow, to organize your MLFlow experiments and deploy
your models.

The goal of the book is to hopefully impart to you, the reader,
knowledge of how you can use the power of MLFlow to easily integrate
MLOps principles into your existing projects. Furthermore, we hope that
you will become more familiar with how you can deploy your models to
the cloud, allowing you to make model inferences anywhere on the planet
so as long as you are able to connect to the cloud server hosting the model.
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INTRODUCTION

At the very least, we hope that more people do begin to adopt MLFlow
and integrate it into their workflows, since even as a tool to organize your
workspace, it massively improves the management of your machine
learning experiments and allows you to keep track of the entire model
history of a project.

Researchers may find MLFlow to be useful when conducting
experiments, as it allows you to log plots on top of any custom-defined
metric of your choosing. Prototyping becomes much easier, as you can
now keep track of that one model which worked perfectly as a proof-of-
concept and revert back to those same weights at any time while you keep
tuning the hyperparameters. Hyperparameter tuning becomes much
simpler and more organized, allowing you to run a complex script that
searches over several different hyperparameters at once and log all of the
results using MLFlow.

With all the benefits that MLFlow and the corresponding MLOps
principles offer to machine learning enthusiasts of all professions, there
really are no downsides to integrating it into current work environments.
With that, we hope you enjoy the rest of the book!
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CHAPTER 1

Getting Started: Data
Analysis

In this chapter, we will go over the premise of the problem we are attempting
to solve with the machine learning solution we want to operationalize. We
will also begin data analysis and feature engineering of our data set.

Introduction and Premise

Welcome to Beginning MLOps with MLFlow! In this book, we will be taking
an example problem, developing a machine learning solution to it, and
operationalizing our model on AWS SageMaker, Microsoft Azure, Google
Cloud, and Datarobots. The problem we will be looking at is the issue of
performing anomaly detection on a credit card data set. In this chapter, we
will explore this data set and show the overall structure while explaining a
few techniques on analyzing this data. This data set can be found at
www . kaggle.com/mlg-ulb/creditcardfraud.

Ifyou are already familiar with how to analyze data and build machine
learning models, feel free to grab the data set and skip ahead to 3 to jump
right into MLOps.

© Sridhar Alla, Suman Kalyan Adari 2021 1
S. Alla and S. K. Adari, Beginning MLOps with MLFlow,
https://doi.org/10.1007/978-1-4842-6549-9_1
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Otherwise, we will first go over the general process of how machine
learning solutions are generally created. The process goes something
like this:

1. Identification of the problem: First of all, you need
to have an idea of what the problem is, what can be
done about it, what has been done about it, and why
itis a problem worth solving.

Here’s an example of a problem: an invasive snake
species harmful to the local environment has
infested a region. This species is highly venomous
and looks very similar to a harmless species of snake
native to this same environment. Furthermore,

the invasive species is destructive to the local

environment and is outcompeting the local species.

In response, the local government has issued a
statement encouraging citizens to go out and kill

the venomous, invasive species on sight, but the
problem is that it turns out citizens have been killing
the local species as well due to how easy it is to
confuse the two species.

What can be done about this? A possible solution
is to use the power of machine learning and build
an application to help citizens identify the snake
species. What has been done about it? Perhaps
someone released an app that does a poor job at
distinguishing the two species, which doesn’t help
remedy the current situation. Perhaps fliers have
been given out, but it can be hard to identify every
member of a species correctly based on just one
picture.
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Why is it a problem worth solving? The native
species is important to the local environment.
Killing the wrong species can end up exacerbating
the situation and lead to the invasive species
claiming the environment over the native

species. And so building a computer vision-based
application that can discern between the various
snake species (and especially the two species
relevant to the problem) could be a great way to help
citizens get rid of the right snake species.

Collection of data: After you've identified the
problem, you want to collect the relevant data.

In the context of the snake species classification
problem, you want to find images of various snake
species in your region. The location depends on
how big of a scale your project will operate on. Is it
going to identify any snake in the world? Just snakes
in Florida?

If you can afford to do so, the more data you collect,
the better the potential training outcomes will be.
More training examples can introduce increased
variety to your model, making it better in the long
run. Deep learning models scale in performance with

large volumes of data, so keep that in mind as well.

Data analysis: Once you've collected all the raw
data, you want to clean it up, process it, and format
it in a way that allows you to analyze the data better.

For images, this could be something like applying an
algorithm to crop out unnecessary parts of the image
to focus solely on the snake. Additionally, maybe
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you want to center-crop the image to remove all the
extra visual information in the data sample. Either
way, raw image data is rarely ever in good enough
condition to be used directly; it almost always
requires processing to get the relevant data you want.

For unstructured data like images, formatting this
data in a way good enough to analyze it could be
something like creating a directory with all of the
respective snake species and the relevant image
data. From there, you can look at the count of
images for each snake species class that you have
and determine if you need to retrieve more samples
for a particular species or not.

For structured data, say the credit-card data set,
processing the raw data can mean something like
getting rid of any entries with null values in them.
Formatting them in a way so you can analyze

them better can involve dimensionality-reduction
techniques such as principal component analysis
(PCA). Note: It turns out that most of the data in the
credit card data set has actually been processed with
PCA in part to preserve the privacy of the users the
data has been extracted from.

As for the analysis, you can construct multiple
graphs of different features to get an idea of the
overall distribution and how the features look
plotted against each other. This way, you can see any
significant relationships between certain features
that you might keep in mind when creating your
training data.
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There are some tools you can use in order to find
out what features have the greatest influence on
the label, such as phi-k correlation. By allowing
you to see the different correlation values between
the individual features and the target label, you can
gain a deeper understanding of the relationships
between the features in this data set. If needed, you
can also drop features that aren’t very influential
from the data. In this step, you really want to get a
solid understanding of your data so you can apply a
model architecture that is most suitable for it.

Feature engineering and data processing: Now you
can use the knowledge you gained from analyzing

the various features and their relationships to each
another to potentially construct new features from
combinations of several existing ones. For example,
the Titanic data set is a great example that you can
apply feature engineering to. In this case, you can take
information such as class, age, fare, number of siblings,
number of parents, and so on to create as many

features as you can think up.

Feature engineering is really about giving your
model a deeper context so it can learn the task
better. You don’t necessarily want to create random
features for the sake of it, but something that’s
potentially relevant like number of female relatives,
for example. (Since females were more likely

to survive the sinking of the Titanic, could it be
possible that if a person had more female relatives,
they were less likely to survive as preference was
given to their female relatives instead?)
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The next step after feature engineering is data
processing, which is a step involving all preparations
made to process the data to be passed into the model.
In the context of the snake species image data, this
could involve normalizing all the values to be between
0 and 1 as well as “batching” the data into groups.

This step also usually creates several subsets of
your initial data: a training data set, a testing data
set, and a validation data set. We will go into more
detail on the purpose of each of these data sets
later. For now, a training data set contains the data
you want the model to learn from, the testing data
set contains data you want to evaluate the model’s
performance on, and the validation data set is
used to either select a model or help tune a model’s
hyperparameters to draw out a better performance.

Build the model: Now that the data processing

is done, this step is all about selecting the proper
architecture and building the model. For the snake
species image data, a good choice would be to use a
convolutional neural network (CNN) because they
work very well for any tasks involving images. From
there, it is up to you to define the specific architecture
of the model with respect to its layer composition.

Training, evaluating, and validating: When you're
training your CNN model, you're usually passing in
batches of data until the entire data makes a full pass
through the model. From the results of this “forward
pass,” calculations are made that tell the model how to
adjust the weights as they are made going backwards
across the network in what'’s called the “backward
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pass.” The training process is essentially where the
model learns how to perform the task and gets better
at it the more examples it sees.

After the training process, either the evaluation step
or the validation step can come next. As long as the
testing set and validation set come from different
distributions (the validation set can be derived from
the training set, while the testing set can be derived
from the original data), the model is technically seeing
new data in the evaluation and validation processes.
The model will never learn anything from the
evaluation data, so you can test your model anytime.

Model evaluation is where the model’s performance
metrics such as accuracy, precision, recall, and so on are
evaluated on a data set that it has never seen before. We
will go into more detail on the evaluation step once it
becomes more relevant in the next chapter, Chapter 2.

Depending on the context, the exact purpose of
validation can differ, along with the question of
whether or not evaluation should be performed first
after training. Let’s define several sample scenarios
where you would use validation:

o Selecting a model architecture: Of several
model types or architectures, you use k-fold
cross-validation, for example, to quickly train and
evaluate each of the models on some data partition
of the validation set to get an idea of how they are
performing. This way, you can get a good idea of
which model is performing best, allowing you to pick
amodel and continue with the rest of the process.
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o Selecting the best model: Of several trained
models, you can use something like k-fold cross-
validation to quickly evaluate each model on the
validation data to allow you to get an idea of which
ones are performing best.

¢ Tuning hyperparameters: Quickly train a model
and test it with different hyperparameter setups to
get an idea of which configurations work better. You
can start with a broad range of hyperparameters.
From there, you can use the results to narrow
the range of hyperparameters until you get to a
configuration where you are satisfied. Models
in deep learning, for example, can have many
hyperparameters, so using validation to tune those
hyperparameters can work well in deep learning
settings. Just beware of diminishing returns. After a
certain precision with the hyperparameter setting,
you're not going to see that big of a performance
boost in the model.

o Indication of high variance: This validation data
is slightly different from the other three examples.
In the case of neural networks, this data is derived
from a small split of the training data. After one full
pass of the training data, the model evaluates on
this validation data to calculate metrics such as loss
and accuracy.

If your training accuracy is high and training loss
is low, but the validation accuracy is low and the
validation loss is high, that’s an indication that
your model suffers from high variance. What
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this means is that your model has not learned to
generalize what it is “learning” to new data, as the
validation data in this case is comprised of data it
has never seen before. In other words, your model
is overfitting. The model just isn’t recreating the
kind of performance it gets on the training data on
new data that it hasn’t seen before.

If your model has poor training accuracy and high
training loss, then your model suffers from high
bias, meaning it isn’t learning how to perform the
task correctly on the training data at all.

This little validation split during the training
process can give you an early indication of when

overfitting is occurring.

7. Predicting: Once the model has been trained,
evaluated, and validated, it is then ready to make
predictions. In the context of the snake species
detector, this step involves passing in visual images
of the snake in question to get some prediction back.
For example, if the model is supposed to detect
the snake, draw a box around it, and label it (in an
object detection task), it will do so and display the

results in real time in the application.

Ifit just classifies the snake in the picture, the user
simply sends their photo of a snake to the model
(via the application) to get a species classification
prediction along with perhaps a probability
confidence score.

Hopefully now you have a better idea of what goes on when creating
machine learning solutions.
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With all that in mind, let’s get started on the example, where you will
use the credit card data set to build simple anomaly detection models
using the data.

Credit Card Data Set

Before you perform any data analysis, you need to first collect your data.
Once again, the data set can be found at the following link: www.kaggle.
com/mlg-ulb/creditcardfraud.

Following the link, you should see something like the following in
Figure 1-1.

Figure 1-1. Kaggle website page on the credit card data

From here, you want to download the data set by clicking the
Download (144 MB) button next to New Notebook. It should take you to
a sign-in page if you're not already signed in, but you should be able to
download the data set after that.

10
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Once the zip file finishes downloading, simply extract it somewhere
to reveal the credit card data set. Now let’s open up Jupyter and explore
this data set. Before you start this step, let’s go over the exact packages and

their versions:
e Python3.6.5
e numpy 1.18.3
e pandas0.24.2

o matplotlib 3.2.1
To check your package versions, you can run a command like
pip show package name

Alternatively, you can run the following code to display the version in
the notebook itself:

import module name
print(module_name. version_ )

In this case, module_name is the name of the package you're importing,
such as numpy.

Loading the Data Set

Let’s begin! First, open a new notebook and import all of the dependencies
and set global parameters for this notebook:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
from pylab import rcParams

rcParams['figure.figsize'] = 14, 8

11
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Refer to Figure 1-2.

= Jupyter Credit Card Dataset Analysis Las Checkpoint 10 minutes ago. (unsmved changes) & ogon

B 4+ x @B |+ + HRn B C B Ccoe v =

Vmatplotlib snline

Figure 1-2. Jupyter notebook cell with some import statements
as well as a global parameter definition for the size of all
matplotlib plots

Now that you have imported the necessary libraries, you can load the
data set. In this case, the data folder exists in the same directory as the
notebook file and contains the creditcard.csv file. Here is the code:

data_path = "data/creditcard.csv"
df = pd.read csv(data_path)

Refer to Figure 1-3.
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_:' jupyter Credit Card Dataset Analysis Last Checkpomt 41 mmtes aga funsaved changes)

B4+ % BB 4+ + HRe B C » | con 7| =

In [ ): imarplozlib inlise

isport muspy os op
import pandas as pd

import matploclib.pyplot as plt
from pylab import rcParams

rcfarans[’ figure.figsize®] = 14, 8

data_path = "sara/creditzazd.csv”

df = pd.read_cavidata_path

GETTING STARTED: DATA ANALYSIS

A | Lot

Trusied pythends O

Figure 1-3. Defining the data path to the credit card data set .csv file,
reading its contents, and creating a pandas data frame object

Now that the data frame has been loaded, let’s take a look at its contents:

df.head()

Refer to Figure 1-4.

df . head

Time Vi vz Vi V4 Vs v VT v

w oo v vz V23 Va4

0 00 -1.350807 -HOTITE1 24MMT 1378155 0338331 04423 0230500 0.008808 0343787
100 TINEST 0264151 0156480 0448154 0060078 D06ZM1 DOTER03 (085102 IS5
210 1356354 1340183 1TTI20N  O37TE0 0503198 1500499 Q791461 Q24TETS 1514854
3 10 0068272 -01BSZ2E 1THE9I3 0863201 0010200 1247203 0237H00 027744 -138T024
4 20 -1150233 QTTTIT 1S4ETI8 0403034 -D40TTS3  O09SER1  0.592841 -D2T0SI3 QBTN

5 rows = 31 columns.
-

| [ 15

0018307 02TTEM 5110474 0088028 015
Q225775 Q6T 0101288 0330848 0
0247998 OTTIETE O90DLIZ -DEBEIEY 0K
0908300 0005274 0190321 -1ATEETE 08
0008431 07ISITE 0137450 0NIHT A

Figure 1-4. Calling the head() function on the data frame to display

the first five rows of the data frame
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If you are not familiar with the df.head(n) function, it essentially
prints the first n rows of the data frame. If you did not pass any arguments,
like in the figure above, then the function defaults to a value of five,
printing the first five rows of the data frame.

Feel free to play around with that function as well as use the scroll bar
to explore the rest of the features.

Now, let’s look at some basic statistical values relating to the values in

this data frame:
df.describe()

Refer to Figure 1-5.

df.descsibe
Time. w vz ] 4 v e v v 1
count 234807.000000 2843070e05 2848070e+05 2643070805 2 2E430700-05 2E430T00+05 28400704405 23483708+

mean 04811853575 1165380815  341600Be-18 137050815 2005060e-15 & 1490107¢-15 5 £Te-1 1A77556e-18 -2 406455
sl 47433 145055 1953605e-D0  16513009+00 1515755-00 1415880e+00 1380047e-D0 1330271e+00 1237084e+00 11043530+00  10%BE32e+T

min 0000000 4 A407SIes01 TITISTI001 4 BI00e01 SBEITINN00 113743002 26160870001 4 IAETRE0-01 TIDIBTINS01 1 24280TeeL
2% SA0N500000 -G.20ITHADT  SERSN0e-01  B000MERDT  BARGN0T-01 A0SIT1DT  TER20566-01  S5A0TEGN0T -20B620TE-01 43097
S0% GAGO2000000 1510860007 643556002 1708463001 1984653002 5433563002 ZTHWETIE01  400308e-02 2235008002 50428736
T8% 120320500000 12315642¢+00 8037230¢-01 1027195e-00 T433413e-01  B10284e-01  J085640e-01  ST0I1e-01  312TIME0e-01  SOT1330ed
max 172792000000 2454530e-00 22057734+01 9382558e-00 1607534e+01 3480167e-D1  TIN016I4+01  1205695e+02 200072101 155040De(

B rows = 31 columns
€ 3

Figure 1-5. Calling the describe() function on the data frame to get
statistical summaries of the data in each column

Feel free to scroll right and look at the various statistics for the rest of
the columns. As you can see in Figure 1-5, the function generates statistical
summaries for data in each of the columns in the data frame.

The main takeaway here is that there are a huge number of data points.
In fact, you can check the shape of the data frame by simply calling

df.shape

Refer to Figure 1-6.
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df . shape

1284807, 31)

l |

Figure 1-6. Calling the shape() function on the data frame to get an
output in the format (number_of _rows, number_of _columns)

There are 284,807 rows and 31 columns in this data frame. That’s a lot
of entries! Not only that, but if you look at Figure 1-5, you'll see that the
values can get really large for the column Time. In fact, keep scrolling right,
and you'll see that values can get very large for the column Amount as well.
Refer to Figure 1-7.

df .describe i}

: vz vaz vz3 Va4 vas 26 var Vg Amount Class
H S 28400708405 2840070805 20400708+05 2048070e+05 28400708405 234807000000 284007.000000
H 1656562e-16  -3444850e-18  2578048e-16  4471968e-15  5340015e-16  1887008e-15 3688453618 1220404818 BA 240619 LL b
H THE2000-01  T2570150-01 6244603601  S.0S64TIE-01  S2027TE1e-01  4822270e-01  4038325¢-01  1300833e-01 250120109 01527
1 -3483030e+01 -1.0833Me+01 44007740401 -2EID6270+00 -1029540e+07 260455100 -22965608+01 15420088401 0.00000¢ D0CHND
! 2283040001 5423504001 151846301 3545861801 3171451807 326083001 -T083953e-02 529507002 5600000 D 0COXD
it 2HIOITe02  6THIMIE03 1119293402 400THOSe02 1650350902 -S2139Me02 1343140603 112438302 22000000 2.000200
1 1853772001 5285535001 14TEA2IE01 4305266001  3S0TIE6e0T 2409522001 094512002 TEITIS0Z 77.165000 0.000000
1 2 1 2 4 554540, TE1EEe+00 3517346000 J1E12200+07 3304710401 29691.160000 1.000000

€ »

Figure 1-7. Scrolling right in the output of the describe function
reveals that the maximum data value in the column Amount is also
very large, just like the maximum data value in the column Time

As you can see, there are at least two columns with very large values.
What this tells you is that later on, when building the various data sets for
the model training process, you definitely need to scale down the data.
Otherwise, such large data values can potentially mess up the training
process.
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Normal Data and Fraudulent Data

Since there are only two classes, normal and fraud, let’s split up the data
frame by class and continue with the data analysis. In the context of
anomaly detection, the fraud class is also the anomaly class, hence why
we chose to name the data frame representing fraudulent transaction
data anomalies and interchangeably refer to this class as either fraud or
anomaly.

Here is the code:

anomalies = df[df.Class == 1]
normal = df[df.Class == 0]

After that, run the following in a separate cell:

print(f"Anomalies: {anomalies.shape}")
print(f"Normal: {normal.shape}")

Refer to Figure 1-8.

anomalies = df[df.Class == 1]
normal = df[df.Class == 0]

Figure 1-8. Defining data frames for fraudulent/anomalous data
and for normal data and printing their shapes

From here, you can see that the data is overwhelmingly biased towards
normal data, and that anomalies only comprise a vast minority of data
points in the overall data set. What this tells you is that you will have to
craft the training, evaluation, and validation sets more carefully so each of
these sets will have a good representation of anomaly data.
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In fact, let’s look at this disparity in a graphical manner just to see how
large the difference is:

class _counts = pd.value counts(df['Class'], sort = True)
class_counts.plot(kind = 'bar', rot=0)

plt.title("Class Distribution")

plt.xticks(range(2), ["Normal"”, "Anomaly"])
plt.xlabel("Label™)

plt.ylabel("Counts")

Refer to Figure 1-9.

Class Distribution

sromaly

Figure 1-9. A graph visually demonstrating the difference in counts
for normal data and anomalous data

The graph visually shows the immense difference between the number
of data values of the two classes.
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So now you can begin analyzing some of the characteristics of data
points in each class. First of all, the columns in this data set are Time,
values V1 through V28, Amount, and Class.

So, do anomalous data values comprise transactions with excessive

amounts? Let’s look at some statistical summary values for Amount:
anomalies.Amount.describe()

Refer to Figure 1-10 for the output.

Figure 1-10. Output of the describe() function on the data frame for
fradulent values for the column Amount

It seems like the data is skewed right, and that anomalous transactions
comprise values that are not very high. In fact, most of the transactions are less
than $100, so it’s not like fraudulent transactions are high-value transactions.

normal.Amount.describe()

Refer to Figure 1-11 for the output.

Figure 1-11. Output of the describe() function on the data frame for
normal values for the column Amount
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If you look at the normal data, it’s even more skewed right than the
anomalies. Most of the transactions are below $100, and some of the
amounts can get very high to values like $25,000.

Plotting

Let’s now turn to a graphical approach to help visually illustrate this better.
First, you define some functions to help plot the various columns of the
data to make it much easier to visualize the various relationships:

def plot histogram(df, bins, column, log scale=False):
bins = 100

anomalies = df[df.Class == 1]
normal = df[df.Class == 0]

fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
fig.suptitle(f'Counts of {column} by Class"')

ax1.hist(anomalies[column], bins = bins, color="red")
axl.set title('Anomaly')

ax2.hist(normal[column], bins = bins, color="orange")
ax2.set_title('Normal')

plt.xlabel(f'{column}")
plt.ylabel('Count")
if log scale:

plt.yscale('log")
plt.xlim((np.min(df[column]), np.max(df[column])))
plt.show()
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def plot scatter(df, x col, y col, sharey = False):

anomalies = df[df.Class == 1]
normal = df[df.Class == 0]

fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True,
sharey=sharey)
fig.suptitle(f'{y col} over {x col} by Class')

axl.scatter(anomalies[x_col], anomalies[y col], color="red")
axl.set title('Anomaly')

ax2.scatter(normal[x col], normal[y col], color='orange')
ax2.set_title('Normal')

plt.xlabel(x col)
plt.ylabel(y col)
plt.show()

Refer to Figure 1-12 to see the code in cells.

ancmalies = df [df.Cliass
normal = dffdf.

tig,
fig.

axl.hist{ancmalies(colunn], bins = bins, color==red”)
axl. Titd z

ex=True, sharey=sharey)

Figure 1-12. Each of the plotter functions in their own Jupyter cells
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Now, let’s start by plotting values for Amount by Class for the entire
data frame:

plt.scatter(df.Amount, df.Class)
plt.title("Transaction Amounts by Class")
plt.ylabel("Class")

plt.yticks(range(2), ["Normal"”, "Anomaly"])
plt.xlabel("Transaction Amounts ($)")
plt.show()

Refer to Figure 1-13.

Transaction Amounts by Class

Figure 1-13. A scatterplot of data values in the data frame
encompassing all the data values. The plotted columns are Amount
on the x-axis and Class on the y-axis

It seems like there are some massive outliers in the normal data set, as

suspected. However, the graph isn’t very informative in telling you about
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value counts, so let’s use the plotting functions defined earlier to draw
graphs that provide more context:

bins = 100
plot_histogram(df, bins, "Amount", log scale=True)

Refer to Figure 1-14.

bins = 100
plot_histogram(df, bins, "Rmcunc®, log_scale=True)

Counts of Amount by Class

Anomaly

Normal

000 0000 15000 20000 =000

Figure 1-14. A histogram of counts for data values organized into
intervals in the column Amount in the data frame. The number of
bins is 100, meaning the interval of each bar in the histogram is the
range of the data in the column Amount divided by the number of bins

From this, you can definitely notice a right skew as well as the massive
outliers present in the normal data. Since you can’t really see much of the
anomalies, let’s create another plot:

plt.hist(anomalies.Amount, bins = bins, color="red")
plt.show()
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Refer to Figure 1-15.

plt.hist (ancmalies.Amount, bins = bins, colors="red”)
plt.showi)

Figure 1-15. A histogram of just the values in the anomaly data
frame for the column Amount. The number of bins is also 100 here, as
it will be for the rest of the examples

The anomalies seem to be right skewed as well, but much more heavily

so. This means that the majority of anomalous transactions actually have

quite low transaction amounts.

Alright, so what about time? Let’s plot another basic scatterplot:

plt.scatter(df.Time, df.Class)
plt.title("Transactions over Time by Class")
plt.ylabel("Class")

plt.yticks(range(2), ["Normal", "Anomaly"])
plt.xlabel("Time (s)")

plt.

show()

Refer to Figure 1-16.

23



CHAPTER 1  GETTING STARTED: DATA ANALYSIS

In [21]: ple.scatter (df.Time, df.Class)

ple.shew()

Transactions over Tims by Class

sromaly {

- - .

] 000 wxe 7500 100000 15000 5005 175000
Ter (5

Figure 1-16. A scatterplot for values in the data frame df with data
in the column Time on the x-axis and data in the column Class in the

y-axis

This graph isn’t very informative, but it does tell you that fraudulent
transactions are pretty spread out over the entire timeline. Once again, let’s

use the plotter functions to get an idea of the counts:
plot scatter(df, "Time", "Amount")

Refer to Figure 1-17.
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Ameurt over Time by Class.

Anomaly

" ss * * i . - =,

i A *Tuty gn .,
of _,___s..-..ﬂl'.lL’..&i.l- .J-.Y- 3 n‘é‘“amt
Normal
BOOD

X000
5 15000

% w00

[ 000 50000 5000 100000 130 150000 75000

Figure 1-17. Using the plot_scatter() function to plot data values for
the columns Time on the x-axis and Amount on the y-axis in the df
data frame

You have a better context now, but it doesn’t seem to tell you much.
You can see that fraudulent transactions occur throughout the entire
timeline and that there is no specific period of time when it seems like
higher-value transactions occur. There do seem to be two main clusters,
but this could also be a result of the lack of data points compared to the
normal points.

Let’s now look at the histogram to take into account frequencies:

plot scatter(df, "Time", "Amount")

Refer to Figure 1-18.
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Counts of Time by Clags

sl
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o w000 0200 000 0000 100003 120080 1480005 160000
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Figure 1-18. Using the plot_histogram() function to plot data values
for the column Time in the df data frame

From this, you get a really good context of the amount of fraudulent/
anomalous transactions going on over time. For the normal data, it seems
that they occur in waves. For the anomalies, there doesn’t seem to be a
particular peak time; they just occur throughout the entire timespan.

It does appear that that they have defined spikes near the start of
the first transaction, and that some of the spikes do occur where normal
transactions are in the “trough” of the wave pattern shown. However,

a good portion of the fraudulent transactions still occur where normal
transactions are at a maximum.

So what does the data for the other columns look like? Let’s look at
some interesting plots for V1:

plot histogram(df, bins, "Vi")

Refer to Figure 1-19.
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plot_histogram(df, bins, “Vi%
Counts of V1 by Class

snomaly

| ‘n.l.le.L
! . . u—xllulxn-ﬂ

Horrnal

Figure 1-19. Using the plot_histogram() function to plot the data in
the column V1 in df

Here, you can see a clear difference in the distribution of points for
each class over the same V1 values. The range of values that the fraudulent
transactions encompass extend well into the values for V1. Let’s keep
exploring, looking at how the values for Amount relate to V1:

plot scatter(df, "Amount", "V1i", sharey=True)

What the sharey parameter does is it forces both subplots to share
the same y-axis, meaning the plots are displayed on the same scale. You
are specifying this so it will be easier to tell what the distribution of the
anomalous points looks like in comparison to the normal points. Refer to
Figure 1-20.
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plot_scatter(df, "Amcunt®, "V1", sharey=True)

"

V1 ower Amount by Class

anomaly

t b 5 & 2

Mormal

Bk ok o4 &

Figure 1-20. Using the plot_scatter() function to plot the values in the
columns Amount on the x-axis and V1 on the y-axis in df

From this graph, the fraudulent points don’t seem out of place
compared to all of the other normal points.
Let’s continue and look at how time relates to the values for V1:

plot scatter(df, "Time", "Vi", sharey=True)

Refer to Figure 1-21.
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140] ploc_scatter(df, "Time®, "V1®, sharey=True)
V1 over Tame by Class

Anomaly
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Time:

Figure 1-21. Using the plot_scatter() function to plot the values in the
columns Time on the x-axis and V1 on the y-axis in df

Other than a few defined spikes that stand out from where the normal
points would have been, most of the fraudulent data in this context seems
to blend in with the normal data.

Doing this one at a time for all of the other values will be tedious, so
let’s just plot them all at once using a simple script. Here is the code to plot
all of the frequency counts for each column from V1 to V28:

for f in range(1, 29):
print(f'V{f} Counts")
plot histogram(df, bins, f'V{f}")

Refer to Figure 1-22.
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Coants of VI by Class

Anomaly

Figure 1-22. A script to plot histograms using the plot_histogram()
function for data in each column from V1 to V28 in df

e w ¥ B B n

Since the output has been minimized, hover where the bar darkens

and click to expand the output so you can see the graphs a lot better. Refer
to Figure 1-23.

for £ in range(l, 29):

princ (£'V{f} Counts')
ploc_histogram(df, bins, £'V{£}')

V1 Counts
Counts of V1 by Class

Anomaly

E3
elick to unserall o;np.n: double click to hide |
=
w9
| ‘l.l.nl.aL
ol . 2 - Ilnlnnnﬂ |
Normal w

L
o
|Ir,i:=

Figure 1-23. Hovering over the bar to the left of the plots (it should
darken and show the tooltip as shown) and clicking it to expand the
output

Now you should see something like in Figure 1-24.
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Counts of ¥1 by Class

Anomaly

5
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e

Counts of V2 by Class

Anomaly

54 L1

Figure 1-24. What the expanded output should look like. All of the
graphs should display continuously, as depicted in the figure

Scrolling through, you can see a lot of interesting graphs such as
Figure 1-25 and Figure 1-26.

31



CHAPTER 1  GETTING STARTED: DATA ANALYSIS

Counts of V12 by Class

Aramaly

=
w2

Figure 1-25. A histogram of data for the column V12 in df. As you
can see, there is a very clear deviation seen with the anomalous values
compared to the normal values. Both plots share the same x-axis
scale, so while the counts might be very low compared to the normal
values, they are still spread out far more than the normal values for
the same range of V12 column values

In this case, you can see a clear differentiation between the fraudulent
data and the normal data that you didn’t see in the graphs earlier. And
so, features such as V12 are certainly more important in helping give the
model a better context.
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Counts of V17 by Class

Aromaly
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Figure 1-26. A histogram of data for the column V17 in df. Just like
with the column V12, there is also a clear deviation seen with the
anomalous values compared to the normal values. This indicates
that the column V17 is more likely to help the model learn how to
differentiate between normal and fraudulent transactions than some
of the other columns that don’t show such a deviance

This time you can see an even bigger difference between fraudulent
data and normal data. Once again, it’s features like V12 and V17 that hold
the data that will help the model understand how to differentiate between
the anomalies and the normal points.

To minimize the output, click the same bar as earlier when you
expanded the output. Let’s now look at how all of these data points vary
according to time:

for f in range(1, 29):
print(f'V{f} vs Time")
plot scatter(df, "Time", f'V{f}', sharey=True)

Once again, expand the output and explore the graphs. Refer to
Figure 1-27 and Figure 1-28 to see some interesting results.
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V12 over Time by Class

Anomaly
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Figure 1-27. The scatterplot for Time on the x-axis and V12 on the
y-axis shows a deviation between the anomalies and the normal data
points. Although a significant portion of the anomalies fall under the
band of normal points, there are still a good number of anomalies
that fall out of that range. And so you can see that against Time, the
data for the column V12 also shows this deviation from the normal
data points

Once again, with V12 you can see a significant difference between the
anomalies and the normal data points. A good portion of the anomalies
remain hidden within the normal data points, but a significant amount of
them can be differentiated from the rest.
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V17 over Time by Class.
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Figure 1-28. The scatterplot for Time on the x-axis and V17 on the
y-axis shows a deviation between the anomalies and the normal data
points. As with the values for V12, you can observe another deviation
between the normal points and the fraudulent points. In this case, the
difference seems to be a bit more pronounced, as the anomalies seem
to be more spread out than in Figure 1-27

The difference between the anomalies and the normal points are
highlighted even further when looking at V17. It seems that even in
relation to time, columns V12 and V17 hold data that best help distinguish
fraudulent transactions from normal transactions. You can see in the
graph that a few normal points are with the anomalous points as well, but
hopefully the model can learn the true difference taking into account all of
the data.

Finally, let’s see the relationship between each of these columns and
Amount:

for f in range(1, 29):
print(f'Amount vs V{f}")
plot scatter(df, f'V{f}', "Amount", sharey=True)

This time there seems to be a few more graphs more clearly showing
the differences between the normal and fraudulent points. Refer to
Figure 1-29, Figure 1-30, and Figure 1-31.
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Ameunt wa V10
Amount over V10 by Class.
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Figure 1-29. Looking at the scatterplot for Amount on the y-axis and
V10 on the x-axis, you can see a pronounced deviation of fraudulent
points from the normal points. For the relationship of the V columns
against Amount, it seems that more columns show an increased
deviation compared to the earlier plots. This difference is not so large,
as you still see that a sizeable portion of the anomalies are within the
normal data cluster. However, this still gives the model some context
in how a fraudulent transaction differs from a normal transaction

The graphs from V9 through V12 all show a clear differentiation
between the anomalies and the normal points, even if a good portion
of the anomalies are within the cluster of normal points. One thing to
note is that it may not be the same anomalies that differ each time in the
graphs, allowing the model to better learn how to differentiate between the
anomalies and the normal points.
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Amount vs V12
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Figure 1-30. A scatterplot for the column Amount on the y-axis and
V12 on the x-axis. Once again, you can see a pronounced deviation of
[fraudulent points from the normal points. In this case, the majority of
Jfraudulent points seem to deviate from the normal point cluster. You
can also see that there is a band of normal points far from the main
cluster, and that the band coincides with the anomalous data points.
It is a possible reason to keep in mind if the model classifies points like
these as anomalies

You can once again see that V12 consistently differentiates between
anomalies and normal data. However, there is still the problem of a good
portion of the anomalies staying hidden within the normal data cluster.
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Amcurit over V17 by Class

Anomaly
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Figure 1-31. A scatterplot for the column Amount on the y-axis and
V17 on the x-axis. Just as with Figure 1-30, you can see a deviation
again of fraudulent points from the normal point cluster. Once again,
the majority of fraudulent points show this deviation, but you can also
see some normal points that coincide with these anomalous points

You can also see that this differentiation between normal points and
fraudulent points holds for V17 looking at transaction amounts.

You could also look at the data for each of the V columns and plot them
against each other, but that’s more useful to help identify precise changes
in trends that will be more useful to know if you want to further train the
model to improve its performance on the new data. First of all, it’s possible
that not every feature is very significant. So, if trends do shift, it does not
necessarily mean that the model’s performance will be downgraded.

Thorough analysis of the data helps data scientists get a much better
understanding of how the various data columns relate to each other and
lets them identify if trends are shifting over time. As data is continuously
collected over time, data biases and trends are bound to shift. So perhaps
ayear from now, it’s the column V18 that shows profound differences
between anomalous points and normal points, and V17 now shows that
most anomalous points are contained within the cluster of normal points.
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Summary

Data analysis is a crucial step in the process of creating a machine learning
solution. Not only does it determine the type of model and influence the
set of features that will be selected for the training process, but it also helps
identify any changes in trends over time that may signify that the model
needs to be further trained. You explored and analyzed the data in the
credit card data set, generated many plots to get an idea of the relationship
between the two plotted variables, and identified some features that
distinguish between normal points and anomalies. In the next chapter, you
will process the data to create various subsets to help train several types of
machine learning models.
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CHAPTER 2

Building Models

In this chapter, we will go over how to build a simple logistic regression
model in both scikit-learn and PySpark. We will also go over the process of
k-fold cross validation to tune a hyperparameter in scikit-learn.

Introduction

In the previous chapter, you loaded the credit card data set and analyzed
the distribution of its data. You also looked at the relationships between
the features and got a general idea of how heavily they influence the labels.

Now that you've gained a better understanding of the data set, you
will proceed with building the models themselves. You will be using the
same credit card data set as in the previous chapter. In this chapter, you
will look at two frameworks: scikit-learn, and PySpark. The models you
build in scikit-learn and in PySpark will stay relevant for the rest of the
book, as you will be using both of them later on when you host them on
cloud services to make predictions. You will keep it simple and construct
logistic regression models in these two frameworks. Since the input data
format is different for these two frameworks, you can’t just conduct the
data processing in advance and use those train/test/validate sets for these
two frameworks. However, it is possible to do so for scikit-learn and Keras,
for example, depending on how the last layer is constructed in the Keras
model.
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CHAPTER 2  BUILDING MODELS

You will be performing the validation step with the scikit-learn model
to tune a hyperparameter. Hyperparameters can be thought of as model-
related parameters that influence the training process and result.

That being said, let’s get started with scikit-learn and build a logistic
regression model. One thing to note is that we will provide a lot of
commentary in the scikit-learn model that we may skip over in the PySpark
example, so be sure to at least read through the process for scikit-learn to
get a general idea of how train-test-validate works.

Scikit-Learn

Before we get started, here are the packages and their versions that you
will need. We will provide an easy way for you to check the versions of your
packages within the code itself.

Here are the versions of our configuration:

e Python3.6.5

e numpy 1.18.5

e pandas1.1.0

o matplotlib 3.2.1
e seaborn0.10.1

e sklearn 0.22.1.post1
In the code below, you will find that some of the imports are
unnecessary, such as importing all of sklearn when you only use a bit of

its functionality. This is done for the purpose of displaying the version and
such statements have a # beside them.
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Data Processing

So now, let’s begin with the import statements:

import numpy as np

import pandas as pd

import matplotlib #

import matplotlib.pyplot as plt

import seaborn as sns

import sklearn #

from sklearn.linear model import LogisticRegression
from sklearn.model selection impert train test split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import roc auc_score, plot roc curve,
confusion_matrix

from sklearn.model selection impert KFold

print("numpy: {}".format(np.__version_))
print("pandas: {}".format(pd. version ))
print("matplotlib: {}".format(matplotlib. version ))
print("seaborn: {}".format(sns. version_))
print("sklearn: {}".format(sklearn. version ))

Refer to Figure 2-1 to see the output.
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_:' Jupyter kit-h _logistic_reg h2 Last Checipoint 07/22/2020 junsaved changes) A Logom
Karnal gt Hulp Trusted | pyhion36 ©
B + »x @0 4+ + HRon B C B o v =
import nuspy as np

2 import pandas as pd
import matplotlib #
import mat b.pyplot as plt
import seaborn as sns
import sklearn ¢
from sklearn.linear model import LogisticRegression
from sklearn.model selection import Srain Test_split
from aklearn ng iEport lex
from skleazn.mecrics import roc_auc score, plot_Toc curve, confusion matrix
from sklearn.model selection import KFold

Figure 2-1. The output showing the printed versions of the modules
you will need. Some modules are imported for the sake of printing the
versions and have been marked with a # beside them to indicate that
they are not necessary to run the code

Now you can move on to loading the data. You will be using the same
credit card dataset as from the previous chapter:

data_path = "data/creditcard.csv"
df = pd.read csv(data_path)

Refer to Figure 2-2 to see this code in a cell.

daza_path = “data/czeditcard.cav®

df = pd.read_cavidaca_path)

Figure 2-2. Loading the data frame using pandas. The credit card
data set is located in a folder called data, which is located in the same
directory as the notebook file
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There shouldn’t be any output from loading the data frame. To see the
data frame you just loaded, call the following to ensure it has read the data
correctly:

df.head()

You should see something like in Figure 2-3.

df head

Time v vi Vi V4 Vs Ve vr v v . v vaz Va3 Vas
0 00 I3ME0T COTZE 253637 1378185 03I 046 0ZIEUD OOESHS OI6ITET . O01SNT 0ZITEN QVOATA GOBNE O
1 00 1491857 0265151 0166480 0448154 0060018 0082361 -0.078003 0085102 0255425 Q225775 0638672 0101288 -0330846 0%
210 -13%8354 1340183 1773209 O3TOTED 0503188 1800409 0791461 O24TETE 1514854 0247938 0771879 0909412 0880231 03X
310 0966272 0IESIZ6 1TE2093 -0BE3291 QOWIND 1247203 0.23TH09 QITT4I6 1387024 Q08I0 0005274 -0IMITT 1ATEETS 06«
4 20 -1158233 QBTTTAT 1548718 0403004 0407123 0005921 0582041 -0270533 OB1TTIO 009431 OTORTR -0 137458 014257 02

& rows = 31 columns
1

Figure 2-3. The output of the head() function. The data has loaded
correctly, and you can see the first five rows of the data frame

If you remember from the previous chapter, there is a massive
imbalance in the distribution of data between the normal data and the
anomalies. Because of this, you are going to take a slightly alternative
approach in how you craft this data.

This is where data analysis comes into play. Because you know that
a massive disparity between the data counts in each class exists, you will
now take care to specially craft the data sets so that it is ensured that a
good amount of anomalies end up in each data set. If you simply select
100,000 data points from df, split it into your training/test/validate sets
and continue, it is entirely possible that very few or even no anomalies
end up in one or more of those sets. At that point, you would have a lot of
trouble in getting the model to properly learn this task.

This is why you will be splitting up the anomalies and normal points to
create your training/test/validate sets.

With that in mind, let’s create data frames for the normal points and for
the fraudulent points:
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normal = df[df.Class == 0].sample(frac=0.5, random state=2020).
reset_index(drop=True)
anomaly = df[df.Class == 1]

You have set the random_state to a specific value so that the results of
the random sampling should be the same no matter how many times you
repeat it, helping with reproducibility. Unfortunately, given the nature of
how models learn, you cannot expect to get the same results every time for
something like neural networks, for example.

In the code, you filter out the respective values by class, and sample
50% of the entire data frame’s normal points to comprise the normal data
in this context.

Refer to Figure 2-4 to see this code in a cell.

normal = dfdf.Class == 0].sample(frac=0.5, random state=Z0i0).reset_index(drop=True)
ancmaly = df[df.Class == 1]

Figure 2-4. Filtering the data frame values by class to create the
normal and anomaly data frames. The normal data frame contains
50% of all normal data points, randomly selected as determined by
the seed (random_state)

You can add some code to check the shapes as well:

print(f"Normal: {normal.shape}")
print(f"Anomaly: {anomaly.shape}")

Refer to Figure 2-5 for the output.

Mormal: (142188, 31
Anomaly: (492, 31)

Figure 2-5. Printing the shapes of the normal and anomaly data
frames. There is a clear difference in the number of entries in the two
data frames
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As you can see, there is still a big disparity between the normal points
and the anomalies. In the case of logistic regression, the model is still
able to learn how to distinguish between the two, but in the case of neural
networks, for example, this disparity means the model never really learns
how to classify anomalies. However, as you will see later in this chapter,
you can tell the model to weigh the anomalies far more in its learning
process compared to the normal points.

Now you can start creating the train/test/validate split. However, scikit-
learn provides functionality to create train/test splits only. To get around
that, you will create train and test sets, and then split the train set again
into train and validate sets.

First, you will split the data into train and test data, keeping the normal
points and anomalies separate. To do this, you will use the train_test_
split() function from scikit-learn. Commonly passed parameters are

e x:The x set you want to split up

o y: They set you want to split up corresponding to
the x set

e test size:The proportion of data in x and y that you
want to randomly sample for the test set.

And so, to split up x and y into your training and testing sets, you may
see code like the following:

x_train, x test, y train, y test = train test split(x, y, test_
size=0.2, random state = 2020)

Just like earlier, random_state is setting the random seed so that every
time you run it, the data will be split the same way.
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If you don’t pass in the y parameter, you simply get a split on the x
data. And so, keeping that in mind, let’s split up your normal points and
anomalies into training and testing sets:

normal train, normal test = train test split(normal, test size
= 0.2, random_state = 2020)

anomaly train, anomaly test = train test split(anomaly,

test size = 0.2, random state = 2020)

There should be no output but refer to Figure 2-6 to see the code
in a cell.

mormal TIain, mormal test = crain test split(normal, test size = 0.2, zandom state = 2020)
ancmaly train, sncmaly Sest = train_Sest split{ancmaly, test_size = 0.2, random state = 2020)

Figure 2-6. Splitting the normal and anomaly data frames into train
and test subsets. The respective test sets comprise 20% of the original sets

Now, you can create your training and validation sets by calling the
same function on the respective training sets. You don’t want to split it
by 20% again, though, since the training set is already 80% of the original
data set. If you used a 20% split again, the validation set would be 16% of
the original data, and the training set would be 64% of the original data.
You will instead be doing a 60-20-20 split for the training, testing, and
validation data, respectively, and so you will be using a new test _size
value of 0.25 to ensure these proportions hold (0.25 * 0.8 = 0.2).

With that in mind, let’s create your training and validation splits:

normal train, normal validate = train test split(normal train,
test size = 0.25, random state = 2020)

anomaly train, anomaly validate = train test split(anomaly
train, test size = 0.25, random state = 2020)

Refer to Figure 2-7 to see the code in a cell.
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normal_train, normal validate = crain test_splic(normal train, test_size = 0.25. randem_state = 20200
ancmaly train, ancmaly validate = train test splic (anomaly train, test_size = 0.25, random scacte = I020)

Figure 2-7. You create train and validate splits from the training
data. You have chosen to make the validation set comprise 25% of
the respective original training sets. As these original training sets
themselves comprise of 80% of the original normal and anomaly data
frames, the respective validation splits are 20% (0. 25 * 0.8) of their
original normal and anomaly data frames. And so, the final training
split also becomes 60% of the original, as 0.75 *0.8 = 0.6

To create your final training, testing, and validation sets, you have to
concatenate the respective normal and anomaly data splits.
First, you define x_train, x_test, and x_validate:

x_train = pd.concat((normal_train, anomaly train))
x_test = pd.concat((normal test, anomaly test))
x_validate = pd.concat((normal validate, anomaly validate))

Next, you definey train,y test,andy validate:

y train = np.array(x_train["Class"])
y test = np.array(x_test["Class"])
y validate = np.array(x validate["Class"])

Finally, you have to drop the column Class in the x sets since it would
defeat the purpose of teaching the model how to learn what makes up a
normal and a fraudulent transaction if you gave it the label directly:

x_train = x_train.drop("Class", axis=1)
x_test = x_test.drop("Class", axis=1)
x_validate = x validate.drop("Class", axis=1)

To see all this code in a cell, refer to Figure 2-8.

49



CHAPTER 2  BUILDING MODELS

Figure 2-8. Creating the respective x and y splits of the training,
testing, and validation sets. The x sets are the combinations of the
normal and anomaly sets for each split (train, test, validate), while
the y sets are simply the data in the Class columns of those x sets. You
then drop the label column from the x sets

Let’s get the shapes of the sets you just created:

print("Training sets:\nx_train: {} y train: {}".format(x_train.
shape, y train.shape))

print("\nTesting sets:\nx_test: {} y test: {}".format(x test.
shape, y test.shape))

print("\nValidation sets:\nx validate: {} y validate:
{}".format(x_validate.shape, y validate.shape))

Refer to Figure 2-9 to see the output.

[}".formac (x_train.shape, y _train.shape))
{}".formac (x_tesc.shape, y tesc.shape))
lidate: (}".formac(x_walidate.shape, y_wvalidate.shape))

Testing seta:
x_test: (28531, 30) y_test: (28531,)

Validaticn secs:
x_validate: (28531, 30) y_wvalidate: (28531,)

Figure 2-9. Printing the output of the different sets. The three sets
should comprise 60%, 20%, and 20% of the original union of the
normal and anomaly sets

Looking at the data analysis, you can see that some of the values get
really large. The fine details are beyond the scope of this book, but when
some features have a relatively small range but others have an extremely
large range (think of the range of V1 and Time from the previous chapter),
the model will have a much harder time learning.
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In more detail, the model will have a hard time optimizing the cost
function and may take many more steps to converge, if it is able to do so at all.

And so it is better to scale everything down by normalizing the data.
You will be using scikit-learn’s StandardScaler, which normalizes all of
the data such that the mean is 0 and the standard deviation is 1.

Here is the code to standardize your data:

scaler = StandardScaler()
scaler.fit(pd.concat((normal, anomaly)).drop("Class", axis=1))

x_train = scaler.transform(x_train)
x_test = scaler.transform(x test)
x_validate = scaler.transform(x _validate)

Itis important to note that you are fitting the scaler on the entire data
frame so that it standardizes all of your data in the same way. This is to
ensure the best results since you don’t want to standardize x_train, x_test,
and x_validate in their own ways since it would create discrepancies in
the data and would be problematic for the model. Of course, once you've
deployed the model and start receiving new data, you would still standardize
it using the scaler from the training process, but this new data could possibly
come from a slightly different distribution than your training data. This
would especially be the case if trends start shifting - this new standardized
data could possibly lead to a tougher time for the model since it wouldn't fit
very well in the distribution that the model trained on.

Refer to Figure 2-10 to see the code in a cell.

scaler = StandardScaler()
scaler.fit(pd.concat|(ne,

Figure 2-10. Fitting a standard scaler object on a concatenation of
the normal and anomaly data frames. This is done so that each of
the train, test, and validate subsets will be scaled according to the
same standards, ensuring that there are no discrepancies between the
scaling of the data
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Model Training

Finally, you can now define your logistic regression model:

sk _model = LogisticRegression(random state=None, max_iter=400,
solver="newton-cg').fit(x_train, y train)

Refer to Figure 2-11 to see the code in a cell. There should not be any
outputs after execution if it all goes well. Any errors you might see could
involve a failure to converge. For that, changing the max_iter parameter
could help, and changing the solver algorithm could help as well.

sk _model = LogisticRegression{random state=None, max_iter=i(0, solver='newtcn-og').fit(x_train, y_train)

Figure 2-11. Defining the logistic regression model and training it on
the training data

After the training process, either the evaluation step or validation
step can come next. As long as the testing set and the validation set come
from different distributions (the validation set is derived from the training
set, while the testing set is derived from the original data), the model is
technically seeing new data in the evaluation and in the validation processes.

The context also matters. If you are using the validation process to
select the best model out of a set of trained models, then the validation
process can come after the training process. You can still evaluate one or
all of your trained models, but it could be unnecessary because in this
context you're trying to find the best model for the code.

In the context where you're trying to tune your hyperparameters for
amodel you are going to stick with, it doesn’t matter whether you do the
evaluation first or the validation first. Doing the evaluation first, as you will
be doing shortly, can give you a good idea of how well the model is doing
currently before starting the validation step. The model will never learn
from the evaluation data, so there’s no harm in evaluating the model on
this data.
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In this example, you are looking at tuning the hyperparameter for class
weights (how much to weight a normal sample and how much to weight a
fraudulent sample).

But first, let’s evaluate your model to get a deeper understanding of
how everything works.

Model Evaluation

You can now look at accuracy and AUC scores. First, you find the accuracy
using the built-in score function of the model:

eval acc = sk model.score(x test, y test)

Next, let’s get the list of predictions from the model to help calculate
the AUC score. AUC is usually a better metric since it better explains
the performance of the model. The general gist of it is that a model that
perfectly classifies every point correctly will have an AUC score of 100%.

The problem with accuracy in this context is that if there are 100,000
normal points and perhaps around 100 anomalies, the model can classify
all of the normal points correctly and none of the anomalies and still get
a really high accuracy above 99%. However, the AUC score would show
a value much lower at around 0.5. An AUC of 0.5 means that the model
knows nothing and is practically just guessing randomly, but in this case, it
means the model only ever predicts “normal” for any point it sees. In other
words, it hasn’t actually learned much of anything if it doesn’t know how
to predict an anomaly.

It’s also worth mentioning that AUC isn’t the sole metric by which one
should base the worthiness of a model, since context matters. In this case,
normal points far outnumber anomalies, so accuracy is a relatively poor
metric to solely judge model performance on. AUC scores in this case
would reflect the mode’s performance well, but it’s also possible to get
higher AUC scores but lower accuracy scores. That just means you must
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look at the results carefully to understand exactly what’s happening. To
help with this, you will look at a “confusion matrix” shortly.
Now, let’s get the predictions and calculate the AUC score:

preds = sk model.predict(x test)
auc_score = roc_auc_score(y test, preds)

Finally, let’s print out the scores:

print(f"Auc Score: {auc_score:.3%}")
print(f"Eval Accuracy: {eval acc:.3%}")

Refer to Figure 2-12 to see all three of the cells above and the output
that results.

eval _sce = sk _model.score(x_test, y_test)

reds = sk model.predic

aUC_scoze = IoC_aue_ a%, preds)

Figure 2-12. Printing out the AUC score and the accuracy for the
scikit-learn logistic regression model

In this case, both the AUC score and the accuracy score are high.
Between the two, the accuracy score is definitely inflated by the number of
normal points that exist, but the AUC score indicates that the model does
a pretty good job at distinguishing between the anomalies and the normal
points.

Scikit-learn actually provides a function that lets you see the ROC
curve—the figure from which the AUC score (or “area under curve”) is
derived from. Run the following:

roc_plot = plot roc curve(sk model, x test, y test,
name="'Scikit-learn ROC Curve")

Refer to Figure 2-13 for the output.
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roc_plot = plet_roc_curve(sk_model, X Test, y_Test, names'Scikit-learn ROC Curve')

et

L1}
" { Sciot.Jeam ROC Curve (AUC = 0.98)

06 o 10

o [¥] 0s
Fabie Bosiive Rate

Figure 2-13. The ROC curve generated for the logistic regression
model you just trained. An ROC curve starting with a true positive
value of 1.0 at a false positive value of 0.0 is the best possible curve in
theory. From that point, it should keep going right while maintaining
its value as it hits 1.0 on the x-axis. This graph is quite close to that
ideal, hence why the AUC score is so high at 0.98. The discrepancy in
AUC score here compared to when you calculated it earlier has to do
with how the value is actually calculated

What'’s basically happening is that scikit-learn takes in the model and
the evaluation set to dynamically generate the curve as it predicts on the
test sets. The metrics you see on the axes are derived from how correctly
the model predicts each of the values. The “true positive rate” and the
“false positive rate” are derived from the values on the confusion matrix
that you will see below.

From that graph, the AUC score is generated. You can see that it differs
from the score that was calculated earlier, but this can be attributed to the
two functions calculating the scores slightly differently.

Let’s now build the confusion matrix and plot it using seaborn:

conf matrix = confusion matrix(y test, preds)

ax = sns.heatmap(conf matrix, annot=True,fmt="'g")
ax.invert xaxis()

ax.invert yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted")

Refer to Figure 2-14 for the output.
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confusion_matrix(y_test, preds)
map (conf_matrix, annot=Troe,fEt='g')

Figure 2-14. The confusion matrix plot of the results of training. The
accuracy for the normal points is very good, but the accuracy for the
anomaly points is ok. There is still further room for improvement
looking at these results, as you have not tuned the hyperparameters of
the model yet, but it already does ok in detecting anomalies. The goal
now is to keep the accuracy for the normal points as high as possible,
or at a high enough level that’s acceptable, while raising the accuracy
for the anomaly points as high as possible. Based on this confusion
matrix plot, you can now see that the lower AUC score is more
accurate at reflecting the true performance of the model. You can see
that a non-negligible amount of anomalies were falsely classified as
normal, hence an AUC score of 0.84 is a much better indicator of the
model’s performance than the graph’s apparent score of 0.98

This is what a confusion matrix looks like. The y-axis consists of
the true labels, while the x-axis consists of predicted labels. When the
true label is “0” and the model predicts “0,” we call this a true negative.
“True” refers to the true label, and “negative” refers to the label the model
predicts.

What counts as “positive” and what counts as “negative” can differ. In
tasks such as disease detection, if a test finds someone to have the disease,
they are said to “test positive.” Otherwise, they “test negative.” Anomaly
detection is similar. When a model thinks that a point is an anomaly, it
flags it with the label “1” And so, a point is labeled “positive” if the model
thinks it is an anomaly, and “negative” if it doesn’t.
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You may notice that we have inverted the axes in the code. This is
simply to get it in the format so that the top left of the matrix corresponds
to “true positives,” the top right of the matrix corresponds to “false
negatives,” the bottom left of the matrix corresponds to “false positives,’
and the bottom right of the matrix corresponds to “true negatives.’

To quickly recap these concepts:

o True positives are values that the model predicts as
positive that actually are positive.

o False negatives are values that the model predicts as
negative that actually are positive.

o False positives are values that the model predicts as
positive that actually are negative.

o True negatives are values that the model predicts as
negative that actually are negative.

To look at how well the model identifies anomalies, look at the 1
row on the y-axis. The sum of this row should equal the total number
of anomalies in the test set: 99 anomalies. The model predicted about
68.7% of the anomalies correctly (68/(68+31)) and predicted 99.98% of the
normal points correctly (28425/(28425 + 7)) looking at the bottom row.

As you can see, the confusion matrix gives us a really good look at
the true performance of the model. You now know that it does very well
in the task of predicting normal points but does an ok job at predicting
anomalies. That being said, the model can still predict a majority of
anomalies correctly. And so you can see that the AUC score of 0.84 was
much more accurate at indicating the performance of the model than the
graph, which had an AUC of 0.98. With an AUC of 0.98, you can expect that
there are very, very few instances of false negatives or false positives.

57



CHAPTER 2  BUILDING MODELS

Model Validation

Let’s now look at how to use the process of k-fold cross-validation to
compare several hyperparameter values. After the validation process has
ended, you will compare the evaluation metrics to get a better idea of what
hyperparameter setting works best.

The hyperparameter you want to tune is how much you want to weight
the anomalies by compared to the normal data points. By default, both of
them are weighted equally. Let’s define a list of weights to iterate over:

anomaly weights = [1, 5, 10, 15]

Next, you define the number of folds and initialize your data fold

generator:

num_folds = 5
kfold = KFold(n_splits=num folds, shuffle=True,
random_state=2020)

What this KFold() function does is that it splits the data passed in into
num_folds different partitions. A single fold acts as a validation set at a
time, while the rest of the folds are used for training. In this context, the
“validation fold” is basically what the model will be evaluating on. It is
called “validation” since it helps us get an idea of how the model is doing
on data it has never seen before.

If you have built deep learning models before, you may know that
during the training process, you can split a small portion of the training
set aside as a validation set. This lets you know during training if you're
overfitting or not, as decreasing training loss and increasing validation loss
would indicate.

Refer to Figure 2-15 to see the code above in cells.
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ancmaly weights = [1, 5, 10, 15]

num_folds = 5
kfold = KFold(n_splita=num folds, shuffle=True, random state=i0I0)

Figure 2-15. Setting the different values for anomaly weights to test
with the validation script and constructing the KFold data generator.
In this case, you are using five folds, so the data passed in will be split
five ways

Now you define the validation script:

logs = []

for f in range(len(anomaly weights)):
fold = 1
accuracies = []
auc_scores= |[]
for train, test in kfold.split(x_validate, y validate):

weight = anomaly weights[f]

class _weights= {
0:1,
1: weight

}

sk_model = LogisticRegression(random state=None,
max_iter=400,
solver="newton-cg',
class weight=class_
weights).fit(x_
validate[train],
y validate[train])
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for h in range(40): print('-', end="")
print(f"\nfold {fold}\nAnomaly Weight: {weight}")

eval acc = sk model.score(x validate[test],
y validate[test])
preds = sk model.predict(x validate[test])

try:

auc_score = roc_auc_score(y validate[test], preds)
except:

auc_score = -1

print("AUC: {}\neval acc: {}".format(auc_score, eval acc))

accuracies.append(eval acc)
auc_scores.append(auc_score)

log = [sk model, x validate[test], y validate[test], preds]
logs.append(log)

fold = fold + 1

print("\nAverages: ")
print("Accuracy: ", np.mean(accuracies))
print("AUC: ", np.mean(auc_scores))

print("Best: ")
print("Accuracy:

, np.max(accuracies))
print("AUC: ", np.max(auc_scores))

That’s a lot to take in at once, so be sure to refer to Figure 2-16 to make
sure your code is formatted correctly.
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In [33]: loga = []
for £ in range(len(ancmaly weights)):
fold = 1
accuracies = []
auc_scores= (]
for train, test in kfold.split(x validate, y validate):
weight = ancmaly weights(f]

class_weights= |

1: weight

ak_model = LogisticRegression (random state=Hone,

',
class_weights).fit(x_vslidate[train], y_validate[train])

eval_acc = sk_model.score(x_validate(test], y_validate[test])
preds = sk_model.predict (x_validace[ceac])

try:
Aus_score = roc_auc_score(y_validate[tesc], preds)
except:

auc_score = -1

print( \neval_aco: [1".foxmat(aug_scoze, eval_acc))

accuracies.append(eval_acc)
auc_scores.append (auc_score)

log = [sk_model, x_walidate[test], y_validate[test], preds]
lege.append(lag)

fold = fold + 1

np.mean (sccuracies) )
np.ESan iﬂ'JC_!CQ:C!} ]

, Tp.max(accuracies))
np. RAX (AUC_scores) )

Figure 2-16. The validation scriptin a cell. The script is quite long, so
be sure it is formatted correctly because a single space misalignment
can cause issues

Before you run the script, let’s go over what the code does, as that was a
lot of code thrown out at once.

The first loop goes over each of the anomaly weights. You set the fold
number here equal to 1 and define empty lists to hold values for accuracy
and AUC scores for each run with the current weight parameter.

The second loop goes over the five fold boundaries that the KFold()
object defines. You set the class_weights dictionary and pass it into the
model as a hyperparameter. After the training process, you evaluate as
usual. There is a try-except block for the AUC score in the event that the
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fold generated only has values of one class (so really if it only has normal
data and no anomalies). If the AUC score is -1 for any fold, then you know
there was a problem with one of the folds.

You do save the model, the validation data, and the predictions so that
you can examine the confusion matrix and plot the ROC curve for any run
you like. After the end of the five folds, the script then displays averages
and the best scores.

The output will be truncated when you run this, so don’t forget to
expand it like in the previous chapter to look at all of the runs. Feel free to
explore the output or even change the number of folds but beware of the
results because increasing the number of folds can mean that the number
of anomalies must be spread across even more partitions. In this specific
context, a lower number of folds is likely to be better because you have so
few anomaly points.

When yous sift through the output, you can see that the best results
occur when the anomaly weight is set to 10. This setting had the highest
average AUC score and had the best AUC score as well, resulting in an
output like what you see in Figure 2-17.
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fold 1

Anomaly Weight: 10

AUC: 0.9245604009143662

eval acc: 0.9985982127212195

fold 2

Anomaly Weight: 10

AUC: 0.9751350672194998

eval acc: 0.9977216964598669

fold 3

Anomaly Weight: 10

AUC: 0.9313783507133262

eval acc: 0.9985979670522257

fold 4

Anoraly Weight: 10

AUC: 0.8942972430196292
eval acc: 0.998422712933754

fold 5

Anomaly Weight: 10

AUC: 0.8820013855427915

eval acc: 0.9985979670522257

Averages:

Accuracy: 0.95983877112438584
AUC: 0.9214744894819227
Best:

Accuracy: 0.9985982127212195
AUC: 0.97513506721949%8

BUILDING MODELS

Figure 2-17. Looking at the results of the best setup in the validation
script output. The best setup turned out to be one where the anomalies
were weighted as 10, as it had the best average AUC score and the best
AUC score with the other anomaly weight parameters. The true best
weight is likely around an anomaly weight of 10, though you must
perform another hyperparemter search with a more narrowed range
to find the absolute best setting. You can keep narrowing the search as
much as you'd like, but past a certain precision, you will find that you
are getting diminishing returns
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Let’s examine the plots for this setup since it was the best performer of
all of them on average.

First, you load the correct log in the list of logs. Since the anomaly
weight was 10, and the second fold performed the best, you want to look at
the twelfth index in the entries in logs. (The first five correspond to indices
0-4, and the next five are indices 5-9. With index 10, you begin the first fold
with weight ten, so the second fold is at index 11.)

sk _model, x val, y val, preds = logs[11]

Let’s look at the ROC curve. Keep in mind that since there is so little
data in the validation set, the AUC score may not be so accurate. Here is
the code:

roc_plot = plot roc curve(sk model, x val, y val, name='Scikit-
learn ROC Curve')

Refer to Figure 2-18 to see the output of the above two cells.

ok_mcdel, x_val, y_val, preds = loga[il]

roc_plot = plot_roc_curve(sk_model, x_val, y_val, name='Scikic-les:n ROC Curve')

Figure 2-18. Viewing the ROC curve for a specific validation fold.

As you can see, the ROC curve is quite optimal. A perfect ROC curve
would start as close as possible to 1.0 on the y-axis while maintaining
that level right as it reaches 1.0 on the x-axis. An ROC graph like that
would mean the AUC would be as close to 1.0 as possible. In this case,
you almost see the perfect AUC curve, and the AUC is stated to be 1.0.
The confusion matrix in Figure 2-19 will reveal a lot more about why
the AUC score is so low
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This graph looks different compared to the ROC plot you saw earlier. In
fact, it almost seems perfect.

Let’s look at the confusion matrix to get a better idea of how the model
performed on this fold:

conf _matrix = confusion matrix(y val, preds)

ax = sns.heatmap(conf matrix, annot=True,fmt="'g")
ax.invert xaxis()

ax.invert yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted")

The resulting confusion matrix can be seen in Figure 2-19.

y_val, preds)
annot=True, fat="g")

Figure 2-19. The confusion matrix for a specific validation fold. It
has very good accuracy in labeling normal data points and does very
well with anomaly points. Additionally, you can see that there are
barely any anomalies in this validation fold if you count the entries
in the top row: 21 anomalies to 5,685 normal points. It is no wonder,
then, that having a higher weight on the anomaly helped the model
Jactor in these anomalies in its learning process, resulting in better
performance in anomaly detection
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The model did quite well on correctly classifying the anomalies, but
the goal of validation in this case is just to help nudge the hyperparameter
setting in the right direction. Based on the results of the validation process,
you know that the optimal hyperparameter value lies within the values of
10 and 15 because those two settings produced the best results.

Of course, you can narrow the range further to include values between
10 and 15 for the anomaly weights and repeat this process again and again,
further reducing the range until a good, optimal value is found. After a
certain precision, however, you will find that you are getting diminishing
returns, and that the effort you put into hyperparameter tuning only
produces near-negligible boosts in performance.

With that, you now know how to train, evaluate, and validate a logistic
regression model in scikit-learn.

PySpark

We have provided the versions of the modules we will be using. Installing
PySpark can be a little complicated as it’s not a matter of doing pip
install PySpark depending on the version, so beware of that.

Here are the versions of our configuration:
e Python3.6.5
e PySpark3.0.0
o matplotlib 3.2.1
e seaborn0.10.1
e sklearn 0.22.1.post1

With that, let’s begin. Again, we will not provide commentary as
detailed as in the scikit-learn example, so be sure to review the whole
process in scikit-learn to get a good idea of how it will go. Additionally, we
won’t be validating the model in PySpark in this example.

66



CHAPTER 2  BUILDING MODELS

Data Processing

Here are the import statements:

import pyspark #

from pyspark.sql import SparkSession

from pyspark import SparkConf, SparkContext
from pyspark.sql.types import *

from pyspark.ml.feature import VectorAssembler
from pyspark.ml import Pipeline

from pyspark.ml.classification import LogisticRegression as
LogisticRegressionPySpark

import pyspark.sql.functions as F

import os

import seaborn as sns

import sklearn #

from sklearn.metrics import confusion matrix
from sklearn.metrics import roc_auc_score

import matplotlib #
import matplotlib.pyplot as plt

os.environ["SPARK LOCAL_IP"]='127.0.0.1'
spark = SparkSession.builder.master("local[*]").getOrCreate()
spark.sparkContext. conf.getAll()

print("pyspark: {}".format(pyspark. version ))
print("matplotlib: {}".format(matplotlib. version ))
print("seaborn: {}".format(sns. version ))
print("sklearn: {}".format(sklearn. version ))

The output should look something like in Figure 2-20.
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: Jupyter pyspark_logistic_regression Last Checkpoint 3 few seconds ago (unsaved changes)
Trusied  # |prihonis O

B+ @20 4+ + HRun B € W oo ~ =

import pyspark §
frem pyspark.sql import SparkSeasicn

from pyspark import SparkConf, SparkContext
from pyspark.sql.Cypes import *

from pyspark.ml.feature import VectorAssembler
from pyspark.ml import Pipeline

from pyspark.ml.classification import Logisti
import pyspazk.aql.functicna as F

import oa

import seaborn as sns

import sklearn #

from sklearn.metrics import confusion WATrix
from sklearn.metrics import roc_suc_scoze

as Logisti vSpazk

import matplotlib #
import matplotlib.pyplot as plt

ocal(*]").getOrCreace()

1en_))

: {}".Lormat (FYFFazk.

: 11", Zormat (matpl
}=.format (sns._ versi
¢ {}".formac (sklearn._ versicn_ })

Figure 2-20. Importing the necessary modules and printing their
versions. Once again, modules imported solely for the purpose of
displaying versions are marked with a # so you may remove them and

the print statements if desired

You will notice that there is some additional code relating to PySpark
that you have had to define. With PySpark, you must define a Spark context
and create a Spark session. What this really means is that you are creating
a point of connection to the Spark engine, enabling the engine to run all of

the code relating to Spark functionality.
Let’s now load the data set. PySpark has its own functionality for

creating data frames, so you won'’t be using pandas. Execute the following:

data_path = 'data/creditcard.csv’

df = spark.read.csv(data_path, header = True, inferSchema = True)
labelColumn = "Class"

columns = df.columns

numericCols = columns

numericCols.remove(labelColumn)

print(numericCols)
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You should see something like Figure 2-21.

date_path = ‘dota/czeditcazd.cav’

df = spark.read.csv(daca_path, Reader = True, inferSchema = True)

Figure 2-21. Reading the credit card data set in PySpark and
removing the Class column from the list of columns. This is done
because you don’t want the Class column to be included in the feature
vector, as you will see in Figure 2-22

Printing the columns is just to ensure that the label column has been
removed successfully.

You can look at the data frame now just to ensure that it has been
loaded properly. You will have to use built-in functionality to convert to a
pandas data frame, because Spark data frames are not very clean to look at.

Look at the following two cells and their outputs:

df.show(2)

Refer to Figure 2-22.
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In [6]: df.shew (1)
.......................... e
|Tizme| Vi| VIl V3l Ve w51
VE| VT vE| V| vig| vii|
viz| V13| vid| vis| V16| viT|
vig| vig| vao| a1y vaz| vas|
vas| vas| Va2l vari V28 |Amount |Class|
+

| 01-1.3598071336738|-0.072761173309849712.53634673796914| 1.37815522427443|-0.338320769942518] 0.462387777
762292| 0©.239598554061257|0.09 79012610507 | 0.363786969611213(0.0907941719789316|-0.551599533260813|-0.6178
OORESTE2348 | -0.991309847235408|-0.311169363699879| 1.49681769720949271-0.47T040082562894781 0.20797124192924210.02
57905801985591| 0.403992960255733| 0.2514120982397051~-0.018306777944153| 0.277837575558899|~-0.1104739101887¢€
TI0.0669280749146731(0.128539358273528(<0.189114843888824 0.133558376740387|-0.0210530534538215(|149.62|

L]

I 011.19185711131486| 0.26615071205963|0.1664801133532110.448154078460911|0.0600176492822243|-0.0823608088
1556871-0.07880298332231130.0851016549148104(-0,255425120109186-0.1669744140046141 1.61272666108479) 1.065
23531137287| 0.48909501585608|-0.143772296441519|0.635558093256208] 0.4639170410221711~0.1148046631023461=0.1
B33612701239941-0.145783041325259)-0.06908313 302031-0.2257752499033138 | -0, €38671952771851 | 0.10128802125323
4]=0.339846475529127(0.167170404418143]| 0.125894532362176(|-0.00898309914322813| 0.0147241691924927| 2.69]

]|

only showing top 2 zows

Figure 2-22. The output of the Spark data frame. Since there are so
many columns in the data frame, the output is very messy and very

difficult to read. Fortunately, there is built-in functionality to convert
PySpark data frames into pandas data frames, making it much easier

to view the rows in the Spark data frame

Now compare this to the following:

df.toPandas().head()
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In [9]: df.coFandas () .head()

Tume Vi vz Vi v Vs vE vr vE Vi . v vz vz v .
° 0 -1.359807 0072781 2536347 13TE1S5 033331 0462383 0209590 0008688 0363TET . -Q01BNT 027TEIE 0110474 0066828 0128
1 0 1ABIEET 0266151 0965430 0443154 0060013 0082361 -D0TEIE3 0085102 0255428 QI2EITE -QEWETT  LANIZEE 0339846 06T
H 1 -1.358354 1340183 1773289 037STE0 0503158 1800459 0790481 O2TETE 1514654 0247998 OTTI6TH 0808412 0889281 032N
3 1 0068272 018822 1702093 0883291 0010009 1247203 0.20TEGY 0.0IT4IE 1387024 . 0108300 OO0S2T4 0ASGE21 LATSETS CE4T
4 2 1158233 087TTIT 1548T18 0400034 0407153 0085831 0580541 02708533 081TTIS 003431 OTIAIE L137458 0041287 L0

5 rows = 31 columns
< >

Figure 2-23. Using PySpark’s built-in functionality to convert the
spark data frame into a pandas data frame for easier viewing. As seen
in Figure 2-22, it is extremely hard to read the direct output of a Spark
data frame

So whenever you want to check a Spark data frame, make sure to
convert it to pandas if it has a lot of columns.

The data processing procedure for PySpark is slightly different than
in pandas. To train the model, you must pass in a vector called features.
Take a look at the following code:

stages = []

assemblerInputs = numericCols

assembler = VectorAssembler(inputCols=assemblerInputs,
outputCol="features")

stages += [assembler]

dfFeatures = df.select(F.col(labelColumn).alias('label'),
*numericCols )

This defines the inputs to the assembler so that it knows what columns
to transform into the features vector.

From here, let’s add to the cell above and create the normal and
anomaly data splits as with the scikit-learn example.

normal = dfFeatures.filter("Class == 0").
sample(withReplacement=False, fraction=0.5, seed=2020)
anomaly = dfFeatures.filter("Class == 1")
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normal train, normal test = normal.randomSplit([0.8, 0.2],
seed = 2020)

anomaly train, anomaly test = anomaly.randomSplit([0.8, 0.2],
seed = 2020)

The cell should look like Figure 2-24.

stages = [])

assemblerInputs = numericCols

assenbler = ler({inputCol erinputs, outputCol="Ifeatures”)
atages += [asaenbler]

dfFeatures = df.select(F.ccl(labelColumn).alias(*label’), #numericCols )

normal = dffeatures.filter(™
ancmaly = dffeatuzes.filter(

") .sample (withReplacement~False, fracticn=(.5, ased=2020)
17}

normal train, normal test = nor

= demSplit ([0.8, 0.2], seed = 2020)
anomaly_train, anomaly_test = an

randomSplit([0.8, 0.2], seed = 2020)

Figure 2-24. Constructing the VectorAssembler that will be used later

to create a feature vector from the input data. You also create a normal
and anomaly data split similar to how it was done in scikit-learn, and
split it in a similar fashion into training and testing subsets

Just like in the scikit-learn example, you combine the respective
normal and anomaly splits to form your training and testing sets. This
time, however, you won'’t have a validation set, so you are looking at an
80-20 split between the training and testing data.

train = normal train.union(anomaly train)
test = normal test.union(anomaly test)

Refer to Figure 2-25 to see the cell.

train = normal_train.unicn(ancmaly_train)
Test = :‘.C:If»l'.__(es:.'.}}“iﬂn(ﬂ:‘.OMl','_!eI:.l

Figure 2-25. Creating the training and testing sets in a similar
manner to how you did it in scikit-learn, but with PySpark’s
functionality
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Let’s finish the rest of the pipeline and create the feature vector:

pipeline = Pipeline(stages = stages)

pipelineModel = pipeline.fit(dfFeatures)

train = pipelineModel.transform(train)

test = pipelineModel.transform(test)

selectedCols = ['label', 'features'] + numericCols
train = train.select(selectedCols)

test = test.select(selectedCols)

print("Training Dataset Count: ", train.count())
print("Test Dataset Count: ", test.count())

Refer to Figure 2-26 to see the output.

pipeline = Fipeline (stages = atages)

", Train.counti))
¢ test.count())

Figure 2-26. Using a pipeline to create a feature vector from the data
Jframe. This feature vector is what the logistic regression model will
train on

Model Training

You can now define and train the model:

1r = LogisticRegressionPySpark(featuresCol = 'features’,
labelCol = 'label', maxIter=10)

lrModel = lr.fit(train)

trainingSummary = lrModel.summary
pyspark auc_score = trainingSummary.areaUnderROC
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Refer to Figure 2-27 to see the above code in a cell.

aticRegressionfySpark(feacuresCol = ‘'features', labelCol = ‘label’, maxTter=if)

1rModel x.fit(crain)

trainingSummary = lrModel.summary
pyspark_auc_score = trainingSumary.areaUnderROC

Figure 2-27. Defining the PySpark logistic regression model, training
it, and finding the AUC score using the built-in function of the model

Model Evaluation

Once the model has finished training, run the evaluation code:
predictions = lrModel.transform(test)

y true = predictions.select(['label']).collect()

predictions.select([ 'prediction']).collect()

y_pred

evaluations = lrModel.evaluate(test)
accuracy = evaluations.accuracy

Add the following code as well to display the metrics:

print(f"AUC Score: {roc_auc_score(y pred, y true):.3%}")
print(f"PySpark AUC Score: {pyspark auc_score:.3%}")
print(f"Accuracy Score: {accuracy:.3%}")

Refer to Figure 2-28 to see the output.

AUC S 22%
PySpark re: §7.997%
Accuracy Score: 39.309%

cor

Figure 2-28. The output metrics. The AUC score is calculated using

scikit-learn’s scoring algorithm, while the PySpark AUC score metric
comes from the training summary of the PySpark model. Finally, the
accuracy score is also outputted
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You can see that the AUC score and the accuracy are quite high, so let’s
examine the graphs.
First, let’s look at the ROC curve:

pyspark roc = trainingSummary.roc.toPandas()
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate")
plt.title('PySpark ROC Curve')

plt.plot(pyspark roc['FPR'],pyspark roc['TPR'])

To see the graph, refer to Figure 2-29.

In [11): 1 pyspark roc = trainingSummary.roc.toPandas()
plt.xlabel ('False Positive Rate')
plc.ylabel ("True Positive Rate'
1 plt.title('PySpark ROC Curve')
plt.plot (pyspark roc['FPR'],pyspark roc['IPR'])

Cut[11l]: [<matplotlib.lines.Line2D at 0x23453c765c0>]

PySpark ROC Curve

—

Fue Positive Rate
o o (=]
o -] o

o
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o
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Figure 2-29. The ROC curve for the PySpark logistic regression model
you just trained. A perfect ROC curve would have the true positive
rate starting at 1.0, where it continues right to a false positive rate
value of 1.0. This curve is quite close to that, hence why its area (AUC)
is said to be around 0.97997 by PySpark, keeping in mind a perfect
AUC score is 1.00
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The curve looks quite optimal. Let’s now look at the confusion matrix
to get a detailed idea of how the model performs:

conf matrix = confusion matrix(y true, y pred)

ax = sns.heatmap(conf matrix, annot=True,fmt="'g")
ax.invert xaxis()

ax.invert yaxis()

plt.ylabel('Actual’)

plt.xlabel('Predicted")

Refer to Figure 2-30 to view the confusion matrix plot.

In [13]: conf matrix = confusion matrix(y_true, y pred)
ax = sns.heatmap(conf matrix, annot=True,fmt='g')
ax.invert xaxis()
ax.invert yaxis
plct.ylabel ('Actual')
plt.xlabel ('Predicted"')

Text (0.5, 5.0, '"Predicted')

- 25000

- 20000

- 15000

- 10000
28363

- 5000

Predicted

Actual

Figure 2-30. The plotted confusion matrix of the PySpark logistic
regression model you just trained. The accuracy of correctly labeled
points for the normal data is very high and is decent for the
anomalous data
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From this, you have a much more detailed account of how the model
performed. Looking at just the anomalies, you see that the model has
a 81.4% accuracy (70/(70+16)) in predicting anomalies. This is better
than the model you trained in scikit-learn, though you haven’t tuned the
hyperparameter to attain maximum performance.

PySpark does have an option to weight your data, but this is done on
a sample-by-sample basis. What this means is that instead of passing in a
weight dictionary for each class, you have to create a column in the data
frame with each anomaly being weighted a certain amount and each
normal point being weighted as 1, for example. By default, everything
is weighted as 1, so that means the PySpark model may have a greater
potential in performance than the scikit-learn model.

Moving on to the normal points, you see a really good accuracy of
99.96% (28363/(28363+10)), so it is able to identify normal points very well.

Summary

With the insights you gained from data analysis, you processed the data
into training, testing, and validation sets in scikit-learn and PySpark
(you only did a train-test split in PySpark, but you could have split the
training data into training and validation sets just like in scikit-learn).
From there, you constructed logistic regression models in each framework
and trained and evaluated on them. You looked at accuracy and AUC
scores as metrics and looked at the ROC curve and confusion matrix to
get a better idea of how the model performed. For the scikit-learn model,
you performed k-fold cross-validation to help tune the hyperparameter.
In the next chapter, you will keep your experiences with data analysis
and model creation in mind as you learn about MLOps and how you can
operationalize your models.
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What Is MLOps?

In this chapter, we will cover the concepts behind the term “MLOps” and
go over what it is, why it’s useful, and how it’s implemented.

Introduction

Creating machine learning solutions to various problems can be quite
the arduous task. Let’s imagine ourselves in the shoes of a team that is

attempting to solve a problem with machine learning. You may be familiar

with this process if you read Chapter 1, but we will recap the entire process

once again to establish the context. You may skip past this section if you
are already familiar with this. The entire process may look somewhat like
the following:

e Collect and process raw data: Raw data is rarely in
a format that is easy to train a model on. Usually, it
requires processing to remove aberrant data points
such as null values and faulty data values. Other
times, you might have to process the raw data to
extract only the information you need among all of
the noise.
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Analyze the data: This step involves looking at the
data points and understanding their characteristics.
How is it structured? What does the distribution of the
data points look like? Are there any identifiable trends
or biases in the data? This step is crucial because it
dictates how you are going to approach the problem.
If you already have a trained model you are looking

to update, it also tells you if there are any new trends
in the data that your model should be updated to
consider. If you identified any “useless features” that
don’t really influence the output, you might drop them
and train a new model to improve training speed while
possibly boosting performance.

Process the data for training: In this step, you could
be scaling the data to a more appropriate range and
perhaps removing any outliers and/or anomalies that
could interfere with model performance. Furthermore,
you could also be applying feature engineering to
create new features from existing data points and
perhaps give your model more or a better context
during training. This is also where you create training
and testing data sets, though optimal practice is to
make training, testing, and validation data sets.

Construct, train, and test the model: In this step, you
are creating the model, setting hyperparameters, and
training the model. In the case of deep learning, you
can also select a subsection of the training set to be a
data validation set. The purpose of this set is to have
the model be evaluated on it at the end of every epoch
or full forward pass of the data through the model. By
comparing the model performance on data it’s seen
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many times over during training versus data it hasn’t
seen at all (or rather, data that has no effect on weight
adjustment), you can see if the model is truly learning
to generalize or if it’s just overfitting.

Overfitting is when a model performs significantly
better on a training set compared to data that it has
never seen before. As just discussed, one way to

give an early indication of overfitting is to set aside a
portion of the training set as validation data during the
training phase. This can give you an early indication
of overfitting without having to find out after the
training process has finished, which can take anywhere
from minutes to days depending on the depth of the
model and the equipment used. And so, it follows that
overfitting can also be observed when the model is
evaluated on the testing data or validation data, and
discrepancies in model performance can be observed
between these sets and the training set.

This phenomenon of overfitting could partially result
from the model not receiving enough data points
during training to reflect the variety it is expected to
see, so fixing the training set by introducing more
variety or even increasing the number of data points
can help. Additionally, including methods such as
regularization or dropout into the model’s architecture
can also help combat overfitting in the case of deep
learning models.
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An important thing to discuss is the purpose of the
testing and validation sets. Testing sets are reserved
for evaluating a model’s performance on data it’s never
seen before.

Validation sets are reserved for helping select models,
select model architecture, tune hyperparameters, or
simply to give an indication of model performance on
data it’s never seen during the training process.

An example of validation is k-fold cross-validation,
where it generates k random partitions of test-train
data from validation data and can be used to train/
evaluate the model on all of them to give an idea

of the best performance it can attain with various
hyperparameter settings. Of course, we can also use
k-fold cross validation to perform the other functions
that validation helps with. You looked at an example
using this method of validation in Chapter 2, when you
used it to help tune the weighting of anomalies.

Coupling this technique with a script that has a set of
hyperparameters can result in an optimal model with
proper hyperparameters. From there, the model can
be retrained and evaluated again on the test set to get a

final performance benchmark.

The specific order this is done in can differ, though.

For example, trained models can also be evaluated

first and then validated, compared to the other way
around. This is because the training process is likely to
be repeated with altered hyperparameters anyway after
the evaluation stage reflects some form of performance
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discrepancy or if validation data during the training
process reveals that possible overfitting is occurring.
Either way, it really depends, but good practice is to at
least incorporate both testing and validation data to
best tune the model.

Validate and tune the model: As previously
discussed, the validation set can be another “testing”
set that the model has never seen before, and can

be used in any of the several ways described earlier
and in Chapter 1. Once your model has reached an
acceptable level of performance on the validation set
and is retrained and evaluated again, you can look at
deploying the model.

Deploy and monitor the model: In this step, the
model has finally left the hands of the machine
learning/data science team. It is now the job of
engineering and operational teams to integrate this
model into the application and put it into service.
Operational teams are in charge of constantly
monitoring the performance of the model, with dips
in performance possibly indicating that this entire
process may need to be repeated to update the model
to understand new trends. Operational teams are also
responsible for reporting any bugs and unexpected
model predictions to the data science team, feedback
that also contributes to the start of this whole cycle as
the model needs to be fixed.
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Hopefully, it’s clear just how work-intensive the entire process can
get, especially since it will most likely need to be repeated multiple times.
While it is possibly easier the second time around since you're only
updating the model on new data patterns and trends, it is still a problem
that can take up hours of manual labor that can be better spent elsewhere.
After all, maintenance of applications in the software development
process is usually where most of the money and resources go, not the
initial construction and release of the application. The same can apply
to machine learning models, worsening the overall maintenance costs
because the costs for deployed machine learning models are added on top
of the costs for the software application utilizing the services of the models.

Imagine if you could simply automate this entire process away,
allowing you to take full advantage of high-performance machine
learning models without all of that hassle. This is where MLOps comes in,
something that can be thought of as the intersection between machine
learning and DevOps practices. DevOps, or developmental operations,
refers to a set of practices that combines the work processes of software
developers with those of operational teams to create a common set
of practices that functions as a hybrid of the two roles. As a result, the
developmental cycle of software is expedited, and continuous delivery
of software products is ensured. Total costs also go down because
maintenance costs are reduced as a result of the increase in efficiency of
the workflow in maintaining the software applications. Refer to Figure 3-1
to see a graph representing the DevOps workflow.
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Figure 3-1. A graph depicting the workflow in a DevOps
environment. Software development teams typically adopt the Agile
methodology of software development, which is summarized above
through the planning, building, and testing stages. Operational teams
are in charge of deploying, maintaining, and collecting feedback in
the form of bugs and user feedback and relaying this information to
the development teams. From there, the development team enters the
maintenance phase of the application, where they plan, build, test,
and push the next patch/update for the application. Furthermore,
automating the process of testing and deploying allows for continuous
integration and delivery of software products, something we will
expand upon later in this chapter
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Similarly, MLOps adopts DevOps principles and applies them to
machine learning models in place of software, uniting the developmental
cycles followed by data scientists and machine learning engineers
with that of operational teams to help ensure continuous delivery of
high-performance machine learning models. The process of model
development in what'’s called the experimental stage, something we will
look at in detail later in the chapter, can lead to impressive performances
and can seem like very promising solutions. However, the reality is more
that most models simply never make it past this experimental stage,
since deploying them is a massive undertaking on its own. Unfortunately,
maintaining models once deployed also drains resources, as every new
update requires reintegration into the application. This means that even
if the model is deployed, all teams have their work cut out for them. For
these reasons, most models simply never make it past the prototype phase.

Until the emergence of MLOps principles, deploying solutions created
using the latest in machine learning technology served as a significant
challenge to businesses due to the amount of resources that would be
required. This is why MLOps is so crucial. It makes it significantly easier
to deploy and maintain your machine learning solutions by automating
most of the hard parts for you, massively expediting the development and
maintenance processes. With a fully automated setup, teams can keep up
with the latest in machine learning technology and deploy new models
quickly. Services can maintain their high level of performance and perhaps
even improve on this front as teams can deploy newer, more promising
model architectures.

Now that you have a better idea of what MLOps is about and why it is
so important, let’s jump into the details and look at how an ideal MLOps
implementation is set up.
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MLOps Setups

Before we look at any specific MLOps setups, let’s first establish three
different setups representing the various stages of automation: manual
implementation, continuous model delivery, and continuous
integration/continuous delivery of pipelines.

Manual implementation refers to a setup where there are no MLOps
principles applied and everything is manually implemented. The steps
discussed above in the creation of a machine learning model are all
manually performed. Software engineering teams must manually integrate
the models into the application, and operational teams must help ensure
all functionality is preserved along with collecting data and performance
metrics of the model.

Continuous model delivery is a good middle ground between a
manual setup and a fully automated one. Here, we see the emergence
of pipelines to allow for automation of the machine learning side of the
process. Note that we will mention this term quite often in the sections
below. If you'd like to get a better idea about what a pipeline is, refer to the
section titled “Pipelines and Automation” further down in this chapter.
For now, a pipeline is an infrastructure that contains a sequence of
components manipulating information as it passes through the pipeline.
The function of the pipeline can slightly differ within the setups, so be
sure to refer to the graphs and explanations to get a better idea of how the
pipeline in the example functions.

The main feature of this type of setup is that the deployed model
has pipelines established to continuously train it on new data, even
after deployment. Automation of the experimental stage, or the model
development stage, also emerges along with modularization of code
to allow for further automation in the subsequent steps. In this setup,
continuous delivery refers to expedited development and deployment of
new machine learning models. With the barriers to rapid deployment lifted
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(the tediousness of manual work in the experimental stage) by automation,
models can now be created or updated at a much faster pace.

Continuous integration/continuous delivery of pipelines refers to
a setup where pipelines in the experimental stage are thoroughly tested
in an automated process to make sure all components work as intended.
From there, pipelines are packaged and deployed, where deployment
teams deploy the pipeline to a test environment, handle additional testing
to ensure both compatibility and functionality, and then deploy it to the
production environment. In this setup, pipelines can now be created
and deployed at a quick pace, allowing for teams to continuously create
new pipelines built around the latest in machine learning architectures
without any of the resource barriers associated with manual testing and
integration.

Manual Implementation

Now that we've established three variations of setups, let’s look at the first
of the three deployment setups of machine learning models, which has no
MLOps principles integrated.

In this case, there is a team of data scientists and machine learning
engineers, who will now be referred to as the “model development team,”
manually performing data analysis and building, training, testing, and
validating their models. Once their model has been finalized, they must
create a model class and push this to a code repository. Software engineers
extract this model class and integrate it into an existing application or
system, and operational teams are in charge of monitoring the application,
maintaining functionality, and providing feedback to both the software
and model development teams.

Everything here is manual, meaning any new trends in the data lead
to the model development team having to update the model and repeat
the entire process again. This is quite likely to happen considering the
high volume of users interacting with your model every day. Combined
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with performance metrics and user data collection, the information will
reveal a lot of aspects about your model as well as the user base the model
is servicing. Chances are high that you will have to update it to maintain
its performance on the new data. This is something to keep in mind as you
follow through with the process on the graph.

Refer to Figure 3-2 for a graphical representation of the setup.

After benchmark
performance is reached on.
the validation set, the trained

model is pushed 10 a code

Process i ain,
Process Build - Model _—

Raw ~ 5 i
Data Data Model Model Validation

Data Store

Model Building
After model deployment,
data analysis may reveal that
————————————————————— the model must train on
Deployment Stage mare data to capture new
trends.

Operational Teams, Software Engineers

Data Scientists analyze the
data to evaluate model
performance as well as Deploy

identify any new trends in the

e Model

Engineering/Operational team

pulls the model frem the rege

and integrates It into an existing
. —r,

Performanc@ @
and User _ Model
Data Services

Collection ' ’

Deployed model affers it
senices and gives
functionality, Teams collect
performance data of the
model as well as user data,

Forward
Data to Data
Store

Madel performance and user
data is forwarded to s dats
store,

Figure 3-2. Graph depicting a possible deployment setup of a
machine learning model without MLOps principles. The arrows with
a dotted border mean that progression to the next step depends upon
a condition in the current step. For example, in the model validation
step, machine learning engineers must ensure that the model meets a
minimum benchmark in performance before pushing a model class to
the repository

Let’s go through this step by step. We can split the flow into roughly
two parts: the experimental stage, which involves the machine learning
side of the entire workflow, and the deployment stage, which handles
integration of the model into the application and maintaining operations.
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Experimental Stage:

1.

Data store: The data store refers to wherever data
relevant to data analysis and model development
is stored. An example of a data store could be using
Hadoop to store large volumes of data, which can
be used by multiple model development teams. In
this example, data scientists can pull raw data from
this data store to start performing experiments and
conducting data analysis.

Process raw data: As previously mentioned, raw
data must be processed in order to collect the
relevant information. From there, it must also

be purged of faults and corrupted data. When a
company collects massive volumes of data every
day, some of it is bound to be corrupted or faulty
in some way eventually, and it’s important to get
rid of these points because they can harm the
data analysis and model development processes.
For example, one null value entry can completely
destroy the training process of a neural network
used for a regression (value prediction) task.

Data analysis: This step involves analyzing all
aspects of the data. The general gist of it was
discussed earlier, but in the context of updating
the model, data scientists want to see if there are
any new trends or variety in data that they think
the model should be updated on. Since the initial
training process can be thought of as a small
representation of the real-world setting, there is a
fair chance that the model will need to be updated
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soon after the initial deployment. This does depend
on how many characteristics of the true user base
the original training set captured however, but user
bases change over time, and so must the models. By
“user base,” we refer to the actual customers using
the prediction services of the model.

Model building stage: This stage is more or less the
same as what we discussed earlier. The second time
around, when updating the model, it could turn out
that slight adjustments to the model layers may be
needed. In some of the worst cases, the current model
architecture being used cannot achieve a high enough
performance even with new data or architectural
tweaks. An entirely new model may have to be built,
trained, and validated. If there are no such issues,
then the model would just be further trained, tested,
validated, and pushed to the code repository upon
meeting some performance criteria.

e Animportant thing to note about this experimental
stage is that it is quite popular for experiments
to be conducted using Jupyter notebook. When
model development teams reach a target level
of performance, they must work on building
aworkable model that can be called by other
code. For example, this can be done by creating
a model class with various functions that provide
functionality such as load_weights, predict, and
perhaps even evaluate to allow for easier gathering
of performance metrics. Since the true label can’t be
known in real-time settings, evaluation metrics can

simply be something like a root-mean-squared error.
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Deployment Stage:

5.

Model deployment: In this case, this step is where
software engineers must manually integrate

the model into the system/application they are
developing. Whenever the model development
team finishes with their experiments, builds

a workable model, and pushes it to the code
repository, the engineering team must manually
integrate it again. Although the process may not be
that bad the second time around, there is still the
issue of fixing any potential bugs that may arise from
the new model. Additionally, engineering teams
must also handle testing of not only the model once
itis integrated into the application, but also of the
rest of the application.

Model services: This step is where the model is
finally deployed and is interacting with the user
base in real time. This is also where the operational
team steps in to help maintain the functionality of
the software. For example, if there are any issues
with some aspect of the model functionality, the
operational team must record the bug and forward it
to the model development team.

Data collection: The operational team can also
collect raw data and performance metrics. This

data is crucial for the company to operate since

that is how it makes its decisions. For example, the
company might want to know what service is most
popular with the user base, or how well the machine
learning models are performing so far. This job can
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be performed by the application as well, storing all
the relevant data in some specific data store related
to the application.

8. Data forwarded to data store: This step is where
the operational team sends the data to the data
store. Because there could be massive volumes of
data collected, it’s fair to assume some degree of
automation on behalf of the operational team on
this end. Additionally, the application itself could
also be in charge of forwarding data it collects to the
relevant data store.

Reflection on the Setup

Right away, you can notice some problems that may arise from such an
implementation. The first thing to realize is that the entire experimental
stage is manual, meaning data scientists and machine learning engineers
must repeat those steps every time. When models are constantly exposed
to new data that is more than likely not captured in the original training
set, models must frequently be retrained so that they are always up to date
with current trends in user data. Unfortunately, when the entire process of
analyzing new trends, training, testing, and validating data is manual, this
may require significant resources over time, which may become unfeasible
for a company without the resources to spare. Additionally, trends in data
can change over time. For example, perhaps the age group with the largest
number of users logging into the site is comprised of people in their early
twenties. A year later, perhaps the dominant age group is now teenagers.
What was normal back then isn’t normal now, and this could lead to losses
in ad revenues, for example, if that’s the service (targeted advertising) the
model in this case provides.
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Another issue is that tools such as Jupyter notebook are very popular
for prototyping and experimenting machine learning and deep learning
models. Even if the experiments aren’t carried out on notebooks, it’s likely
that work must be done in order to push the model to the source repo.

For example, constructing a model class with some important functions
such as load_weights, predict, and evaluate would be ideal for a model
class. Some external code may call upon load weights() to set the model
weights from different training instances (so if the model has been further
trained and updated, simply call this function to get the new model). The
function predict() would then be called to make predictions based on
some input data and provide the services the application requires, and
the function evaluate() would be useful in keeping performance metrics.
Live data will almost never have truth labels on it (unless the user provides
instant feedback, like Google’s captchas where you select the correct
images), so a score metric like a root-mean-squared error can be useful
when keeping track of performance.

Once the model class is completed and pushed, software engineering
teams must integrate the model class into the overall application/system.
This could prove difficult the first time around, but once the integration
has been completed, updates to the model can be as simple as loading new
weights. Unfortunately, model architectures are likely to change, so the
software teams must reintegrate new model classes into the application.

Furthermore, deep learning is a complicated and rapidly evolving
field. Models that were cutting-edge several years ago can be far surpassed
by the current state-of-the-art models, so it’s important to keep updating
your model architectures and to make full use of the new developments in
the field. This means teams must continuously repeat the model-building
process in order to keep up with developments in the field.

Hopefully it is more clear that this implementation is quite flawed in
how much work is required to not only create and deploy the model in the
first place, but also to continuously maintain it and keep it up to par.

94



CHAPTER 3  WHAT IS MLOPS?

Alright, so how would we go about improving it? Where does this
MLOps come into play? To answer these questions, let’s look at the second
setup of the three defined earlier.

Continuous Model Delivery

This setup contains pipelines for automatic training of the deployed
model as well as for speeding up the experimental process. Refer to
Figure 3-3 for a graphical representation of this setup.
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Figure 3-3. Graph depicting a possible deployment setup of a
machine learning model with automation via pipelines
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This is a lot to take in at once, so let’s break it down and follow it
according to the numbers on the graph.

1. Feature store: This is a data storage bin that
takes the place of the data store in the previous
example. The reason for this is that all data can now
be standardized to a common definition that all
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processes can use in this instance. For example, the
processes in the experimental stage will be using the
same input data as the deployed training pipeline
because all of the data is held to the same definition.
What is meant by common definition is that raw
data is cleansed and processed in a procedural

way that applies to all relevant raw data. These
processed features are then held in the feature store
for pipelines to draw from, and it is ensured that
every pipeline uses features processed according to
this standard. This way, any perceived differences

in trends between two different pipelines won'’t be
attributed to deviances in processing procedures.

Presume for an instance that you are trying to provide
an object detection service that detects and identifies
various animals in a national park. All video feed
from the trail cameras (a video can be thought of as

a sequence of frames) can be stored as raw data, but
it can be possible that different trail cameras have
different resolutions. Instead of repeating the same
data processing procedure, you can simply apply the
same procedure (normalizing, scaling, and batching
the frames, for example) to the raw videos and store
the features that you know all pipelines will use.

Data analysis: In this step, data analysis is still
performed to give data scientists and machine
learning engineers an idea of what the data looks
like, how it’s distributed, and so on, just like in the
manual setup. Similarly, this step can determine
whether or not to proceed with construction of a
new model or just update the current model.
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Automated model building and analysis: In this
step, data scientists and machine learning engineers
can select a model, set any specific hyperparameters,
and let the pipeline automate the entire process.

The pipeline will automatically process the data
according to the specifications of this model (take
the case where the features are 331x331x3 images
but this particular model only accepts images that
are 224x224x3), build the model, train it, evaluate

it, and validate it. During validation, the pipeline
may automatically tune the hyperparameters

as well optimize performance. It is possible that
manual intervention may be required in some

cases (debugging, for example, when the model is
particularly large and complex, or if the model has a
novel architecture), but automation should otherwise
take care of producing an optimal model. Once this
occurs, modularized code is automatically created so
that this pipeline can be easily deployed.

Everything in this stage is set up so that the
experimental stage goes very smoothly, requiring
only that the model is built. Depending on the level of
automation implemented, perhaps all that is required
is that the model architecture is selected with some
hyperparameters specified, and the automation takes
care of the rest. Either way, the development process
in the experimental stage is sped up massively. With
this stage going faster, more experiments can be
performed too, leading to possible boosts in overall
efficiency as productivity is increased and optimal
solutions can be found quicker.
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4.

Modularized code: The experimental stage is set
up so that the pipeline and its components are
modularized. In this specific context, the data
scientist/machine learning engineer defines and
builds some model, and the data is standardized to
some definition. Basically, the pipeline should be
able to accept any constructed model and perform
the corresponding steps given some data without
hardcoding anything. (Meaning there isn’t any code
that will only work for a specific model and specific
data. The code works with generalized cases of
models and data.)

This is modularization, when the whole system

is divided into individual components that each
have their own function, and these components
can be switched out depending on variable inputs.
Thanks to the modularized code, when the pipeline
is deployed, it will be able to accept any new feature
data as needed in order to update the deployed
model. Furthermore, this structure also lets it

swap out models as needed, so there’s no need to
construct the entire pipeline for every new model
architecture.

Think of it this way: the pipeline is a puzzle piece,
and the models along with their feature data are
various puzzle pieces that can all fit within the
pipeline. They all have their own “image” on the
piece and the other sides can have variable shapes,
but what is important is that they fit with the
pipeline and can easily be swapped out for others.
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Deploy pipeline: In this step, the pipeline is
manually deployed and is retrieved from the

source code. Thanks to its modularization, the
pipeline setup is able to operate independently

and automatically train the deployed model on

any new data if needed, and the application is

built around the code structure of the pipeline

so all components will work with each other
correspondingly. The engineering team has to build
parts of the application around the pipeline and its
modularized components the first time around, but
after that, the pipelines should work seamlessly with
the applications so as long as the structure remains
the same. Models are simply swapped, unlike before
when the model had to be manually integrated into
the application. This time, the pipeline must be
integrated into the application, and the models are
simply swapped out.

However, it is important to mention that pipeline
structures can change depending on the model. The
main takeaway here is that pipelines should be able
to handle many more models before having to be
restructured compared to the setup before where
“swapping” models meant you only loaded updated
weights. Now, if several architectures all have
common training, testing, and validation code, they
can all be used under the same pipeline.

Automated training pipeline: This pipeline
contains the model that provides its services and
is set up to automatically fetch new features upon
activation of the trigger. The conditions for trigger
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activation will be discussed in item 10. When the
pipeline finishes updating a trained model, the
model is saved to a model registry, a type of storage
unit that holds trained models for ease of access.

Model registry: This is a storage unit that
specifically holds model classes and/or weights. The
purpose of this unit is to hold trained models for
easy retrieval by an application, for example, and it
is a good component to add to an automation setup.
Without the model registry, the model classes and
weights would just be saved to whatever source code
repository is established, but this way, we make the
process simpler by providing a centralized area of
storage for these models. It also serves to bridge the
gap between model development teams, software
development teams, and operational teams since it
is accessible by everyone, which is ultimately what
we want in an ideal automation setup.

This registry along with the automated training
pipeline assures continuous delivery of model
services since models can frequently be updated,
pushed to this registry, and deployed without having
to go through the entire experimental stage.

Model services: Here the application pulls the
latest, best performing model from the model
registry and makes use of its prediction services.
This action then goes on to provide the desired
functionality in the application.
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Performance and user data collection: New

data is collected as usual along with performance
metrics related to the model. This data goes to

the feature store, where the new data is processed
and standardized so that it can be used in both the
experimental stage and the deployment stage and
there are no discrepancies between the data used by
either stage. Performance data is stored so that data
scientists can tell how the model is performing once
deployed. Based on that data, important decisions
such as whether or not to build a new model with a
new architecture can be made.

Training pipeline trigger: This trigger, upon
activation, initiates the automated training pipeline
for the deployed model and allows for feature
retrieval by the pipeline from the feature store. The
trigger can have any of the following conditions,
although it is not limited to them:

e Manual trigger: Perhaps the model is to be trained
only if the process is manually initiated. For
example, data science teams can choose to start
this process after reviewing performance and data
and concluding that the deployed model needs to
train on fresh batches of data.

e Scheduled training: Perhaps the model is set to
train on a specific schedule. This can be a certain
time on the weekend, every night during hours of
lowest traffic, every month, and so on.

101



CHAPTER 3  WHAT IS MLOPS?

e Performance issues: Perhaps performance data
indicates that the model’s performance has dipped
below a certain benchmark. This can automatically
activate the training process to attempt to get the
performance back up to par. If this is not possible
or is taking too many resources, data scientists and
machine learning engineers can choose to build
and deploy a new model.

o Changes in data patterns: Perhaps changes in
the trends of the data have been noticed while
creating the features in the feature store. Of course,
the feature store isn’t the only possible place that
can analyze data and identify any new trends
or changes in the data. There can be a separate
process/program dedicated to this task, which can
decide whether or not to activate the trigger.

This would also be a good condition to begin the
training process, since the new trends in the data
are likely to lead to performance degradation.
Instead of waiting for the performance hit to
activate the trigger, the model can begin training
on new data immediately upon sufficient
detection of such changes in the data, allowing
for the company to minimize any potential losses
from such a scenario.

Reflection on the Setup

This implementation fixes many of the issues from the previous setup.
Thanks to the integration of pipelines in the experimental stage, the
previous problem of having the entire stage be composed of manual
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processes is no longer a concern. The pipeline automates the whole
process of training, evaluating, and validating a model. The model
development team now only needs to build the model and reuse any
common training, evaluation, and validation procedures that are still
applicable to this model. At the end of the model development pipeline,
relevant model metrics are collected and displayed to the operator. These
metrics can help the model development team to prototype quickly and
arrive at optimal solutions even faster than they would have without the
automation since they can run multiple pipelines on different models and
compare all of them at once.

Automated model creation pipelines in the experimental stage
allow for teams to respond faster to any significant changes in the data
or any issues with the deployed model that need to be resolved. Unlike
before, where the only model swapping was the result of loading updated
weights for the same model, these pipelines are structured to allow for
various models with different architectures as long as they all use the
same training, evaluation, and validation procedures. Thanks to the
modularized code, the pipeline can simply swap out model classes and
their respective weights once deployed. The modularization allows for
easier deployment of the pipeline and lets models be swapped out easily to
allow for further training of any model during deployment. Should a model
require special attention from the model development team, it can simply
be trained further by the team and swapped back in once it is ready. Now
teams can respond much more quickly by being able to swap models in
and out in such a manner.

The pipelines also make it much easier for software engineering
teams and operational teams to deploy the pipelines and models. Because
everything is modularized, teams do not have to work on integrating
new model classes into the application every time. Everyone benefits,
and model development teams do not have to be as hesitant about
implementing new architectures so as long as the new model still uses the
same training, evaluation, and validation code as in the existing pipeline.
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While this setup solves most of the issues that plagued the original
setup, there are still some important problems that remain. Firstly, there
are no mechanisms in place to test and debug the pipelines, so this must
all be done manually before it is pushed to a source repository. This can
become a problem when you're trying to push many iterations of pipelines,
such as when you're building different models with architectures that
differ in how they must be trained, tested, and validated. Perhaps the latest
models are showing a vast improvement over the old state-of-the art, and
your team wants to implement these new solutions as soon as possible. In
situations like this, teams will frequently need to debug and test pipelines
before pushing them to source code for deployment. In this case, there is
still some automation left to be done to avoid manual work.

Pipelines are also manually deployed, so if the structure in the code
changes, the engineering teams must rebuild parts of the application to
work with the new pipeline and its modularized code. Modularization
works smoothly when all components know what to expect from
each other, but if the code of one of the components changes so that
itisn’t compatible anymore, either the application must be rebuilt to
accommodate the new changes or the component must be rewritten to
work with the original pipeline. Unfortunately, new model architectures
may require that part of the pipeline itself be rewritten, so it is likely
that the application itself must be worked on to accommodate the new
pipeline.

Hopefully you begin to see the vast improvements that automation
has made in this setup, but also the issues that remain to be solved. The
automation has solved the issue of building and creating new models, but
the problem of building and creating new pipelines still remains.

To find an answer to that problem, let’s take a look at the last of the
three setups defined earlier.
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Continuous Integration/Continuous Delivery
of Pipelines

In this setup, we will be introducing a system to thoroughly test pipeline
components before they are packaged and ready to deploy. This will ensure
continuous integration of pipeline code along with continuous delivery of
pipelines, crucial elements of the automation process that the previous setup
was missing. Refer to Figure 3-4 for a graphical representation of such a setup.
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Figure 3-4. Graph depicting added testing systems and a package
store to the automation setup in Figure 3-2

Though this is mostly the same setup, we will go through it again step
by step with an emphasis on the newly introduced elements.

1. Feature store: The feature store contains
standardized data processed into features. Features
can be pulled by data scientists for offline data
analysis. Upon activation of the trigger, features can
also be sent to the automated training pipeline to
further train the deployed model.

105



CHAPTER 3  WHAT IS MLOPS?

106

2.

Data analysis: This step is performed by data
scientists on features pulled from the feature store.
The results from the analysis can determine whether
or not to build a new model or adjust the architecture
of an existing model and retrain it from there.

Automated model building and analysis: This

step is performed by the model development team.
Models can be built by the team and passed into the
pipeline, assuming that they are compatible with the
training, testing, and validation code, and the entire
process is automatically conducted with a model
analysis report generated at the end. In the case
where the team wants to implement some of the
latest machine learning architectures, models will
have to be created from scratch with integration into
pipelines in mind to maintain modularity. Parts of
the pipeline code may have to change as well, which
is acceptable because the new components of this
setup can handle this automatically.

Modularized code: Once the model reaches a
minimum level of performance in the validation
step, the pipeline, its components, and the model
are all ready to be modularized and stored in a
source repository.

Source repository: The source repository holds

all of the packaged pipeline and model code for
different pipelines and different models. Teams can
create multiples at once for different purposes and
store them all here. In the old setup, pipelines and
models would be pulled from here and manually
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integrated and deployed by software engineering
teams. In this setup, the modularized code must
now be tested to make sure all of the components
will work correctly.

Testing: This step is crucial in achieving continuous
integration, or a result of automation where

new components and elements are continuously
designed, built, and deployed in the new
environment.

Pipelines and their components, including the
model, must be thoroughly tested to ensure that

all outputs are correct. Furthermore, the pipelines
themselves must be tested so that they are
guaranteed to work with the application and how it
is designed. There shouldn’t be bugs in the pipeline,
for example, that would break its compatibility with
the application. The application is programmed to
expect a specific behavior from the pipeline, and the
pipeline must behave correspondingly.

If you are familiar with software development, the
testing of pipeline components and the models is
similar to the automated testing that developers
write to check various parts of an application’s
functionality. A simple example is automated testing
to ensure data of various types are successfully
received by the server and are added to the correct
databases.
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With pipelines and machine learning models, some

examples of testing include:

108

Does the validation testing procedure lead to
correct tuning of the hyperparameters?

Does each pipeline component work correctly?
Does it output the expected element? For example,
after model evaluation, does it correctly begin the
validation step? (Alternatively, if model evaluation
goes after model validation, does the evaluation
step correctly initiate?)

Is the data processing performed correctly? Are
there any issues with the data post-processing

that would lead to poor model performance?
Avoiding this outcome is for the best since it would
waste resources having to fix the data processing
component. If the business relies on rapid pipeline
deployment, then avoiding this type of scenario is
even more crucial.

Does the data processing component correctly
perform data scaling? Does it correctly perform
feature engineering? Does it correctly transform
images?

Does the model analysis work correctly? You

want to make sure that you're basing decisions

on accurate data. If the model truly performs well
but faults in the model analysis component of the
pipeline lead the data scientist/machine learning
engineer to believe the model isn’t performing that
well, then it could lead to issues where pipeline
deployment is slowed down. Likewise, you don’t
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want the model analysis to be displaying the wrong
information, even if it mistakenly displays precision
for accuracy.

The more thorough the automated testing, the
better the guarantee that the pipeline will operate
within the application without issues. (This doesn’t
necessarily include model performance as that has
to do more with the model architecture, how the
model is developed, and what it is capable of.)

Once the pipeline passes all the tests, it is then
automatically packaged and sent to a package store.
Continuous integration of pipelines is now achieved
since teams can build modularized and tested
pipelines much more quickly and have them ready
for deployment.

Package store: The package store is a containment
unit that holds various packaged pipelines. It is
optional but included in this setup so that there

is a centralized area where all teams can access
packaged pipelines that are ready for deployment.
Model development teams push to this package
store, and software engineers and operational
teams can retrieve a packaged pipeline and deploy
it. In this way, it is similar to the model registry in
that both help achieve continuous delivery. The
package store helps achieve continuous delivery of
pipelines just as the model registry helps achieve
continuous delivery of models and model services.

Thanks to automated testing providing continuous
integration of pipelines and continuous delivery of
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pipelines via the package store, pipelines can also be
deployed rapidly by operational teams and software
engineers. With this, businesses can easily keep

up with the latest trends and advances in machine
learning architectures, allowing for better and better
performance and more involved services.

Deploy pipeline: Pipelines can be retrieved

from the package store and deployed in this step.
Software engineering and operational teams must
ensure that the pipeline will integrate without
incident into the application. Because of that,

there can be more testing on the part of software
engineering teams to ensure proper integration of
the pipeline. For example, one test can be to ensure
the dependencies of the pipeline are considered

in the application (if, for example, TensorFlow has
updated and contains new functionality the pipeline
now uses, the application should update its version
of TensorFlow as well).

Teams usually want to deploy the pipelines into

a test environment where it will be subjected

to further automated testing to ensure full
compatibility with the application. This can be
done automatically, where the pipelines go from
the package store into the test environment, or
manually, where teams decide to deploy the
pipeline into the test environment. After the
pipeline passes all the tests, teams can choose to
manually deploy the pipeline into the production

environment or have it automatically done.
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Either way, pipeline creation and deployment is a
much faster process now especially since teams do
not have to manually test the pipelines and they do
not have to build or modify the application to work
with the pipeline every time.

Automated training pipeline: The automated
training pipeline, once deployed, exists to further
train models upon activation of the trigger. This
helps keep models as up to date as possible on new
trends in data and maintain high performance for
longer. Upon validation of the model, models are
sent to the model registry where they are held until
they are needed for services.

Model registry: The model registry holds trained
models until they are needed for their services.
Once again, continuous delivery of model services
is achieved as the automated training pipeline
continuously provides the model registry with high-
performance machine learning models to be used to

perform various services.

Model services: The best models are pulled from
the model registry to perform various services for
the application.

Performance and user data collection: Model
performance data and user data is collected to be
sent to model development teams and the feature
store, respectively. Teams can use the model
performance metrics along with the results from
the data analysis to help decide their next course of
action.
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13. Training pipeline trigger: This step involves some
condition being met (refer to the previous setup,
continuous model delivery) to initiate the training
process of the deployed pipeline and feed it with
new feature data pulled from the feature store.

Reflection on the Setup

The main issue of the previous setup that this one fixes is that of pipeline
deployment. Previously, pipelines had to be manually tested by machine
learning teams and operational teams to ensure that the pipeline and

its components worked, and that the pipeline and its components

were compatible with the application. However, in this setup, testing is
automated, allowing for teams to much more easily build and deploy
pipelines than before. The biggest advantage to this is that businesses can
now keep up with significant changes in the data requiring the creation
of new models and new pipelines, and can also capitalize on the latest
machine learning trends and architectures all thanks to rapid pipeline
creation and deployment combined with continuous delivery of model
services from the previous setup.

The important thing to understand from all these examples is that
automation is the way to go. Machine learning technology has progressed
incredibly far within the last decade alone, but finally, the infrastructure to
allow you to capitalize on these advancements is catching up.

Hopefully, after seeing the three possible MLOps setups, you
understand more about MLOps and how implementations of MLOps
principles might look. You might have noticed that pipelines have been
mentioned quite often throughout the descriptions of the setups, and you
might be wondering, “What are pipelines, and why are they so crucial for
automation?”

To answer that question, let’s take a look at what a “pipeline” really is.
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Pipelines and Automation

Pipelines are an important part of automation setups employing DevOps
principles. One way to think about a pipeline is that it is a specific, often
sequential procedure that dictates the flow of information as it passes
through the pipeline. To see an example of a testing pipeline in a software
development setting, refer to Figure 3-5.
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Figure 3-5. A testing pipeline in a software development setting.

The pipeline for testing packaged model pipelines in the optimal
setup above is similar in that individual components must be tested,
components must be tested in groups, and in the case where pipelines
are deployed to a test environment first where further tests are
performed before they are deployed to the production environment

In the MLOps setups above, you've seen pipelines for automating the
process of training a deployed model and for building, testing, and packing
pipelines as well as for testing integration of packaged pipelines before
deploying them to the production environment.

So, what does all that really mean? To get a better idea of what exactly
goes on in a pipeline, let’s follow the flow of data through a pipeline in the
experimental stage. Even if you understand how pipelines work, it may
be worth following the example anyway as we now look at this pipeline
through the context of using MLOps APIs.
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Journey Through a Pipeline

We will be looking at the model development pipeline in the experimental
stage. Before we begin, it is important to mention that we will be
referencing API calls in this pipeline. This is because some APIs can be
called while executing scripts or even Jupyter cells at key points in the
model’s development, giving MLOps monitoring software information on
model training, model evaluation, and model validation. At the end of the
pipeline, the MLOps software would also ready the model for deployment
via functionality provided by the API.

You will read more about this API in the next chapter, Chapter 4, but
for now, you may assume that the API will take care of automation as you
follow along through the example.

Model Selection

As seen in Figure 3-4, the experimental pipeline begins with the selection
of a model. This is up to the operator, who must now choose and build a
model. Some APIs allow you to call their functionality while building the
model to connect with MLOps software as the rest of the process goes
on. This software then keeps track of all relevant metrics related to the
model’s development along with the model itself in order to initiate the
deployment process.

In this case, the operator has chosen to use a logistic regression. Refer
to Figure 3-6.
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Operator Operator selects a model and
sets some basic
hyperparameters,

Model: Logistic Regression

Optimization Algorithm:
Stochastic Gradient Descent

Feature Data: Input features
Feature the retrieved from the feature
Data store to begin the training
process.

Model Creation Pipeline

Figure 3-6. A graphical representation of a pipeline where the
operator has selected a logistic regression model. The rest of the steps
have been hidden for now and will appear as we gradually move
through the pipeline

Data Preprocessing

With the model now selected and built, and with feature data supplied by
the feature store, the process can now move forward to the next stage in
the pipeline: data preprocessing. Refer to Figure 3-7.
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Model Creation Pipeline

Figure 3-7. The operator has chosen to normalize and resize the
image data. The process creates a training set, a testing set, and a
validation set

The data preprocessing can be done manually or automatically. In
this case, the data preprocessing only involves normalization and resizing
of image feature data, so the operator can implement this manually.
Depending on the level of automation, the operator can also call some
function that takes in data and automatically processes it depending on
the type of data and any other parameters provided.

Either way, the end of the processing stage will result in the data being
broken up into subsets. In this example, the operator chose to create a
training set, a testing set, and a validation set. Now, the operator can begin
the training process.

Training Process

Depending on the framework being used, the operator can further split
up the training data into a training set and a data validation set and use
both in the training process. The data validation set exists totally separate
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from the training set (although it is derived from it) since the model never
sees it during training. Its purpose is to periodically evaluate the model’s
performance on a data set that it has never seen before. Refer to Figure 3-8.
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Teabring St aside for a validation set during the
- training process. This data validation
‘ Data set is to help you guide weight tuning in
Processing the right direction during the training

Feature Component process and is not related to the model
Data validation set.

Selected
Model

Model Creation Pipeline

Figure 3-8. The model training process begins

In the context of deep learning, for example, the model can evaluate
on the validation set at the end of each epoch, generating some metric
data for the operator to see. Based on this, the operator can judge how
the model is doing and whether or not it could be overfitting and adjust
hyperparameters or model structure if needed.

The API can also be told what script to run in order to initiate this
entire pipeline process. The script can contain the training, evaluation,
and validation code all at once so the API can run this entire pipeline when
needed.

Once the training process is done, the process moves to the evaluation
stage.
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Model Evaluation

In the evaluation stage, the model’s performance is measured on a test
data set that it has never seen. This performance will indicate to the
operator whether or not the model is overfitting, especially if it performed
extremely well in training but has trouble replicating those results in this
stage. That is part of why the training data can be split to include some
validation data, as it can be an early indicator of overfitting. This can be
crucial especially if the model takes a significant amount of time to run.
You would rather know earlier, partway through training, if the model

is overfitting, rather than after it ran all night and is evaluated the next
morning. Refer to Figure 3-9.
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Figure 3-9. Training results are stored in a common area (for
example, the API could be called to monitor these results) for the
metrics of the current model. Model evaluation begins on the trained
model using the testing set
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Another thing to note again is that the validation stage could come
before the evaluation stage, but in this case, the trained model will be
evaluated first on a test data set before the validation stage begins. This
is just to get a sense of how the model does on the testing set before
hyperparameter tuning begins. Of course, hyperparameter tuning via the
validation step could be performed first before the final model evaluation,
but in some frameworks, model evaluation would come first. An example
of this is a validation process like scikit-learn’s cross-validation. Of course,
you can evaluate the tuned model on the test set once again to get a final
performance evaluation.

Once the evaluation finishes, metrics are stored by the API or by some
other mechanism that the team has implemented, and the process moves
on to the validation stage.

Model Validation

In this stage, the model begins the validation process, which attempts
to seek the best hyperparameters. You could combine the use of a script
to iterate through various configurations of hyperparameter values

and utilize k-fold cross-validation, for example, to help decide the best
hyperparameters. Refer to Figure 3-10.
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Operator
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Figure 3-10. Evaluation metrics are stored along with the training
metrics by the API, and the validation process begins

In any case, the point of a validation set is to help tune the model’s
hyperparameters. The team could even automate this process entirely
if they tend to train a lot of models of the same few types, saving
time and resources in the long run by automating the validation and
hyperparameter tuning process for that set of models.

Finally, once the model achieves a good level of performance and
finishes the validation stage, the validation results are stored, and all
relevant data is displayed as a summary to the operator. Again, depending
on the level of automation, perhaps the model is retrained and evaluated
on the best hyperparameter setup discovered in the validation stage. The
API simply needs to be told what metrics to track and it will automatically
do so.
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Model Summary

At this point, the operator can compare the outcome of this experiment
with that of other models, using the metrics as baselines for comparison.
The API can track the relevant metrics for different model runs and can
compare them all at the same time. Should the operator decide to move
forward with this particular model, the API and the MLOps software

can allow for deployment on a simple click of a button. Usually, the
deployment is to a staging environment first, where the functionality can
be tested further before moving directly into the production environment.
Everything is configurable, and the API can adapt to the needs of the
business and its workflow. If the developers want to deploy straight to
production, sure, though that could potentially be unwise considering the
case of failure. Refer to Figure 3-11.

The operator gets a summary of the model
Operator metrics. From this, the cperator can
P compare different models and decide

Validation results are stored once model
{and hyper tuning) is
completed.

Evaluate

Select # Data (Test) Validate
Model Preprocessing Model Model

Evaluation Validation

Res Results
(x_train) Pracessed
Testing

Data Feature Data

Processing Training Results
Component

Feature
Data

Trained ‘ Trained - Validated

Model Model Model

Model Creation Pipeline

Figure 3-11. Validation is complete, and all metrics are displayed to
the operator
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After the model passes the tests in the staging environment, it can
then be deployed to the production environment, where it can be further
monitored by the software.

Hopefully now you have a better understanding of what a pipeline
really is. The pipelines for models and pipeline integration testing are
similar, except they are assisted by MLOps software and APIs such as
Databricks and MLFlow, for example. Let’s now look at how you can go
about using those APIs and software to help you implement MLOps.

How to Implement MLOps

MLOps sounds great. It helps you deploy machine learning models rapidly
and helps maintain them once they’re deployed. However, the biggest
problem now seems to be the question of how to get there. The level of
automation described in the setups requires significant work from both the
“ML” and “Ops” sides of the workflow to achieve it. It almost seems better
in the short run to build and deploy the models manually rather than
devote resources to setting up the entire infrastructure, but this is simply
unsustainable in the long run.

Also, Jupyter is great for performing experiments, so is there a way to
track them as well? This sort of functionality would be extremely useful
especially when teams are implementing advanced machine learning
architectures from scratch, as it would let them compare the new models
across all of the relevant metrics with deployed models or current
architectures. Tasks like these are more convenient to do in a notebook
and having to convert everything to a proper model file is simply further
work.

The takeaway here is that accounting for these factors and more would
require significant resources to plan, develop, and test. For smaller-scale
businesses, this is an undertaking that’s possibly beyond their reach. So,
what now?
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The good news is that are a great assortment of tools available to use
now that essentially implement all of the automation for you, such as
the API we looked at in the pipeline example earlier. Several examples of
such tools that we will explore in later chapters are MLFlow, Databricks,
AWS SageMaker, Microsoft Azure, Google Cloud, and Datarobots. With
these tools, implementing MLOps principles into your workflow will be
significantly easier.

In the case of MLFlow, integrating it into code is extremely simple.
You only have to write a couple lines of code to track all of the metrics
you need. The functionality of the API we looked at earlier in the pipeline
example is all provided by MLFlow. Furthermore, MLFlow also saves the
model for you, allowing for model serving functionality where given some
data, the model returns its predictions.

MLFlow also integrates into Databricks, AWS SageMaker, Microsoft
Azure, and can be deployed to Google Cloud as well, all of which are
tools that help manage your MLOps setup and serve as platforms to
deploy your models on. While the cloud platforms do provide some
MLOps functionality, with the extent of this varying for each platform, the
advantage of using MLFlow is that it lets you have the freedom of choice
when it comes to one platform to commit to. Furthermore, it gives you a
greater degree of freedom, as you can perform all the experiments locally
and offline, and you can support models from many different frameworks.
MLFlow also provides functionality to help you modularize any custom-
built models or models made from other frameworks not explicitly
supported.

And so, to really answer the question of how to implement MLOps,
you will get familiar with MLFlow and explore each of those tools. The goal
is to take the model we built in Chapter 2 all the way to deployment and
beyond.

123



CHAPTER 3  WHAT IS MLOPS?

Summary

MLOps is a set of principles and practices adopted from DevOps and
applied to machine learning. You explored three different types of MLOps
setups with varying degrees of automation: manual implementation,
continuous model delivery, and continuous integration/continuous
delivery of pipelines. You identified that the manual implementation was
riddled with issues regarding scalability and efficiency and you explored
a setup that ensured continuous model delivery. Although this setup
fixed many of the issues found in the manual setup, there were still some
problems with pipeline integration testing to be solved. The final setup
solved this issue too and ensured continuous integration and delivery of
pipelines, completing the total automation setup.

You also looked into what a pipeline really is so that you can
understand why they are so crucial to the automation setup. Finally, you
learned about some tools that can help you implement MLOps into your
workspace, avoiding the trouble of implementing all the automation from
scratch. In the next chapter, you will look at MLFlow, an excellent API that
lets you implement your own MLOps setups and is compatible with many
platforms and frameworks.
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Introduction
to MLFlow

In this chapter, we will cover what MLFlow is, what it does, and how

you can implement MLOps setups into your existing projects. More
specifically, we will cover how you can integrate MLFlow with scikit-learn,
TensorFlow 2.0+/Keras, PyTorch, and PySpark. We will go over experiment
creation; metric, parameter, and artifact logging; model logging; and how
you can deploy models on a local server and query them for predictions.

Introduction

In the previous chapter, we went over what an optimal MLOps setup
looks like. However, the level of automation presented would require

an immense amount of resources dedicated to the project. Fortunately,
there are APIs that do this for you, such as MLFlow. MLFlow is an API that
allows you to integrate MLOps principles into your projects with minimal
changes made to existing code. With just a couple lines of code here and
there, you can track all of the details relevant to the project that you want.
Furthermore, you can even save the model for future use in deployment,
for example, and you can compare all of the metrics between individual
models to help you select the best model.
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The great thing about MLFlow is that it abstracts everything for you.
It packages and modularizes the models for you so that when you deploy
the model and want to make predictions, all you need to do is simply pass
in the input data in a certain format. All of the modularization that we
discussed in the previous chapter with the pipelines is taken care of by
MLFlow. MLFlow also allows you to create a wrapper around your model
if your model prediction code needs to be different. We will look at this
functionality in detail in the next chapter, when you deploy your models to
Amazon SageMaker. Even with custom code, MLFlow will modularize it so
that it will still work the same way as any other model once it is deployed
and ready to make predictions.

In detail, we will go over the following in this chapter:

o Creating experiments: Experiments in MLFlow
essentially allow you to group your models and any
relevant metrics. For example, you can compare
models that you've built in TensorFlow and in PyTorch
and name this experiment something like
pytorch_tensorflow. In the context of anomaly
detection, you can create an experiment called
model prototyping and group all of the models that
you want to test by running the training pipelines after
settingmodel prototyping as the experiment name.

Asyou’ll see shortly, grouping model training
sessions by experiment can really help organize
your workspace because you'll get a clear idea of the
context behind trained models.

e Model and metric logging: MLFlow allows you to
save a model in a modularized form and log all of the
metrics related to the model run. A model run can be
thought of as the model training, testing, and validation
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pipeline from the previous chapter. In MLFlow, you
can mark the start and the end of each run and decide
which metrics you want to save. Additionally, you can
save graphs, so you can also view plots like confusion
matrices and ROC curves. A model run is basically the
instance in which MLFlow executes the code that you
tell it to, so if you want, you can only train the model
and leave it at that.

It is possible for you to train, evaluate, and even
validate your model, logging all of the metrics for
each respective step in the whole process. MLFlow
gives you a lot of flexibility in how you define
amodel run. You can end the run after simply
training it, or you can end the run after training
and evaluating it. If you wish, you can even set up
an entire validation script to log the entire process
for you, allowing you to much more easily compare
different hyperparameter setups all at once in
MLFlow. We will explore how to perform model
validation with MLFlow shortly when we revisit the
scikit-learn experiment from Chapter 2.

Comparing model metrics: MLFlow also allows you
to compare different models and their metrics all at
once. And so, when performing validation to help
tune a model’s hyperparameters, you can compare all
of the selected metrics together in MLFlow using its
user interface. In the previous chapter, you printed out
everything, making the cell output possibly very large
if the script is quite involved in its hyperparameter
setups.
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o Model Registry: MLFlow also adds functionality to
allow you to implement a model registry, allowing you
to define what stage a particular model is in. Databricks
integrates quite well with MLFlow, providing built-
in model registry functionality. You will explore how
to use the MLFlow Model Registry when you look at
Databricks in Appendix.

o Local deployment: MLFlow also allows you to
deploy on a local server, allowing you to test model
inference. Model inference is basically the prediction
process of a model. Data is sent to the model in one of
several standardized formats, and MLFlow returns the
predictions made by the model.

Such a setup can easily be converted to work on

a hosted server as well. As you will see in the next
several chapters, MLFlow also allows you to deploy
your models on popular cloud services such as
Amazon SageMaker, Microsoft Azure, Google Cloud,
and Databricks. The process at its core remains
similar to how you will perform local model serving.
The only difference comes with where you host the
model and the particular procedure for querying it.

With that being said, let’s get started by revisiting the scikit-learn
logistic regression model and integrating MLFlow into it.
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MLFlow with Scikit-Learn

Before we begin, here are the versions of Python and the packages that
were used:

e Python: 3.6.5

¢ numpy:1.18.5

o scikit-learn: 0.22.2.post1
e pandas: 1.1.0

e Matplotlib: 3.2.1

e Seaborn: 0.10.1

e MLFlow: 1.10.0

You don’t need the exact versions of the packages we used, but in case
some functionality is removed, renamed, or just changed in the newer
versions and the code runs into an error, you have the exact version of the
module you can try running the code with.

MLFlow in particular is updated quite frequently, so you are more
likely to run into issues running code with something like MLFlow
compared to a package like numpy.

With that being said, let’s dive into the first example. In this case, let’s
revisit the scikit-learn code from the previous chapter and add MLFlow
integration to it.

Data Processing

First, you begin with all of the imports:

impoxrt numpy as np
import pandas as pd
import matplotlib #
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import matplotlib.pyplot as plt

import seaborn as sns

import sklearn #

from sklearn.linear model import LogisticRegression

from sklearn.model selection import train test split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics impoxrt roc auc_score, plot roc_curve,
confusion matrix

from sklearn.model selection import KFold

import mlflow
import mlflow.sklearn

print("Numpy: {}".format(np. version ))
print("Pandas: {}".format(pd. version_))
print("matplotlib: {}".format(matplotlib. version ))
print("seaborn: {}".format(sns. version ))
print("Scikit-Learn: {}".format(sklearn. version ))
print("MLFlow: {}".format(mlflow. version ))

The output should look something like Figure 4-1.

import mlflow
import mlflow.sklearn

Figure 4-1. The output of importing the necessary modules and
printing out their versions
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Now you can move on to loading the data:

data_path = "data/creditcard.csv"

df
df

pd.read_csv(data_path)
df.drop("Time", axis=1)

Refer to Figure 4-2 to see the code in a cell.

data_pach = "dazalcredizeard.cav”

df = pd.zesd_cav(data_path)

df = df.drop("Time™, amis=l)

INTRODUCTION TO MLFLOW

Figure 4-2. Loading the data set and dropping the column named
Time because it adds very large data values that ultimately don’t have
much of a correlation with the column Class. Model performance is
boosted slightly simply by dropping the extraneous information

Note that you are once again dropping the column Time.
You can now check to see if the data loaded in correctly:

df.head()

Refer to Figure 4-3 to see the head () function.

df . head
Wi vz v V4 V5 Vi v ve ve vio . v vz Va3 Va4
0 1350807 DOT2TEY 2838347 137TE1S5 0338 0462388 0230500 OOUGSDE 0363787 OODOTIM 0016307 0277838 010474  0.0S6928
1 1191857 0266151 0166480 0448154 0060018 -0082351 -DOTES03 0085102 -D255425 0168974 0225775 0638672 0101288 -0330846
2 -1358354 1340163 1773209 OQITETE0 -0503198 1800400 0701461 0247676 -1514654 0207643 . 0247998 07716790 0000412 0680281
3 0956272 0185226 1792993 0863281 0010309 1247203 0237609 0ITT4I6 1387024 -0 054952 0106300 0005274 -0.190321 1175575
4 <17158233 O08TTTIT 1548718 0403034 0407193 0008921 02502941 -L2T04833 0817730 0753074 0006431 0798278 -0.137458 0141287

S rows = 30 columng
[

Figure 4-3. Verifying that the data was loaded correctly by using
the head() function. As you can see, the columns and the data have

loaded in correctly
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Again, you are dropping the column Time from the data frame this
time. This is because this column was found to add data that isn’t very
helpful in finding an anomaly and only adds extra complexity to the data.

In the case of deep learning models, your model might eventually learn
that the Time data does not correlate very well with the Class labels and
may place less importance on nodes processing that data. Eventually, it
might even ignore the Time data. However, you can speed up the learning
process by cutting out these types of features from your training sets. This
is because you're sparing the models the time and resources needed to
figure that out.

Moving on, you will split the normal points and the anomalies:

normal = df[df.Class == 0].sample(frac=0.5,
random_state=2020).reset index(drop=True)
anomaly = df[df.Class == 1]

Let’s print out their respective shapes:

print(f"Normal: {normal.shape}")
print(f"Anomaly: {anomaly.shape}")

Refer to Figure 4-4 to see the above two cells in Jupyter along with their
outputs.

normal = df[df.Class == 0].sample(frac=0.%, random state=2020).reset_index|drep=Trus)
ancmaly ™ df[df.Class == 1]

Hormal:
Ancmaly: (492, 30)

Figure 4-4. Randomly sampling 50% of all the normal data points
in the data frame and picking out all of the anomalies from the data
Jframe as separate data frames. Then, you print the shapes of both
data sets. As you can see, the normal points massively outnumber the
anomaly points
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You are going to split the normal and anomaly sets into train-test-
validate subsets. Run the following two code blocks:

normal train, normal test = train test split(normal,
test size = 0.2, random state = 2020)

anomaly train, anomaly test = train test split
(anomaly, test size = 0.2, random state = 2020)

normal_train, normal validate = train_test split(normal train,
test size = 0.25, random state = 2020)

anomaly train, anomaly validate = train test split

(anomaly train, test size = 0.25, random state = 2020)

Refer to Figure 4-5 to see both code blocks in their respective cells.

Figure 4-5. Partitioning the normal and anomaly data frames
separately into train, test, and validation splits. Initially, 20% of

the normal and anomaly points are used as the test split. From

the remaining 80% of data, 25% of that train split is used as the
validation split, meaning the validation split is 20% of the original
data. This leaves the final training split at 60% of the original data. In
the end, the train-test-validate split has a 60-20-20 ratio, respectively

Now, you can process these sets and create the x-y splits:

x_train = pd.concat((normal_train, anomaly train))
x_test = pd.concat((normal test, anomaly test))
x_validate = pd.concat((normal validate, anomaly validate))

y train = np.array(x_train["Class"])
y test = np.array(x_test["Class"])
y validate = np.array(x validate["Class"])
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x_train = x_train.drop("Class", axis=1)
x_test = x_test.drop("Class", axis=1)
x_validate = x validate.drop("Class", axis=1)

Refer to Figure 4-6 to see the above code block in a cell.

Figure 4-6. Creating the respective x and y splits of the training,
testing, and validation sets by concatenating the respective normal
and anomaly sets. You drop Class from the x-sets because it would be
cheating otherwise to give it the label directly. You are trying to get the
model to learn the labels by reading the x-data, not learn how to read
the Class column in the x-data

You can print out the shapes of these sets:

print("Training sets:\nx_train: {} \ny_train:
{}".format(x_train.shape, y train.shape))

print("\nTesting sets:\nx_test: {} \ny test:
{}".format(x_test.shape, y test.shape))

print("\nValidation sets:\nx validate: {} \ny validate: {}".
format(x_validate.shape, y validate.shape))

Refer to Figure 4-7 to see the output shapes.
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".format (x_train.shape, y train.shape)}
mat (x_test.shape, y_test.shape))
lidate: []".fcrmat(x_validate.shape, y_validate.shape))

oo

Training sets:
x_train: (85588, 29)
y_train: (§5588,)
Testing seta:

x_test: (28531, 29)
y_test: (28531,)
Validation sets:
x_walidate: (28531, 29)
y_validate: (28531,)

Figure 4-7. Printing out the shapes of the training, testing, and
validation sets

Finally, you scale your data using scikit-learn’s standard scaler:

scaler = StandardScaler()
scaler.fit(pd.concat((normal, anomaly)).drop("Class", axis=1))

x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
x_validate = scaler.transform(x validate)

Refer to Figure 4-8.

In [12): sealer = StandazdSesles()
scaler.fit(pd.concat((normal, ancmaly)).drop("Class®, axis=1)}

x_train = scaler.transform(x_train)

*x_teat = scaler.tranafora(x_test)

¢ w_validate = scaler.tramsformix_validate)

Figure 4-8. Fitting the scaler on the superset of normal and anomaly
points after dropping Class to scale the x-sets
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Training and Evaluating with MLFlow

All that is left now is to train and evaluate your model. We will showcase
validation with MLFlow functionality in a bit, but first let’s define the
train and test functions to organize the code. This is also where you start
integrating MLFlow into your code. Here is the train function:

def train(sk model, x train, y train):
sk_model = sk_model.fit(x_train, y train)

train_acc = sk_model.score(x_train, y train)
mlflow.log metric("train acc", train_acc)

print(f"Train Accuracy: {train acc:.3%}")

Refer to Figure 4-9 to see this code in a cell.

def train(sk model, x Traim, ¥ Train):
sk_model = ok_model. £i

Figure 4-9. Defining the train function to better organize the code.
Additionally, you are defining a training accuracy metric that will be
logged by MLFlow

You may have noticed the first of the new code with this line:
mlflow.log metric("train acc", train_acc)

You create a new metric here specifically for the training accuracy so
that you can keep track of this metric. Furthermore, you are telling MLFlow
to log this metric, so that MLFlow will keep track of this value in each run.
When you log multiple runs, you can compare this metric across each
of those runs so that you can pick a model with the best AUC score for
example.
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Let’s now move on to the evaluate function:
def evaluate(sk model, x test, y test):
eval acc = sk _model.score(x test, y test)

preds = sk model.predict(x_ test)
auc_score = roc_auc_score(y test, preds)

mlflow.log metric("eval acc", eval acc)
mlflow.log metric("auc_score", auc_score)

print(f"Auc Score: {auc_score:.3%}")
print(f"Eval Accuracy: {eval acc:.3%}")

roc_plot = plot_roc_curve(sk _model, x_test, y test,
name="'Scikit-learn ROC Curve')

plt.savefig("sklearn roc_plot.png")

plt.show()

plt.clf()

conf matrix = confusion matrix(y test, preds)

ax = sns.heatmap(conf matrix, annot=True,fmt="'g")
ax.invert xaxis()

ax.invert yaxis()

plt.ylabel('Actual’)

plt.xlabel('Predicted")

plt.title("Confusion Matrix")
plt.savefig("sklearn conf matrix.png")

mlflow.log artifact("sklearn roc plot.png")
mlflow.log artifact("sklearn conf matrix.png")

Refer to Figure 4-10 to see the above code in a cell.
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alflow. Lo ng
f£low. log_arvafact ("aklearn_conf_matri.png”

Figure 4-10. A function to calculate the evaluation metrics for the
AUC score and accuracy. Plots for the confusion matrix and the ROC
curve are generated, and both the metrics and the graphs are logged
to MLFlow

Once again, you have told MLFlow to log two more metrics: the AUC
score and the accuracy on the test set. You do so with these lines of code:

mlflow.log metric("eval acc”, eval acc)
mlflow.log metric("auc_score", auc_score)

Furthermore, you can also tell MLFlow to save the plots generated by
matplotlib and by seaborn. With this, you can look at each of the graphs for
each training run and do so in a highly organized manner. You must first
save these plots, which you do in the same directory. Then, you must tell
MLFlow to grab the artifacts to log them like so:

mlflow.log artifact("sklearn roc_plot.png")
mlflow.log artifact("sklearn conf matrix.png")

Make sure that they have the same names as the graphs you saved.
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Logging and Viewing MLFlow Runs

Finally, let’s run the code that actually sets the experiment name, starts the
MLFlow run, and executes all this code:

sk _model = LogisticRegression(random_state=None,
max_iter=400, solver='newton-cg")

mlflow.set experiment("scikit learn experiment")
with mlflow.start run():
train(sk_model, x_train, y train)
evaluate(sk model, x test, y test)
mlflow.sklearn.log model(sk model, "log reg model™)
print("Model run: ", mlflow.active run().info.run uuid)
mlflow.end run()

Notice the new lines of MLFlow code. We will go through them one by
one.
First, let’s begin with what appears to set the experiment name:

mlflow.set experiment("scikit learn_experiment")

What this does is that it puts the run under whatever experiment name
you pass in as a parameter. If that name does not exist, MLFlow will create
anew one under that name and put the run there.

with mlflow.start run():

This line of code allows you to chunk all of your code under the context
of one MLFlow run. This ensures that there are no discrepancies between
where your metrics are being logged, and that it doesn’t create two
different runs when you mean it to log everything for the same run.

mlflow.sklearn.log model(sk model, "log reg model")
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This line of code is the general convention to use when you're logging a
model. The parameters, in order, are the model you're saving and then the
name you're setting for the model when saving. In this case, you are saving
your logistic regression model with the name log_reg model in this run.

As you will see later, most other frameworks follow the same style
when saving the model. There are a couple exceptions, but we will cover
this when the time comes. In this case, you are callingmlflow.sklearn,
but if you wanted to log a PySpark model, you would do m1flow.spark.

Basically, the framework the model was built in must match the
framework module of MLFlow when logging the model. It is possible
to create a custom “model” in MLFlow and log this as well, something
that is covered in the documentation. You can use this custom model to
then specify how you want the prediction function to work. If you'd like
to process the data some more before making predictions, for example,
MLFlow allows you to specify this extra functionality through the use of the
MLFlow PyFunc module. Refer to the documentation, which you can find
here: www.mlflow.org/docs/latest/models.html#model-customization.

print("Model run: ", mlflow.active run().info.run uuid)

This line of code essentially gets the current run that the model and
metrics are being logged to and prints it out. This makes it handy if you
want to retrieve the run directly from the notebook itself instead of going to
the Ul to do so.

mlflow.end run()

Finally, this tells MLFlow to end the current run. In cases where there
is an error in the MLFlow start run code block, and the run does not
terminate, do this to forcibly end the current run. Basically, it is there to
ensure that MLFlow stops the run after you executed all the code relevant
to the current run.

Moving on, refer to Figure 4-11 to see the full output of the code.
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sk _model = LogisticRegression(random state=None, max_iter=i00, solver='newton-og')

reg_model")
", mlflow.active_run() .info.run_vuid)

awd | Scikitleam ROC Curve (AUC = 098} |

L1 0z 08 o6 o8 10
False Pestive Rate

Model run: beeelfabaSfcd4d69952ee6f9d50d44lc

Confusion Matrix

Figure 4-11. The output of running the MLFlow experiment. Under
an MLFlow run context, you are training the model, outputting the
graphs from the evaluation function, and logging all the metrics
including the model to this run

You can see that MLFlow automatically generates a new experiment
if it does not already exist, so you can create a new experiment directly
from the code. You can also see that the rest of the code basically outputs
as usual, except it also prints the run ID of the current MLFlow run just as
you specified. You will use this later when you select the specific model
that you want to serve. What you will do next is open up the Ul MLFlow
provides where you can actually look at all the experiments and model
runs. Finally, you also log the model itself as an artifact with MLFlow.
MLFlow will modularize this code so that it will work with the code
provided by MLFlow to support implementations of a variety of MLOps
principles.

141



CHAPTER 4  INTRODUCTION TO MLFLOW

The following was done on Windows 10, but it should be the same
on MacOS or Linux. First, open command prompt/powershell/terminal.
Then, you must go into the directory that contains this notebook file. List
the contents of the directory (or view this in file explorer/within Jupyter
itself) and you will notice a new directory named mlruns.

If you installed all of your packages in Conda, make sure you've
activated the Conda environment before running this.

What you want to do now is to make sure your command prompt,
powershell, or terminal is in the same directory that contains mlruns, and
type the following:

mlflow ui -p 1234

The command mlflow ui hosts the MLFlow Ul locally on the default
port of 5000. However, the options -p 1234 tell it that you want to host it
specifically on the port 1234.

Ifit all goes well, and it can take several seconds, you should see
something like Figure 4-12.

(p36) C:\Users\Shumpu\work\Books\2828 MLOps\Chapter 4>1s

| MLFlow PySpark.ipynb® ‘'MLFlow TensorFlow.ipynb®  sklearn_conf_matrix.png
‘MLFlow Keras.ipynb*® ‘MLFlow PyTorch.ipynb® data sklearn_roc_plot.png
'MLFlew Local Serving.ipynb® “'MLFlow Sklearn.ipynb® mlruns

(p36) C:\Users\Shumpu'\work)\Books\282@ MLOps\Chapter 4>mlflow ui -p 1234
K :\users\shumspulanacondaz\envsip3gilib\site-packages\waitress\adjustments.py:445: Deprecationarning: In future versicng
of Waitress clear_untrusted_proxy_headers will be set to True by default. You may opt-out by setting this value to Falg
e, or opt-in explicitly by setting this to True.

Deprecationkarning,
Eerving on http://kubernetes.docker.internal:1234

Figure 4-12. Making sure that the current directory contains the
Jfolder mlruns and calling the command to start the UL If successful,
it should state “Serving on http:// ... :1234.” We have docker on our
system, hence why yours might say localhost instead of kubernetes.
docker.internal
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Now, open a browser and type in http://localhost:1234 or
http://127.0.0.1:1234. Both should take you to the same MLFlow UI. If
you used a different port, it should generally look like this:

http://localhost:PORT_NUMBER or http://127.0.0.1:PORT_NUMBER,
where you replace PORT_NUMBER with the one you used. If you did not
specify a port parameter, then the default port used by MLFlow is 5000.

Regardless, if it works correctly, you should see something like
Figure 4-13 once you visit that URL.

Figure 4-13. Your MLFlow Ul should look something like this. To
the left are the experiments. Notice that there is an experiment titled
Default and one titled scitkit_learn_experiment, which is the one you
just created

Notice that there is now an experiment titled scikit_learn_experiment.
Click it, and you should see something like Figure 4-14.
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You can see the run that just completed, along with the metrics you
logged. Click it so that you can explore it. The run that was just completed
should have a green check mark beside the time stamp when it finished if
everything went well, which you can see is the case in Figure 4-14.

Figure 4-14. This is what your experiment, scikit_learn_experiment,
should look like once you click it. Notice that there is one run here,
which is what was just created

You should see something like Figure 4-15.
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Semit_laam_sxparment 3 Rus 1ebBISHASETM IS TIa16TIAAEANTE «

Figure 4-15. This is the run that was just completed. Notice that the
metrics you logged show up here

You should now see the details of this run much more clearly. Here,
you can see all of the parameters and metrics that were logged. Keep
scrolling down and you should be able to see all of the logged artifacts.
Refer to Figure 4-16.

—1| Select a file to preview

Figure 4-16. The logged artifacts of this run. Notice that the graphs
appear to be logged as well as the model itself, which was named
log_reg_model when you were logging it in the code
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Here, you can see the model that has been logged, along with the two
graphs that you logged as artifacts. Click the graphs and you should see
something like Figure 4-17.

Confusion Matrix

Figure 4-17. Inspecting the graph of the confusion matrix that you
saved. Feel free to click the other graph as well, which is of the ROC
plot

Amazing, right? Everything is extremely organized, and you don't
have to worry about creating multiple folders for everything and staying
organized. Simply tell MLFlow what to do and it will log all the information
relevant to this run that you need. You can log your deep learning model’s
hyperparameters for learning rate, number of epochs, specific optimizer
parameters like betal and beta2 for the Adam optimizer, and so on.

You can even log graphs, as you can see in Figure 4-17, along with the
models themselves. With MLFlow, you can stay highly organized with
your experiments even if you don’t necessarily need the deployment
capabilities to the cloud services.

Let’s now try logging a few more runs. Rerun the cell in Figure 4-11
a couple times to completion and go back to the MLFlow UI. Make sure
you have selected the experiment named scikit_learn_experiment. You
should see something like Figure 4-18.
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Experiments + 8 scikit_lnare_sxperiment

. - Hote

Figure 4-18. Revisiting your experiment after logging some runs in.
The runs are logged in ascending order by timestamp, so the latest
runs are on top

Let’s compare the metrics you've logged for these runs. Select at least
two runs, and ensure your Ul looks somewhat like Figure 4-19. We selected
three runs.

.

Figure 4-19. This is what your Ul should look like after selecting
several runs. Make sure to select at least two so that there is something
to compare. Also notice that the button named Compare turns solid
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After clicking Compare, you should see something like Figure 4-20.

seikit_lonm_sspariment > Comparing 3 Runs

Figure 4-20. The Ul after selecting three runs to compare. As you can
see, you can look at all of the metrics at once. There is also a graphing
tool that lets you compare these values graphically, though you won't
see proper graphs as every value is the same across the runs

Here, you can directly compare the relevant parameters and metrics
between the runs you have chosen. You have the option of viewing a scatter
plot, a contour plot, or a parallel coordinates plot. Feel free to play around
with the metrics and with the plots. You can even save these plots if you wish.

Note that since these runs have the exact same metrics, there will only
appear to be one point plotted.

Loading a Logged Model

Next, let’s briefly look at how you can load the models logged by MLFlow.
Go back to the experiment and click a run. Note the run ID at the top and
copy it. Then, go back to the notebook, and run the following. Note that
there is a placeholder for the run ID:

loaded _model = mlflow.sklearn.load model
("runs:/YOUR_RUNID HERE/log reg model")
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To better understand what this path is, let’s split it up into three
sections: the format (runs:/), the run ID (YOUR_RUNID HERE), and the
model name that you used when you logged it (log_reg model).

In our case, our run ID was 3862eb3bd89b43e8ace610c521d974e6,
so our cell looks like Figure 4-21. Ensure your code looks somewhat like
Figure 4-21, with the only difference being the run ID that you chose since
it will be different from ours.

leaded_sedel = mlflow.sklearn.load model|"suns:/3862ebIbdiindTetacesl0=5214074e6/ Log_rag_sodel”)

Figure 4-21. The code to load a model that we logged using the
specific run ID we logged it in along with the model’s name we used
when we logged it

This is now the same model that you had when MLFlow logged it in the
first place. With this, you can call something like . score() and see that it’s
the same as during training:

loaded model.score(x_test, y test)

This outputs the accuracy as the model is evaluated on the test set. If
this truly is the same model, then the accuracy should match what was
output earlier during the evaluation portion of the model run.

Refer to Figure 4-22 to see the output.

Figure 4-22. This is the evaluation accuracy of the loaded model
after evaluation on the test sets. If you compare this with Figure 4-11,
you can see that the numbers more or less match, disregarding
rounding

As you can see, this value matches the evaluation accuracy from
Figure 4-11.
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Now you know how to load a model from a specific MLFlow run.

With that, you've seen some of the functionality that MLFlow provides
and how it can help in keeping your prototyping experiments much
more organized. As you will see shortly, this entire pipeline that you just
explored is pretty much all you need to recreate the train, test, validate
pipeline that you saw earlier. Before you move on to looking at how you
can use MLFlow with other frameworks, let’s go over how you can use
MLFlow functionality to vastly improve the model validation process.

Model Validation (Parameter Tuning)
with MLFlow

Parameter Tuning — Broad Search

Just like in Chapter 2, you will use a script to help with model validation
with respect to hyperparameter tuning. The tuning script will largely
remain the same, except for a few modifications where MLFlow code has
been added in.

Run the following code to set the range of anomaly weights and to set
the number of folds:

anomaly weights = [1, 5, 10, 15]

num_folds = 5

kfold = KFold(n_splits=num_folds, shuffle=Txue,
random_state=2020)

The code should look like Figure 4-23.

ancmaly weighta = [1, 5, 10, 15]
num_folds = &
kfeld = KFold(n_splics=num_folds, shuffle=True, random state=ifid)

Figure 4-23. The code to determine the list of anomaly weights to
perform validation over, to determine the number of folds, and to
initialize the KFolds generator based on the number of folds
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Now, paste the following. This is the first half of the entire function:

mlflow.set experiment("sklearn creditcard broad search")
logs = []
for f in range(len(anomaly weights)):
fold = 1
accuracies = []
auc_scores= []
for train, test in kfold.split(x_validate, y validate):
with mlflow.start run():
weight = anomaly weights[f]
mlflow.log param("anomaly weight", weight)

class weights= {
0: 1,
1: weight
}
sk_model = LogisticRegression(random state=None,
max_iter=400,
solver="newton-cg',
class _weight=class_
weights).fit
(x_validate[train],
y validate[train])

for h in range(40): print('-', end="")
print(f"\nfold {fold}\nAnomaly Weight: {weight}")

train_acc = sk _model.score(x_validate[train],
y validate[train])
mlflow.log metric("train acc", train_acc)

eval acc = sk model.score(x validate[test],
y validate[test])
preds = sk model.predict(x validate[test])

mlflow.log metric("eval acc", eval acc)
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Here is some more of the code. Make sure this all aligns with the code

from above.
try:
auc_score = roc_auc_score(y validate[test], preds)
except:
auc_score = -1

mlflow.log metric("auc_score", auc_score)

print("AUC: {}\neval acc: {}".format(auc_score,
eval acc))

accuracies.append(eval acc)
auc_scores.append(auc_score)

log = [sk _model, x validate[test],

y validate[test], preds]
logs.append(log)
mlflow.sklearn.log model(sk model,
f"anom_weight {weight} fold {fold}")

fold = fold + 1

mlflow.end run()
print("\nAverages: ")
print("Accuracy: ", np.mean(accuracies))
print("AUC: ", np.mean(auc_scores))

print("Best: ")
print("Accuracy: ", np.max(accuracies))
print("AUC: ", np.max(auc_scores))

First, let’s look at what that giant chunk of code looks like in a cell.
Ensure your code and alignment matches Figure 4-24.
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2 miflow.set_sxperimant(“sklearn_creditcard _broad_search™)

logs = {1
for £ in range(len{ancmaly weights)):

fold = 1

accuracies = [}

sus_scozes= (]

for train, test in kfold.splitix_validate, y_validate):

with mlflow.stazt_sua():
weight = anomaly_we:

nlflow.log_paras(”s h", weight)
class_weights= {
1: weight
t
ak_model = Logi {zandom_
mAK_Lte

cg’,
class_weighe=class_weights).fit(x_validatel[czain], y_validazeltzain])

T, end=mv)
1y Weight: {weight}™)

train_acc = sk_model_score(x_validate(train], y_validate(train])
mlflow.log metric(“train_scc”, train_see)

eval_scc = sk_zodel.score(x_validate[test], y_validatelcest])
preds = 3k_medel.predictix_validaze(test])

mlflow.log _metric(eval_acc”, eval_acc)

try:
auc_score = roc_auc score(y_validate(test], preds)

mlflow.log_metzici® . auc_scoze)

prine("AUC: {}\m 1".for=at (auz_scoze, eval_acc))
sccuracies.append (eval_scs)
auc_scores.append (auc_score)

log = [sk_model, x_wvalidate[test], y_validate([test], preds]

loge. append (log)

mlfiow.skleazn.log_model(sk_model, f£"anom weight_{weight)_fold_(fold}™)
fold = fold + 1

mlflow.end_zunl)

", np.meanlaccuracies))
np.mean (auc_scores))

", np.=ax(sccuracies))

P
P
prin
P
P
P . Dp.zmaxisuc_scores))

Figure 4-24. The entire validation script from Chapter 2 with some
MLFlow code additions to log everything during the validation
process

Now, let’s run this script. It should log the parameter for the anomaly
weight and all of the metrics that you specified for every fold generated.
When the script finishes, go to your MLFlow UI and switch the experiment
to sklearn creditcard broad search to see all the runs you just logged.
You should see something like in Figure 4-25.
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Figure 4-25. The output you should see after the validation
experiment has finished. Make sure you select the experiment titled
sklearn_creditcard_broad_search

Let’s try sorting this by the AUC score to find the best parameters for
the AUC. In the metrics column, click auc_score.
The action should result in something that looks like Figure 4-26.

154



CHAPTER 4  INTRODUCTION TO MLFLOW

skieam_creditcard_broad_ssarch
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Figure 4-26. The values are all sorted by auc_score in descending
order. We've highlighted this column so that you can more easily spot
the difference between this figure and Figure 4-25. As you can see,

the AUC scores are in ascending order. You want to see the best AUC
scores, so you must sort in descending order

You want to sort the columns in descending order, so click it again to
see something that looks like Figure 4-27.
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skigam_creditcard_broad_ssarch
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Figure 4-27. The values are now sorted by AUC score in descending
order. Now you can see the runs that produced the best AUC scores
along with the specific anomaly weight it had in that run

Perhaps you don’t really care about anything but the absolute best
scores. Say that you are targeting AUC scores that are at least 0.90. How
would you go about filtering everything? Well, the UI provides a search bar
that performs a search based on the SQL. WHERE clause. So, to filter your
output, type the following and click Search:

metrics."auc_score" >= 0.90

You should see something like Figure 4-28. If you have copied and
pasted the line of code, be sure to delete it and put in the quotation marks
again if you encounter any errors about the quotation marks.
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* Notes
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Figure 4-28. The results of filtering all of the AUC scores to be above
0.90. As you can see, only a handful of runs produced AUC scores that
are at least 0.90

Notice that we put "auc_score" in quotation marks. This is for cases
where the metric name that you've logged contains characters like a dash
where it might not recognize the name if you typed it out like so:

metrics.auc-score

The proper convention for a metric logged as "auc-score" would be to
filter it like so:

metrics."auc-score" >= 0.90

Now let’s say that of these scores, you want to see the scores for
anomaly weights of 5 only. It doesn’t appear that there are any results with
the anomaly weight of 1, so we will start with 5. For that, let’s type and

search the following:
metrics."auc_score" >= 0.90 AND parameters.anomaly weight = "5"

You should see something like Figure 4-29.
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skieam_creditcard_broad_search
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Figure 4-29. Filtering the runs to have only runs with the anomaly
weight set to 5 and to have an AUC score above 0.90

You put the 5 in quotation marks because the parameters seem to be
logged as string values, whereas the metrics are logged as floats.

From this output, it seems that only two of the five folds with the
anomaly weight set to 5 had an AUC score above 0.90. Let’s quickly search
over the other parameters and check how many folds had an AUC score
above 0.90 as well.

For filtering the anomaly weight by 10, refer to Figure 4-30.

skisam_creditcard_broad_search

i

§§%

Figure 4-30. Three runs for an anomaly weight of 10 also met your
criteria for minimum AUC score

So, three of the five folds with the anomaly weight set to 10 had an AUC

score above 0.90.
Let’s check 15 now. Refer to Figure 4-31.
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skieam_creditcard_broad_ssarch
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Figure 4-31. You can see that with an anomaly weight of 15, there
seems to be two folds that had an AUC score above 0.95

You see similar results with 15.
What if you tighten the AUC score requirement to be a minimum of

0.95? Let’s check the runs for a minimum AUC of 0.95 and with an anomaly

weight of 5. Refer to Figure 4-32.

skieam_creditcard_broad_search

Figure 4-32. This time, you see that only one of the folds for the runs
with anomaly weight set to 5 has an AUC score above 0.95

So, it seems that only one fold reached an AUC score above 0.95 when

the anomaly weight was 5.
What do the results look like for an anomaly weight of 10? Refer to

Figure 4-33.
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Figure 4-33. With an anomaly weight of 10, only one run has an
AUC score above 0.95

Let’s check the runs with an anomaly weight of 15. Refer to Figure 4-34.

skisam_creditcard_broad_ssarch

Figure 4-34. With an anomaly weight of 15, only one run has
achieved an AUC score above 0.95. From these results, you cannot
really infer which weight setting is the best, so you have to narrow the
scope of your hyperparameter search. As far as you know, you could
have missed the best setting, and it could be somewhere in between 5
and 10 or 10 and 15

It seems that for an anomaly weight of 15, only one run has achieved
an AUC score above 0.95. It seems that you can’t look at how you can
narrow the scope without looking at the rest of the AUC scores.

It appears to be the case that the best AUC scores seem to be between 5
and 15.

Alright, so what if the higher anomaly weights were more consistent
in their AUC scores, and the smaller anomaly weight runs achieving the
highest AUC scores were just flukes? To see how each anomaly weight
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setting did, first remove the query statement, and click Search again. Next,
make sure that the AUC scores are in descending order. Once you're done,
refer to Figure 4-35 and verify that your output looks similar.

skiearn_creditcard_broad_search
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Figure 4-35. Ordering the runs by descending AUC score

Using the following code, let’s filter over all of the values for anomaly
weights and check what the AUC scores look like, replacing 1 with 5, 10,
and 15.

parameters.anomaly weight = "1"

Refer to Figure 4-36 to see the results of filtering by an anomaly weight
of 1.
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skieamn_creditcard_broad_search
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Figure 4-36. Looking at the AUC scores of the runs with an anomaly
weight of 1 in descending order

None of the scores have gone above 0.9, so you can automatically rule
out this anomaly weight setting. If you go back to your script, you can see
that the average AUC was around 0.8437.

Let’s look at the runs with an anomaly weight of 5. Refer to Figure 4-37.

skisam_creditcard_broad_search
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Figure 4-37. Looking at the AUC scores of the runs with anomaly
weight of 5 in descending order. You can see a noticeable increase in
the average AUC score when compared to an anomaly weight of 1

The scores have improved noticeably. If you go back to the original
script’s output, you can see that the average AUC score is now 0.9116.

The rest of the anomaly weights all achieved the highest AUC score of
around 0.975, so the average AUC is a better metric to help you narrow the

range.
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Let’s now look at the runs with an anomaly weight of 10. Refer to
Figure 4-38.

skieamn_creditcard_broad_search
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Figure 4-38. Looking at the AUC scores of the runs with an anomaly
weight of 10 in descending order. These scores seem even better

These scores seem even better than the ones for an anomaly weight of
5. This time, the average AUC score is around 0.9215.

Finally, let’s look at the scores for an anomaly weight of 15. Refer to
Figure 4-39 to see the results of filtering by an anomaly weight of 15.

skleam_creditcard_broad_search
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Figure 4-39. Looking at the AUC scores of the runs with an anomaly
weight of 15 in descending order. The scores are very similar, but

the average is ever so slightly worse, so the true range seems to be
somewhere in between 10 and 15
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The scores are very similar to each other, and indeed, the average AUC
score is now 0.9212.

Based on these results, you can see that there seems to be an increase
from 5 to 10, but a slight decrease from 10 to 15. From this data, the
ideal range seems to be somewhere in between 10 and 15, but again, the
decrease in average AUC from 10 to 15 is essentially negligible. And so,
what if it’s potentially beyond 15, and you started out with the wrong range
to search over?

From the results of this validation experiment, it seems that you
haven’t found a definite range of values that you know for sure you can
focus on. And so, you must expand your range even more just to see if you
can get better results with higher anomaly weights.

Looking at the distribution of data and how heavily the normal points
outnumber the anomalies, you can use your intuition to help guide your
hyperparameter search and expand the range far more.

Now that you know this, let’s try expanding the range far more.

Parameter Tuning — Guided Search

The best overall performances were achieved by anomaly weights 10 and
15, but it seems to be on an upward trend the higher up you go with the
anomaly weight.

Now that you know this, let’s try another validation run with a broader
range of anomaly weights to try.

Go back to the cell (or copy-paste it into a new cell) in Figure 4-23 and
change the anomaly weights so that they look like the following:

anomaly weights = [10, 50, 100, 150, 200]

You should see something like Figure 4-40.
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ancmaly weighta = [10, 50, 100, 150, 200)
olds = 5

num_folds 5
kfold = KFold(n_splics=num folds, shuffle=True, random _state=i020)

Figure 4-40. Setting a narrow range of values to search over during
the second validation run

The validation script itself should be the same, so if you simply
replaced the anomaly weights in the original cell, don’t run the validation
script yet! Let’s create a new experiment so that you don’t clutter the
original tuning experiment with these new runs.

Modify the following line in the old validation script so that it goes
from

mlflow.set experiment("sklearn creditcard broad search™)
to
mlflow.set experiment("sklearn creditcard guided search")

You should see something like Figure 4-41.

2 mlflow.ser_experiment ("sklearn creditcard guided search”)

loga = [)
for £ in range(len(ancmaly weights)):

cest in kfold.splitix_validate, y_validate):
with mlflow. b

weight = an r_weights (2]
mlflcw.log_param(~ancmaly weight®, weight)

Figure 4-41. Setting a new experiment called sklearn_creditcard_
guided_search so that the results of this second validation experiment
are stored separately

Now you can run this code. Once it finishes, go back to the UI, refresh
it, and select the new experiment named sklearn creditcard guided
search. You should see something like Figure 4-42.
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Figure 4-42. The results of the second validation experiment

The whole point of broadening the range of anomaly weights that
you are performing the tuning experiment on is to help you understand
where the best hyperparameter range may lie. You did not know this
initially, so you picked a range that was too small to help you discover the
best value. Now that you do know, you have expanded your search range
considerably.

From the results of this experiment, you can hopefully narrow your
range a lot more and repeat the experiment with a massively reduced
range and arrive at the correct hyperparameter setting.

You will now filter out each of the values by each unique anomaly
weight (10, 50, 100, 150, and 200) to get an idea of how the runs with that
setting performed.

Make sure you're sorting AUC scores in descending order, type the
following query, and search:

parameters.anomaly weight = "10"

You should see something like Figure 4-43.
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Figure 4-43. Filtering the runs by anomaly weight of 10 and setting
the AUC score to display in descending order

The average AUC score as displayed by the validation script is around
0.9215. Of course, this is the same result as from earlier.

Let’s see how the scores look for an anomaly weight of 50. Refer to
Figure 4-44.

skisam_crediteard_guided_search
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Figure 4-44. Filtering the runs by an anomaly weight of 50 and
setting the AUC score to display in descending order. It seems there’s a
slight difference in values

There appears to be a minute difference in the range of AUC scores
already. Looking at the script, you can see that the average AUC is around
0.9248, so there appears to be a small increase in the AUC score.

Let’s keep going and check the results for the anomaly weight of 100.
Refer to Figure 4-45.

167



CHAPTER 4  INTRODUCTION TO MLFLOW

akieam_creditcard_guided_scarch

Expeamert D Adtlset Licaten

* Mot

B
i§5§ 8
¥

Figure 4-45. Filtering the runs by an anomaly weight of 100 and
setting the AUC score to display in descending order

The average this time appears to be 0.9327. Despite the massive
increase in weight, the average AUC score did not go up that high.
However, notice that the first result with an AUC score of 0.995 has
appeared. The best AUC score up until the anomaly weight of 50 was 0.975,
but this anomaly weight setting has broken past that.

Let’s keep going and see if it increases with an anomaly weight setting
of 150. Refer to Figure 4-46A.

skisam_croditcard_guiced_search
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Figure 4-46A. Filtering the runs by an anomaly weight of 150 and
setting the AUC score to display in descending order
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The AUC scores overall seem to be a bit higher. Indeed, the average
AUC score is now 0.9365, so there was an increase. Finally, let’s check the
AUC scores for an anomaly weight setting of 200. Refer to Figure 4-46B.

skieam_creditcard_guided_search
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Figure 4-46B. Filtering the runs by an anomaly weight of 200 and
setting the AUC score to display in descending order

The new average AUC now is 0.9396, so this anomaly weight setting
seems even better.

In fact, you still weren’t able to come to a conclusion about an optimal
range, since the AUC scores keep increasing as you set higher anomaly
weights.

So, from this, you know that the best hyperparameter setting is
somewhere above 200. You simply shift the range of the scope to start at
200 and search over a slightly different area, and once you have found a
good range of values to search over (eventually the AUC scores will start
trending down as you increase the anomaly weight), you can narrow the
focus and start searching again.

After a certain amount of precision with the parameter value, you start
to see diminishing returns where the added effort only produces negligible
improvements in performance, but you will likely encounter this as you
start getting deeper into the decimal values.
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Hopefully now you understand more about how you can integrate
MLFlow into the model training, testing, and validation pipeline using
scikit-learn. You also looked at how to use the UI for basic comparisons,
along with how you might perform hyperparameter tuning more easily
using MLFlow.

A quick note to make is that if you'd like to perform more complicated
searches over multiple metrics or parameters, MLFlow provides
functionality through the API to let you do so via SQL searches within the
code, letting you order by multiple columns, for example.

MLFlow also provides support for logging metrics, parameters,
artifacts, and even models for other frameworks in their documentation.
We will now take a look at how to integrate MLFlow with TensorFlow 2.0+/
Keras, PyTorch, and PySpark.

MLFlow and Other Frameworks
MLFlow with TensorFlow 2.0 (Keras)

MLFlow provides easy integration with TensorFlow 2.0+ (any version of
TensorFlow 2.0 and above). To see how, let’s go over a very basic example
of a handwritten digit classifier model on the MNIST dataset. We will be
using the built-in Keras module to keep things simple for demonstration
purposes. MLFlow supports TensorFlow 1.12 at a minimum, so this code
should run as long as you have at least TensorFlow 1.12.

We will assume a basic level of familiarity with TensorFlow 2, so
we won't go into much depth about what the functions, model layers,
optimizers, and loss functions mean.

Before we begin, here are the versions of TensorFlow, CUDA, and
CuDNN that we used. Keep in mind that we ran this using the GPU version
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of TensorFlow (the package is called tensorflow-gpu), although you should
be able to run this without a GPU at the cost of it taking longer:

o TensorFlow (GPU version) - 2.3.0
e« CUDA-10.1

e CuDNN -v7.6.5.32 for CUDA 10.1
e Sklearn - 0.22.2.post1

e MLFlow-1.10.0

Data Processing

Here is the code to import the necessary modules and print out their
versions:

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Conv2D, Flatten
from tensorflow.keras.datasets import mnist

import numpy as np

import matplotlib
import matplotlib.pyplot as plt

import sklearn
from sklearn.metrics import roc_auc_score

import mlflow
import mlflow.tensorflow

print("TensorFlow: {}".format(tf. version ))
print("Scikit-Learn: {}".format(sklearn. version ))
print("Numpy: {}".format(np. version ))
print("MLFlow: {}".format(mlflow. version ))
print("Matplotlib: {}".format(matplotlib. version ))
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You should see something like Figure 4-47.

import nuspy as sp

isport macplotlsh
import matplotlib.pyplot as plt
import aklearn

from sklearn.metrics lmport roc_auc_score

import mlflow
import miflew.tensorflow

Figure 4-47. Importing the necessary modules and printing their
versions

Let’s now load the data:
(x_train, y train), (x_test, y test) = mnist.load data()

Keras, and by extension TensorFlow, provides the MNIST handwritten
digit dataset for you, so all you need to do to load the data is call the
function, like in Figure 4-48.

Refer to Figure 4-48 to see the code in a cell.

(x_train, y_train), (x_test, y test) = mnist.load daca()

Figure 4-48. Defining x_train, y_train, x_test, and y_test

You can even see what one of these images looks like. Run the
following:

plt.imshow(x _train[0], cmap='gray'), print("Class: ", y train[o0])

You should see something like Figure 4-49.
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plt.imshow(x train[0], cmap=‘gray'), print("Class: ", y train[0]
Class: 5

t (<matpletlib.image.Axealmage at OxlebBSectcBE>, None)

Figure 4-49. Looking at what one of the data samples looks like
using matplotlib. You also printed out the class label associated with
this sample, which was 5

Also notice that you printed out the class label associated with this
specific image. The labels are all integers between 0 and 9, each associated
with an image that shows a handwritten digit from 0 to 9.

Since 2D convolutional layers in TensorFlow/Keras expect four
dimensions in the format of (i, h, w, c) where m stands for the number of
samples in the dataset, i and w stand for the height and width, respectively,
and c stands for the number of channels (three if it's an RGB color image
for example), you need to reshape your data so that it conforms to these
specifications. Your images are all black and white, so they technically have
a channel of one. And so, you must reshape them like so:

x_train = x_train.reshape(x train.shape[0], x train.shape[1],
x_train.shape[2], 1)

x_test = x_test.reshape(x_test.shape[0], x test.shape[1],
x_test.shape[2], 1)

y_train = tf.keras.utils.to categorical(y_train)
y test = tf.keras.utils.to categorical(y test)

Refer to Figure 4-50 to see that code in a cell.
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train.reshape (x_train.shape[0], x_train.shape[l], x_train.shape[2]., 1)
cest.reshape (x_test.shope(0], x_test.shapa(l], x_test.shape(l], 1)

= tf kerss.utils.to_categerical(y trair)
«keras.utils.to_categorical (y_test)

Figure 4-50. Reshaping the data to include one channel, conforming
with the specifications of the convolutional layers. Additionally, the y
sets are being converted to one-hot encoded formats

You converted the y sets by calling a function called
to_categorical(). This converts each sample from an integer value of
say 2 or 4 corresponding to the digit represented by the x samples into a
one-hot encoded vector.

Samples in this format are now 0 vectors with a num_classes number
of digits. In other words, these vectors all have a length matching the total
number of classes. Whatever value the label was is now the index of the
value 1. And so, if the label is 1, the value at the index of 1 in this vector will
be one, and everything else is a 0.

This may be a little confusing, so refer to Figure 4-51 to see what the
one-hot encoded label looks like for a digit representing 5.

y_train[d)

(#): arcay([0., 0., 0., 0., 0., 1., Q.. 0., 0., 0.}, dtype=float3l)

Figure 4-51. The new output of the one-hot encoded label
representing a value of 5. Notice that the value at index 5 is now 1

As you can see, the index of the 1 is 5, corresponding to the first
x_train example you looked at earlier, which was the digit 5.
Now, let’s print out the shapes:

print("Shapes")

print("x_train: {}\ny train: {}".format(x_train.shape,
y_train.shape))

print("x_test: {}\ny test: {}".format(x_test.shape,

y test.shape))

You should now see something like Figure 4-52.
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Figure 4-52. Printing the output shapes of the processed data

MLFlow Run - Training and Evaluating

Let’s move on to the creation of your model. You will be using the
Sequential method of model creation. The model will be quite simple,
consisting of a couple 2D convolutional layers that feed into three dense
layers. Run the following:

model = Sequential()

model.add(Conv2D(filters=16, kernel size=3, strides=2,
padding="same', input shape=(28, 28, 1), activation="relu"))
model.add(Conv2D(filters=8, kernel size=3, strides=2,
padding="same', input_shape=(28, 28, 1), activation="relu"))
model.add(Flatten())

model.add(Dense(30, activation="relu"))

model.add(Dense(20, activation="relu"))

model.add(Dense(10, activation="softmax"))

model.summary()

You should see something like Figure 4-53.
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Figure 4-53. Creating the model and outputting a summary of the
model’s architecture

Let’s now compile your model using the Adam optimizer and
categorical cross-entropy for your loss. For your metric, you will only be
using accuracy. Run the following:

model.compile(optimizer="Adam",
loss="categorical crossentropy", metrics=["accuracy"])

You should see something like Figure 4-54.

Figure 4-54. Compiling your model, setting the optimizer to Adam
optimizer, setting the loss to categorical cross-entropy, and setting the
metric to be accuracy

Now you get to the part where you tell MLFlow to log this run. You
want all of the metrics to be logged to the same run, so you must tell
MLFlow specifically to run a block of code in the context of the same run.
To do so, you once again block your code using the following line:

with mlflow.start run():
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With that, run the following to set the experiment name, train the
model, get the evaluation metrics you need, and log them all to MLFlow:

mlflow.set experiment("TF_Keras MNIST")
with mlflow.start run():
mlflow.tensorflow.autolog()

model.fit(x=x_train, y=y train, batch _size=256, epochs=10)
preds = model.predict(x test)
preds = np.round(preds)

eval acc = model.evaluate(x test, y test)[1]
auc_score = roc_auc_score(y test, preds)

print("eval_acc: ", eval acc)

print("auc_score: ", auc_score)

mlflow.tensorflow.mlflow.log metric("eval acc", eval acc)
mlflow.tensorflow.mlflow.log metric("auc_score", auc_score)

mlflow.end run()

Refer to Figure 4-55 to see the output. Ignore the warning messages.
They don’t hinder the training process or the performance of the model.
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In [9]: mlflow.set_sxperizent ("TF_Heras HNIST")
3 with miflow.start_run():
mlflow.tensorflow.autcleg()
model. fic (x=x_train, y=y_train, batch_size=256, epochs=10)
preds = model.predict (x_test)

preds = np.round (preds)

eval acc = model.evaluate (x_test, y_tesc) [1]
auC_score = roc_auc_score(y_test, preds)

c: ", eval acc)
", auc_score)

mlflew.ctensorflow.mlflew.log metric("eval acc®, eval acc)
mlflew.tensorflow.mlflew.log metric(“aus_score", auc score)

miflow.end_zun()

INFo: *TF _Heras MNIST® does not exist. Creating a new experiment

] = ETA: 0a - loss: 9.2293 - + 0.0 =1 lew:From
= \Jse—s\:h_q:u\,._—acunduz\emu\pss\nb\nze packaqes\unsur:1cn\m:»m\aps\=mq ops_v2. py11277: stop (from

Instructions for ..pdqurv
use “zf.profiler. l.stcp” instead
- L L L L T ] = ETA: 343 - loass: 0.2826 - tccu'lr:y 0 aassk»\ax:w* unawtlov Callba

egin® time: 0.0430a).
WARNING:tengorflow:Callbacks method “on_train_batch_end” 13 slow compared ©o the batch time (bateh time: 0.005
08 v ‘on_train_batch_end’ time: 0.2410s). Check your callbacks.

eck your callbacks.

235/235 | ] - 25 Bma/step - loss: 1.1566 - accuracy: 0.6513

Epoch 2/10

235/235 [ 1 - 18 6ma/step - loss: 0.2496 - accuracy: 0.9252
ch 3/10

2357238 | ] - 13 émafstep - los2r 0.1542 - sccuracy: 0.9544

Epoch 4/10

235/235 [ 1 - 1s émsfscep - loss: 0.1139 - accuracy: 0.9664

Epoch 5/10

238/235 | 1 = 12 &=afatep - loaz: 0.0903 - accuzacy: 0.5730
ch 6/10

238/238 | 1 = 1s éas/step - loss: 0.0756 - accuracy: 0.9771

Epoch 7/10

235/235 | 1 = 13 Gmafscep - loss: 0.06499 - accuracy: 0.9303

Fpock 8/10

238/235 | 1 = la €=s/atep - loas: 0.0575 - accuzacy: 0.9226

Epoch 9/10

238/238 | ] = 13 é=s/step - loss: 0.0804 - accuzacy: 0.9839

Epoch 10/10

235/235 [ ] = 1= 6ma/step - loss: 0.0444 - accuracy: 0.9860

313/313 | ] - 13 4ms/step - loms: 0.0783 - accuracy: 0.9767

eval_acc: 0.9767000079154968
auc_score: 0.986283036190461

Figure 4-55. Output of the MLFlow run and the training process. You
can also see that the metrics you calculated have been updated

Another new line of code is the following:
mlflow.keras.autolog()

This basically tells MLFlow to log all the parameters and metrics
associated with the particular TensorFlow/Keras model. As you will see
shortly, MLFlow will log the hyperparameters, model metrics listed in
the compile() function, and even the model itself once the training has
finished.
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MLFlow Ul - Checking Your Run

With that, let’s now open the MLFlow UI and check your run in MLFlow.
Make sure your terminal or command prompt is in the same directory
where the mlruns are stored. Usually, MLFlow saves all these runs in the
same directory of the Jupyter notebook.

Now that you've opened the UI, you should see something like
Figure 4-56.

Figure 4-56. The MLFlow UI after running the TensorFlow
experiment. Notice that there is a new experiment titled TF_Keras_
MNIST

Click the tab called TF_Keras_MNIST to see the results of the
experiment you just logged. You should see something like Figure 4-57.
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Figure 4-57. Opening the experiment titled TF_Keras_MNIST. You
can see that it successfully logged a run

As you can see, your run was just successfully logged. Next, click it to
explore all of the parameters, metrics, and artifacts that MLFlow logged.
You should see something like Figure 4-58.

TF_Keras_MNIST 5 Fun Bad23aB2ed4baToanoscasonddtcd -

Figure 4-58. Looking at the specific run logged in the experiment.
As you can see, all the parameters and metrics were logged, even the
one you specified. It also shows you the duration and the status of the

run, so now you know how long it took to train the model as well as
whether or not it completed
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MLFlow saved all of the hyperparameters used when creating the
model. This could be very useful for hyperparameter tuning on a validation
set, for example, where you are trying to tune many hyperparameters
at once. For example, you can definitely tune batch_size, epochs, or
something related to the Adam optimizer like opt_learning_rate,
opt_beta 1,oropt beta 2.

As you can see in Figure 4-58, MLFlow saved the model metrics for
accuracy and loss as calculated during the training process. In addition,
MLFlow also saved the metrics that you defined.

Scroll down to artifacts and click model and then data. You should see
something like Figure 4-59.

Figure 4-59. Upon closer inspection of the artifacts, it seems MLFlow
has also logged the model itself

Here, you can see that MLFlow also saved the model after the training
process finished. In fact, let’s briefly look at how you can load this model.
Make sure you go to the top and copy the run ID before doing this.

Loading an MLFlow Model

With the run ID copied, head on over to the notebook and create a new
cell. Run the following code, but replace the run ID with yours:

loaded model =
mlflow.keras.load model("runs:/YOUR RUN_ID/model™)
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Your code should look similar to Figure 4-60. Our run was
ba423a8t28d24b67b8f703cabbe43fc2, so that’s what we replaced
YOUR_RUN_ID with.

In [16]: loaded modsl = mMITlow.Keras.load model ("Tuns:/DadiiastisclsbsTberio3cacbed3fci /moamln)

Figure 4-60. Loading a logged model using a specific run. Notice that
we are doing mlflow.keras. This is because the model is technically a
Keras model

You'll notice that we did mLflow.keras instead of ml1flow.tensorflow.
This is because this model is technically a Keras model, and so it conforms
to the specific load_model() code in the mlflow.keras module.

Run the following code to quickly calculate the same evaluation
metrics that you logged earlier:

eval loss, eval acc = loaded model.evaluate(x test, y test)

preds = loaded model.predict(x_ test)
preds = np.round(preds)

eval auc = roc_auc_score(y test, preds)

print("Eval Loss:", eval loss)
print("Eval Acc:", eval acc)
print("Eval AUC:", eval auc)

This just ensures that the model is the same and demonstrates that
you can use the model to make predictions. Refer to Figure 4-61 to see the
output.
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eval loss, eval acc = loaded model.evaluate (x_test, ¥ _test)

preds = loaded mcdel.predict(x_test)
preds = np.round (preds)

(y_test, preds)

eval_lcss)
ace)

1 = 1= 4ms/scep - loss: 0.0789 - accuracy: 0.9767

Figure 4-61. The output of the code block printing out the loss,
accuracy, and AUC score when the model was evaluated on the test
set. These three values match the corresponding values from the
output of the run earlier

As you can see, this output matches the values from the output of
the run earlier. Additionally, this model is also functional and can make
predictions.

And with that, you now know how to integrate MLFlow into your
TensorFlow 2.0+ experiments. Again, MLFlow supports TensorFlow 1.12+,
which also contains the Keras submodule. This means that you should be
able to follow the same convention to log tf.keras module code as long as
you have TensorFlow 1.12+.

In practice, you are likely to have functions to build and compile the
model, functions to train the model, and functions to evaluate and perhaps
even validate the model. Just be sure to call all of them in the block with
mlflow.start run(): so that MLFlow knows all of this is happening
within the same run.

Next, let’s look at how to integrate MLFlow with PyTorch.

MLFlow with PyTorch

MLFlow also provides integration with PyTorch. While the process isn’t as
easy as with Keras or TensorFlow, integrating MLFlow into your existing
PyTorch code is quite simple. To see how to do so, we will be exploring a
simple convolutional neural network applied to the MNIST dataset once
again.
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Before we begin, here are the versions of the modules we are using,
including CUDA and CuDNN:

e Torch-1.6.0

e Torchvision - 0.7.0

e CUDA-10.1

e CuDNN -v7.6.5.32 for CUDA 10.1
e Sklearn - 0.22.2.postl

e MLFlow-1.10.0

e numpy-1.18.5

Data Processing

Let’s get started. Here’s the code to import the necessary modules, print
out their versions, and set the device that PyTorch will use:

import torch
import torch.nn as nn
from torch.utils import data

import torchvision
import torchvision.datasets

import sklearn
from sklearn.metrics impoxrt roc_auc_score, accuracy score

import numpy as np

import mlflow
import mlflow.pytorch

device = torch.device("cuda:0" if torch.cuda.is available()
else "cpu")
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print("PyTorch: {}".format(torch. version ))
print("torchvision: {}".format(torchvision. version ))
print("sklearn: {}".format(sklearn. version ))
print("MLFlow: {}".format(mlflow. version_ ))
print("Numpy: {}".format(np. version ))

print("Device: ", device)

Refer to Figure 4-62 to see the output.

import sklearn
from sklearn.mecrics import roc_8uc_score, AcCuracy score

import numpy as np

import mlflew
import mlflow.pytorch

device = torch.

.format(np._ versien_ ))

", device)

Figure 4-62. Importing the necessary modules and printing the
versions of the modules

The line of code

device = torch.device("cuda:0" if torch.cuda.is available()
else "cpu")

tells PyTorch which device to run the code on. If there is a GPU that CUDA
can connect to, it will use that instead. Otherwise, it will run everything
on the CPU. In our case, we have CUDA set up with our GPU, so Torch
displays “cuda:0” as seen in Figure 4-62.
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Next, you will define some basic hyperparameters:

batch _size = 256
num_classes = 10
learning_rate = 0.001

Refer to Figure 4-63 to see them in a cell.

bateh_size = 256
num_classes = 10
learning_rate = 0.001

Figure 4-63. Setting the hyperparameters relevant to the training of
the model

Next, you will load in the MNIST dataset. Like Keras and TensorFlow,
PyTorch also provides example datasets. In this case, you are loading
MNIST:

train_set = torchvision.datasets.MNIST(root="./data’,
train=True, download=True, transform=None)
test set = torchvision.datasets.MNIST(root="./data’,
train=False, download=True, transform=None)

Refer to Figure 4-64 to see this code in a cell.

crain_ser = rorchvision.datasets.MNIST [reor='./dats’, train=Troe, download=Trus, tranaformsNone)
cest_set = torchvisicn.datasecs . MNIST(root='./data', train=False, download=True, ©r ]

Figure 4-64. Defining the training and testing sets by loading the
data from PyTorch

You will now define your x_train,y train,x test,andy test
datasets:

x_train, y train = train_set.data, train_set.targets
x_test, y test = test set.data, test set.targets

Refer to Figure 4-65.
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x_tzain, y _train = train_set.data, train_set.targets
X_Test, Y_TEsT = TEIT_3eT.dATA, TEIT_SeT.TaIgecs

Figure 4-65. Creating your x_train, y_train, x_test, and y_test data
sets from the training and testing sets

In PyTorch, you want the data to be channels first. In other words,
the format of the data should be (m, c, h, w), where m stands for the
number of samples, ¢ stands for the number of channels, & stands for the
height of the samples, and w stands for the width of the samples.

Notice that this is the “opposite” format of how Keras and TensorFlow
do it by default, which is channels last. In Keras and TensorFlow, you can
also do channels first, but you must specify that you are doing it this way.

Let’s reshape your x-sets:

x_train, y train = train_set.data, train_set.targets
x_test, y test = test set.data, test set.targets

Refer to Figure 4-66 to see this code in a cell.

X_train = x_train.reshape(x_train.shape[0], 1, x train.shape(l), x_train.shape(2])
x_Teat = x_test.reshape(x_teat.shape[D], 1, x_veat.shape[l], x_teat.snape(2])

Figure 4-66. Reshaping the x-sets so the data is encoded in a
channels-first format

Before you print out all the shapes, note that your y-sets are not in a
one-hot encoded format. Run the following:
y_train[o0]

Refer to Figure 4-67.

¥_tzain(0

i tensor(5)

Figure 4-67. The output of the first sample in the y_train set. Note
that the numbers are not in a one-hot encoded format
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Notice that this outputs a number, not a vector. You must convert
your y-sets into a one-hot encoded format. However, there isn’t a handy
function like keras.utils.to_categorical() you can just call, so you will
define one:

def to one hot(num classes, labels):
one_hot = torch.zeros(([labels.shape[0], num classes]))
for f in range(len(labels)):
one_hot[f][labels[f]] = 1

return one_hot

That being said, you can always call keras.utils.to categorical():
and type-cast the resulting output to a PyTorch tensor.
Refer to Figure 4-68 to see this in a cell.

Figure 4-68. A custom function that converts the input called
“labels,” given the number of classes, into a one-hot encoded format
and returns it

Now let’s convert your y-sets to be in a one-hot encoded format:

y train = to_one hot(num classes, y train)
y test = to one_hot(num classes, y test)

Refer to Figure 4-69 to see this code in a cell.

y_train = to_cne_hot (num classes, y_train)
¥_teat = to_one_hot num_classes, y_teat

Figure 4-69. Converting your y-sets into a one-hot encoded format
using your custom function
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Let’s check whaty trainlooks like now:
y_train[o]

Refer to Figure 4-70.

y_tzain[0]

70]1: censor([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.1}

Figure 4-70. Checking the output of the first sample in y_train, you
now see that the tensor has been converted into a one-hot encoded
format

As you can see, it is now in a one-hot encoded format. Now you can
proceed to checking the shapes of your data sets:

print("Shapes")

print("x_train: {}\ny train: {}".format(x_train.shape,
y_train.shape))

print("x_test: {}\ny test: {}".format(x_test.shape,

y test.shape))

You should see something like Figure 4-71.

¥_train: (}".formac(x train.shape, y ctrain.shape))
Test: (}".format(x_test.shape, ¥y _test.shape))

« 1, 28, 28])
t 00, 10])

1, 28, 28))
o, 2000

Figure 4-71. Printing the shapes of your training and testing sets. As
you can see, the x-sets are in a channels-first format, and the y-sets are
in a one-hot encoded format
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MLFlow Run - Training and Evaluating

Now, let’s define your model. A popular convention in PyTorch is to define
the model as a class since it allows you to much more easily use the GPU
while training. Instead of passing in every layer to the GPU, you can just
send in the model object directly.

Run the following code to define your model:

class model(nn.Module):
def init (self):
super(model, self). init ()

# IN 1x28x28 OUT 16x14x14

self.convl = nn.Conv2d(in_channels=1, out channels=16,
kernel size=3, stride=2, padding=1, dilation=1)

# IN 16x14x14 OUT 32x6x6

self.conv2 = nn.Conv2d(in_channels=16, out channels=32,
kernel size=3, stride=2, padding=0, dilation=1)

# IN 32x6x6 OUT 64x2x2

self.conv3 = nn.Conv2d(in_channels=32, out channels=64,
kernel size=3, stride=2, padding=0, dilation=1)

# IN 64x2x2 OUT 256

self.flat1l = nn.Flatten()

self.densel = nn.Linear(in_features=256,
out_features=128)

self.dense2 = nn.Linear(in features=128,
out_features=64)

self.dense3 = nn.Linear(in_features=64,
out_features=10)

def forward(self, x):
x = self.convi(x)
x = nn.ReLU()(x)
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= self.conv2(x)
= nn.ReLU()(x)

= self.conv3(x)
= nn.ReLU()(x)

= self.flat1(x)
self.dense1(x)
= nn.ReLU()(x)

= self.dense2(x)
= nn.ReLU()(x)

= self.dense3(x)
= nn.Softmax()(x)
return x

X X X X X X X X X X X
1

Refer to Figure 4-72.

in (121: class model (nn.Module):
def _: (2elf):
uper (model, self). isie ()

€x1éx1d

Convad(in_channels=l, cut_channels=lé, kernel size=3, stride=l, padding=l, dilaticm=l
Cenvld(in_channels=1¢, out_channels=31, kernel size=3, stride=l, padding=0, dilation=
x2xd

nv2d(in_channels=32, out_channels=f4, kernel size=3, scride=:, padding=0, dilation=

Flaczen()

self.densel = nn.linear(in_features=256, out_features=llE)
self.dense? = nn.Linear(in 12 ue, ]
self.densed = nn.Linear(in_

def forward(self, x):
% = gelf.convi(x)
% = nn.ReLU() (x)
x = self.conva(x)
x = nn.RelU() (x)
x = gelf.convs(x}
= = nn.RelU() (x)
% = self.flacl(x}
x = self.densel (x)
x = nn.RelU() (x)
x = gelf.densel (x)
= = nn.RelU() (x)
% = self.denseld(x)
x = nn.Softmax() (x)
retorn x

Figure 4-72. Defining the model’s architecture as a class
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Next, let’s send your model to the device, define and initialize an
instance of Adam optimizer with the learning rate you set earlier, and set
your loss function:

model = model().to(device)

optimizer = torch.optim.Adam(model.parameters(),
lr=learning_rate)

criterion = nn.BCELoss()

Refer to Figure 4-73.

model = model () .to(device)
cprimizer = torch.cprim.Adam(model.pazazmecers(), lr=learning_zace)
eraterien = nn.SCELoaa()

Figure 4-73. Sending the model object to the device, defining your
optimizer, and initializing the loss function

Next, you will define a data loader using functionality provided by
PyTorch to take care of batching your data set:

dataset = data.TensorDataset(x_train,y train)
train loader = data.Dataloader(dataset, batch_size=batch size)

Refer to Figure 4-74.

dataset = data.TensorDatase: (x_traim,y_tzain)
train_leader = data.Dataloader datasec, batch_size=batch_size

Figure 4-74. Creating a data loader object out of your data set. With
this functionality, PyTorch will batch your data set for you, allowing
you to pass in a minibatch at a time in your training loop. This
essentially is what the TensorFlow 2/Keras . fit() function does, but
it’s all abstracted for you
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As you can seg, this is much simpler than having to make an intricate
loop to batch and pass in data yourself.
Finally, let’s define the training loop:

num_epochs = 5
for f in range(num_epochs):
for batch num, minibatch in enumerate(train loader):
minibatch x, minibatch y = minibatch[0], minibatch[1]

output = model.forward(torch.Tensor
(minibatch_x.float()).cuda())

loss = criterion(output, torch.Tensor
(minibatch_y.float()).cuda())

optimizer.zero grad()
loss.backward()
optimizer.step()

print(f"Epoch {f} Batch Num {batch _num} Loss {loss}")

This can take at least a couple minutes depending on your GPU, and
even longer if you're using a CPU. Feel free to lower the number of epochs
ifyou'd like to decrease total training time.

You should see an output like Figure 4-75.
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In [15]): num epochs = §
2 for £ in range(num epochs) @
for batch_num, minibatch in enumerate(train loader):
minibatch_x, v inibacch[0], minibatchil]

ocutput = model.forward(torch.Tensor |m.—.|.ba::!\_:. float()).cuda())
loss = criterion{cutput, torch.Tensor(minibatch y.float()).cudal())

cprimizer.zero_grad()

loss.backward(}

cprimizer.atep()

print(E"Epoch {£) Batch Mum {batch num) Loss {loas)}™)

€:\Users\Shurpu\Anaconda2\envs\p3E\1ibi sl ipykernel launcher.py:30: Inplicit dimenss A
on cholce for softmax has been deprecated. Change the call to !!\CJLM dim=X as an arqument.

Epoch O Batch_Num 0 Loss 0.3498508632183075

Epoch O Ba um 1 Loss 0.31203240156173706
Epoch O Ba um 2 Loss 0.29286548495232664
Epoch Ba um 3 Loss 0.272381£3382012634

fum 4 Loss 0.23558632493015104
um 5 Loss 0.2219994068145752
um € Loss 0.18256120383739471
fum 7 Loss 0.16779246926307678
um 8 Loss 0.13274620473384847
fum § Loss 0.12093491852283478

Epoch Ba um 10 Loss 0.14325319230556482
Epoch Ba um 11 Loas 0.11599089950323105
Epoch Ba um 12 Less 0.10768351703882217
Epoch Ba Hum 13 Loss 0.11333342013101878
Epoch Ba: fum 14 Less 0.0 00477600098

) h_MWum 15 Loss 0.02 10409927368
Enaah 0 RAEAR Hum- 1A Taas 0101164164 A04RERL

Figure 4-75. Output of your training loop. Feel free to reduce the
number of epochs to save on training time, but this could potentially
hinder the model’s performance

Now, let’s start an MLFlow run, calculate the metrics you want, and log
everything:

mlflow.set_experiment("PyTorch MNIST")

with mlflow.start run():

preds
preds

model.forward(torch.Tensor(x_test.float()).cuda())
np.round(preds.detach().cpu().numpy())

eval acc = accuracy score(y test, preds)
auc_score = roc_auc_score(y test, preds)

mlflow.log param("batch_size", batch size)
mlflow.log param("num epochs", num_epochs)
mlflow.log param("learning rate", learning rate)
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mlflow.log metric("eval acc", eval acc)
mlflow.log metric("auc_score", auc_score)

, eval acc)

, auc_score)

mlflow.pytorch.log model(model, "PyTorch MNIST")

mlflow.end run()

As you can see, MLFlow integration is still quite easy with PyTorch.

Refer to Figure 4-76 to see the output.

mlflow.set_experiment ("

with mlflow.scart_run():

preds = model.forward({torch.Tensor (x_test.floac()).cuda())
preds = np.round (preds.decach().cpu(}.numpy())

eval_acc = accuracy score(y test, preds
auc_score = roc_auc_score(y_teat, preds)

miflow.log para=("c
mlflow.log_paras
mlflow.lcg_param

e", batch_size)
um_epocha)
learnli ng_rate)

miflow.log_mecri
mlflow.log_metri

eval acc)
| . Auc_score
. eval_acc)

", auc_score)

mlflow.pytorch.log_model (model, "FyTorch MNIST®)

miflow.end _run()

'PyTorch MNIST® does mot exist. Creating a new experiment

Ci\Users\Snumpu'\Anaccndalienvaipiéilibisite-packagesiipykernel launcher.py:30: UserWarning: Implicit dimension
choice for softmax has been deprecated. Change the call to include dim=X as an argument.

eval_ace: 0.9797

auc_score: 0.9888141186225917

Figure 4-76. Setting the experiment, and logging the parameters,
metrics, and the model to the MLFlow run
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MLFlow Ul - Checking Your Run

Let’s open up the UI. Refer to Figure 4-77.

Figure 4-77. Looking at the MLFlow Ul now. Notice that your
experiment, PyTorch_MNIST, is created

Asyou can see, there is a new experiment titled PyTorch_ MNIST. Click
it. You should now see the run you just completed. Refer to Figure 4-78.

+ @ st

Figure 4-78. The MLFlow UI showing your completed run

Now that your run has shown up, click it. You should see all the
parameters and metrics logged in that run. Refer to Figure 4-79.
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PyToren MNIST 3 Run D04afZedT 14711906 114b4cDEMATS =

Farameiers

AT

- amen

Figure 4-79. All the parameters, metrics, and artifacts (the model)
you specified have been logged

Also notice the model that’s been saved by MLFlow under artifacts.
Refer to Figure 4-80.

Figure 4-80. MLFlow has successfully logged the model as well
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Loading an MLFlow Model

Let’s now go over how to load this model using MLFlow. Copy the run
ID, and head back to the notebook. Run the following, but replace the
placeholders with your run ID:

loaded _model = mlflow.pytorch.load model("runs:/YOUR RUN_ID/
PyTorch MNIST")

In our case, our run ID was 094a9192cd714711926114b4c9616d73, so
our code looks like Figure 4-81.

Figure 4-81. Loading the logged MLFlow model

Now that’s done, so let’s make predictions and calculate the metrics

again:

preds = loaded model.forward(torch.Tensor(x test.float()).
cuda())

preds = np.round(preds.detach().cpu().numpy())

eval acc = accuracy score(y test, preds)

auc_score = roc_auc_score(y test, preds)

print("eval acc: ", eval acc)

print("auc_score: ", auc_score)

Refer to Figure 4-82 to see the output.
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In [18]: preds = loaded model.forward(torch.Tensor(x teat.float{)).cudai)}
preds = np.zound (preds.decach().cpe().nu=pyil)
eval_scc = accuracy_score(y_teat, preds)
[t {y_test, preds)

=, eval_ace)
", auc_score)

eval_acc: 0
auc_score: 0,9888141186225917

C:\Users\Shunpu\Anacondal\enva\p36\liblsit Aipykernel launcher.py:30: ing: Implicit dimension
choice for softmax has been deprecated. Change the call to include dimeX a8 An ArguEent.

Figure 4-82. The output of calculating the evaluation metrics from
earlier but with the logged model. As you can see, the scores match
exactly

As you can see, these metrics are the same as from the training run.
You now know how to load a PyTorch model using MLFlow and how you
can use it to make predictions.

With that, you now know how to integrate MLFlow into your PyTorch
experiments. Next, we will look at how you can integrate MLFlow into
PySpark.

MLFlow with PySpark

In our final example, we will look at how MLFlow integrates with PySpark.
Like in the scikit-learn example, we will be looking at the application of a
logistic regression model to the credit card dataset. In fact, this code is very
similar to the PySpark example from Chapter 2.

Before we begin, here are the versions of the modules we are using,
including CUDA and CuDNN:

o PySpark-245

e Matplotlib - 3.2.1

e Sklearn - 0.22.2.postl
e MLFlow -1.10.0

¢ mumpy - 1.18.5
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Data Processing

With that, let’s get started. First, you must import all the necessary modules
and set up some variables for Spark:

import pyspark #

from pyspark.sql impert SparkSession

from pyspark import SparkConf, SparkContext

from pyspark.sql.types import *

from pyspark.ml.feature import VectorAssembler

from pyspark.ml import Pipeline

from pyspark.ml.classification impoert LogisticRegression
import pyspark.sql.functions as F

import os

import seaborn as sns

import sklearn #

from sklearn.metrics import confusion matrix

from sklearn.metrics import roc_auc_score, accuracy score

import matplotlib #
import matplotlib.pyplot as plt

import mlflow
import mlflow.spark

os.environ["SPARK LOCAL IP"]="'127.0.0.1'
spark = SparkSession.builder.master("local[*]").getOrCreate()
spark.sparkContext. conf.getAll()

print("pyspark: {}".format(pyspark. version ))
print("matplotlib: {}".format(matplotlib. version_))
print("seaborn: {}".format(sns. version ))
print("sklearn: {}".format(sklearn. version ))
print("mlflow: {}".format(mlflow. version ))
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Refer to Figure 4-83.

Iz [11: import pyspark #
2 from 53l import on
from pyspark import SparkConf, SparkContextc
i from pyspazk.sql.types import +
from pyspark.ml.feature import VectorAssembler
from pyspazk.ml import Pipeline

from pyspark.ml.classificacion import LogisticRegressieon

import pyspark.sql.functicns as F
impert o2

import seaborn as sns

import sklearn #

from sklearn.metrics import confusion matrix

from sklearn.metrics import YOO AUC S0Ore, ACCUrACY SCOre

import matplotlib #
£ import matplotlib.pyplot as plt

import mlflow
import mlflew.spark

of .environ[“SPARK_LOCAL IF"]='127.0.0.1'
spark = SparkSessi
spark.sparkContext._conf.gethll ()

czmat (pyspazk. _versicn_ ))
format (maTplotlib.  versien_ })
mat (sns. _ version  ))

ormat (sklearn. version_))
.formar (mifiow._ version_})

ilder.master("local(~]").gecOrCreate ()

INTRODUCTION TO MLFLOW

Figure 4-83. Importing the necessary modules and printing their

versions

Next, let’s load your data set and specify what columns you want to

take:

data_path = 'data/creditcard.csv’

df = spark.read.csv(data_path, header = True,

inferSchema = True)
labelColumn = "Class"
columns = df.columns

numericCols = columns
numericCols.remove("Time")
numericCols.remove(labelColumn)
print(numericCols)
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Refer to Figure 4-84 to see the output.

ard.cav'

In [2]: data_path = "datafcredic

df = spark.read.csv data_path, hesder = True, inferSchems = True

labelColumn = *Class®™

columns = df.columns

numericCols = columns

numericCols.remove ("Tine")

numericCols.remove (labelColumn)

print (numericColas)

Y, VA3, CVI4Y, 'V1S', 'V1E', 'V1T',
8", ‘Amount']

[rvar, 'vas, 'vi*, 'v4°, 've', ‘veé', "viv, °wvav, 'vi', 'vip', *vil*, Vi
‘via', ‘vis', ‘'va2o', ‘V21*, ‘'vai*, 'vai', ‘'va4', 'Vas', °'V2é', 'VaT', "W

Figure 4-84. Loading the data and specifying the columns that you
want as a list

Notice that you dropped the column Time here, like with the scikit-
learn example. This column just adds a lot of extraneous information that
doesn’t actually correlate very much with the label column and could even
possibly make the learning task harder than it needs to be.

Let’s see what the data frame looks like:

df.toPandas().head()

Refer to Figure 4-85 to see the output.

In [2): df.cePandas () .head()

Tirme v vz vi Ve Vs v vr vE v o v vz Vi3 v v

«1.350607 -QOT2T81 2536347 13TB1S5 -0 33BX21 C.4E2388 0239500 0098898 0J8ITET .. 0018307 O027TEIE 0110474 0068522 0128
1191857 0265151 0186880 0848158 0050018 -0OAFWST -0O7TEB03 0085102 0295435 HI26TIS DEMETZ? 0101288 0335848 05T

0 L]

1 [}

2 1 1358354 1340063 17732090 OQITOTE0 -HS0MBE 1300400 OTIIEE1  OMTETE 1514654 . 024708 OTTIET O090RI2 0639281 032
3 1 0966272 -0ABSI26 1TH2NI -0.863I91 0010309 1247203 02IT609 0277436 1387004 9108300 Q005274 0NN -1ATSETS 0647
4 2

«1.156233 OETT7IT 1548716 0403034 0407103 0095521 0SSR 0270533 0817739 .. -D0004M  OTSETE 0137458 041267 02064

Figure 4-85. Converting the Spark data frame to Pandas and
checking the output. As you can see, the columns have loaded in
correctly, along with the data. The column Time has not been
dropped because you did not filter the data frame yet
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You'll notice that the columns you “dropped” are still showing up, like
Time. You haven't filtered the columns you want yet, which you are going
to do now. Run the following to select the features you want from the data

frame and create your normal and anomaly splits:

stages = []

assemblerInputs = numericCols

assembler = VectorAssembler(inputCols=assemblerInputs,
outputCol="features")

stages += [assembler]

dfFeatures = df.select(F.col(labelColumn).alias('label’),
*numericCols )

normal = dfFeatures.filter("Class == 0").
sample(withReplacement=False, fraction=0.5, seed=2020)
anomaly = dfFeatures.filter("Class == 1")

normal train, normal test = normal.randomSplit([0.8, 0.2],
seed = 2020)

anomaly train, anomaly test = anomaly.randomSplit([0.8, 0.2],
seed = 2020)

Refer to Figure 4-86 to see the code in a cell.

stages = []
assemblerInputs = o
assexbler = Vectoris
sTages += [assem

utCola=assemblerInputa, cutputCol="features®™)
dffeatures = df.select(F.col{lsbelColusn).alias(*label’), *numericCols

normal = dffeatures.filver("Class == 0"} .sanple (withReplacenent=False, fraction=d.5, seed=2020)
anomaly = dffeatures.filcer("Class == 1¥)

normal_train, nermal_test = normal.randomSplic((0.8, 0.2], seed = 2020
angmaly_train, ancmaly tedt = ancmaly.randomsSplic([0.8, 0.2], seed = 2020)

Figure 4-86. Selecting the columns that you want and defining your
normal and anomaly train and test sets
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Let’s look at the new data frame now:

dfFeatures.toPandas().head()

Refer to Figure 4-87.

diffeatures.tofandasi() . head

label w vz Vi V4 vE Ve v v L - Vo v v Vi3 v

L] 0 1355807 LOT2TE1 25367 137EBISE 0332020 0.AE23BE 0239555 Q.0SeSSE  0.283TET 0257412 L01B30T QITTEIE LMO4T4  DOSEE
0 1I9I8S5T 0266151 0168480 0448154 0060013 0082361 -LOTES03 Q.085102 0255429 0069083 0229775 .0E3867T2 0012 L3I

2 0 1358354 1340163 177309 QITETEC 0503188 1500489 OTI4E1  Q4TETE 1514654 0524860 024796 QTTIETR  00WIZ DRI
3 0 0855272 0185226 172303 LHBEI29 0010009 124703 0237608 OTTHIE 138704 0208338 0108300 0005274 0180221 14T7SE

4 0 1958233 QETTTIT 1548718 0402034 -D40T1S3 009521 0592841 0270533 0BT 040542 000N QTREITE 013T4SE Q42

5 rows = 30 columns
< »

Figure 4-87. As you can see, Time has been dropped. This is the data
Jframe that your training and testing sets are derived from

Notice that the columns you dropped are gone. Now you know that
normal and anomaly don’t have the features you dropped either and that
everything is proceeding as planned. Let’s create the train and test sets:

train_set = normal train.union(anomaly train)
test _set = normal test.union(anomaly test)

Refer to Figure 4-88.

train_set = normal train.union(snomaly trsin)
Test_set = BOTMI_ZEJS.‘H’HC.‘. Gﬂcﬂl}'_:t!!

Figure 4-88. Concatenating the normal and anomaly sets to create
the train and test sets

Let’s now move on to creating the feature vector that the logistic
regression model is going to use. Run the following to define the pipeline
and create your final train and test sets:

pipeline = Pipeline(stages = stages)
pipelineModel = pipeline.fit(dfFeatures)
train_set = pipelineModel.transform(train_set)
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test _set = pipelineModel.transform(test set)
selectedCols = ['label', 'features'] + numericCols
train_set = train_set.select(selectedCols)

test set = test set.select(selectedCols)

print("Training Dataset Count: ", train_ set.count())
print("Test Dataset Count: ", test set.count())

Refer to Figure 4-89.

pipeline = Pipeline (stages = stages)
papelineodel = pipeline.fit(dfFcatures)
£r = pipe sfo! n

Figure 4-89. Defining the pipeline used to create the feature vector
that will be used to train the model. From the feature vector and the
label vector, you define your final train and test sets

Now that you've finished processing the data, let’s define a function to
train the model and calculate some relevant metrics:

def train(spark model, train set):
trained model = spark model.fit(train set)

trainingSummary = trained model.summary
pyspark auc_score = trainingSummary.areaUnderROC

mlflow.log metric("train_acc", trainingSummary.accuracy)
mlflow.log metric("train AUC", pyspark auc_score)

print("Training Accuracy: ", trainingSummary.accuracy)
print("Training AUC:", pyspark auc_score)

return trained model
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Refer to

detf

INTRODUCTION TO MLFLOW

Figure 4-90 to see the function in a cell.

train(spark_model, train_set):
trained model = spark model.fit(train_sec)

TrainingSummary = trained model.summazy
pyapark_auc_score = trainingSumsary.arealUnderROC

mlflow.leg meczic(”
mlflow.log_mecric(”

2%, TIMANARGSUNRATY.ACCUIACY)
UC", pyspark_auc_score}

uracy: *, trainingSummary.accuracy)
1", pyspark_suc_score)

Figure 4-90. The code to train the PySpark logistic regression model
and log the training accuracy and AUC score metrics

Let’s now define a function to evaluate the model and calculate those

metrics, too:

def evaluate(spark model, test set):

206

evaluation summary = spark model.evaluate(test set)
eval acc = evaluation_summary.accuracy
eval AUC = evaluation summary.areaUnderROC

mlflow.log metric("eval acc", eval acc)
mlflow.log metric("eval AUC", eval AUC)

print(
print(

Refer to

"Evaluation Accuracy: ", eval acc)
"Evaluation AUC: ", eval AUC)

Figure 4-91.
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def evaluate (spark_model, teat_set):

evaluation_summary = spark_model.evaluate (Test_set)

eval_acc - E'—'ll‘.:a‘l:)ﬂ_!m{"'.QCC!:Z&CL'
eval AUC = evaluation_summazy.

Figure 4-91. The code to evaluate the trained PySpark logistic
regression model and log the evaluation accuracy and AUC score
metrics

MLFlow Run - Training, Ul, and Loading an MLFlow
Model

Now that you have finished defining the training and evaluation functions
along with the metrics you want to log, it’s time to start an MLFlow run and
build a model:

1r = LogisticRegression(featuresCol = 'features', labelCol =
"label', maxIter=10)

mlflow.set experiment("PySpark CreditCard")
with mlflow.start run():
trainedlR = train(lr, train set)
evaluate(trainedLR, test set)
mlflow.spark.log model(trainedLR,

"creditcard model pyspark™)

mlflow.end run()
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Refer to Figure 4-92.

1r = LegisticRegreasion(featuresCol = 'features', labelCol = 'label’', maxIter=10)
mlflow.aet_cxperiment ["FySpark_CreditCazd")

with mlflew.scarc_rum():

trainedlR = train(lr, train_sec)
evaluate (trainedLR, test_set)

mlflow.spark.log_model (crainedLR, "crediccard model pyspark™)

T. CINATing & DV EXPEIiment

Figure 4-92. The output of the MLFlow run. The experiment has
been created and the metrics and model successfully logged

Alright, now that MLFlow has finished logging everything and the
run has ended, open up the MLFlow UI. You should see something like
Figure 4-93.

Figure 4-93. The MLFlow UI showing that your experiment,
PySpark_CreditCard, has been created

Notice that a new experiment called PySpark CreditCard has been

created. Click it, and you should see something like Figure 4-94. If MLFlow
didn’tlog the run here, try rerunning the cell. It should log it correctly.
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0 < | PySpark_Creancard

Figure 4-94. MLFlow Ul showing that your run has successfully
finished

If everything went well, you should see a run logged in this experiment.
Click it, and you should see something like Figure 4-95.

Fytpan_CresmCied & Rus StetascSa0I0insbalomeiicociiees =

Figure 4-95. Looking at the run, it appears that all of your metrics
have successfully been logged

Finally, in the artifacts section, click the folder that says
creditcard model pyspark to expand it. You should see a folder called

sparkml that contains the PySpark logistic regression model. Refer to
Figure 4-96.
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Figure 4-96. MLFlow has also logged the PySpark model. There is
no concrete model file like with the TensorFlow or PyTorch examples
because of the way PySpark stores its models

Now that you've verified MLFlow has logged everything you specified,
copy the run number at the top. Now go back to the notebook and run the
following, replacing the placeholder with your run:

model = mlflow.spark.load model("runs:/YOUR_RUN_ID/
creditcard model pyspark")

In our case, our run was 58e6aac5d43948c6948bee29c0c04cca, so our
cell looks like Figure 4-97.

In [11]: model = mlflow.spark.load model (*runs:/5Ee6aacSdi3®48ce94Ebeeldclcidcca/creditcard model pyapark™)

2020/08 "UZ 18:1%:5% INFO miflow.spazk:! ‘runs:/S8eéaacSdiifqfceiilbecifclolicca/creditoard ZOGEI_DYS'DG k' resol
ved ms 'file:///C:/Tsers/Shumpa/work/Books/2020820ML0pa/ Chapter 4204 /miruns/14/
u :unc:sr‘c editcard model pyaspark’

20!0 /02 18 15 59 INFO mlflew.spark: File !1‘1e frrc: —” sers/3humpu/work/Books/2020%20ML0ps/Chapter$204/mlrun
sf 4/ arcifacts/creditcard model pysp. sparkml’ not found on DFS. Will attem
Bt to upload the file.

2020/08/02 18:16:01 INFO mlflow.spark: Copied SparkHL model to ftep/mlflow\102e1969-36bc-4144-90b3-6fa66246897
1

Figure 4-97. Loading the logged MLFlow model

Now that the model has been loaded, let’'s make some predictions with
it. Run the following:

predictions = model.transform(test set)
y true = predictions.select(['label']).collect()
y_pred = predictions.select([ 'prediction']).collect()

Refer to Figure 4-98 to see the code in a cell.
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predictions = model.transform(tesc set
y_tIue = predicticns.select([’la 1) .collect()

y_pred = predictions.select([‘predisticon’]).collect()

Figure 4-98. Making predictions with your loaded model

Let’s print out the evaluation accuracy and the AUC score:

print(f"AUC Score: {roc_auc_score(y true, y pred):.3%}")
print(f"Accuracy Score: {accuracy score(y true, y pred):.3%}")

Refer to Figure 4-99.

princ (L"AUC Score: {Ioc_auc_score(y_true, y_pred):.3%)")
print (f"Accuracy Score: {accuracy score(y_true, y_pred):.3%}")

AUC Score: 83.855%
Aocuracy Score: 99.862%

Figure 4-99. Printing out the evaluation metrics. The AUC score
noticeably differs, but the accuracy score matches what was displayed
during the MLFlow run

You will notice that the AUC score differs compared to what was
calculated in the evaluation function. This is likely because PySpark
calculates the ROC curve slightly differently because it has direct access
to the model itself. On the other hand, with scikit-learn, you only have the
true labels and the predictions to work with, so the ROC curve is calculated
slightly differently.

Finally, let’s construct the confusion matrix:

conf matrix = confusion matrix(y true, y pred)

ax = sns.heatmap(conf matrix, annot=True,fmt="'g")
ax.invert xaxis()

ax.invert yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted")
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Refer to Figure 4-100.

confusion matrix(y true, y_pred)
ax - {conf_matrix, annot=Troe,fmt='g'}

Figure 4-100. Displaying the confusion matrix using the true values
and the predictions made by the model you loaded

From the confusion matrix, you can see that the AUC score as
calculated by PySpark must be reflecting its performance on how well
it classifies normal data. Looking at the anomalies, a fair chunk of the
fraudulent data has been misclassified. Roughly speaking, the model only
got two-thirds of the anomalies when evaluated on the test data. Perhaps
this explains the disparity between what scikit-Learn says is the AUC score
and what PySpark says is the AUC score. Both must have calculated the
ROC curves slightly differently with PySpark’s graph somehow favoring the
excellent true positive rate of the normal data’s classification.

With that, you now know how to integrate MLFlow into your PySpark
experiments.

Next, we will take a look at how you can deploy your models locally
and how you can query the models with samples of data and receive
predictions.
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Local Model Serving
Deploying the Model

Serving and querying models locally is very easy and can be done in the
command line. You only need the experiment ID and the run ID to serve
the model. This is where the print statement from earlier can apply, as it
prints the run ID of that specific run. If you just want to serve the latest
model, you may do so using that ID.

Otherwise, you can look in the MLFlow UI, select a model run that
suits your needs, and paste the run this way.

Before you begin, go to the MLFlow UI once again, and click the
experiment scikit learn_experiment. Pick a run and copy the run
ID. Don’t forget the model name that you logged the model with either,
which should be log_reg model.

You may create a new notebook at this point to keep the code more
organized, but be sure to import the following:

import pandas as pd
import mlflow
import mlflow.sklearn

import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model selection import train test split

from sklearn.metrics import roc_auc_score, accuracy score,
confusion matrix
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impoxt numpy as np

import subprocess
import json

You'll notice that you are now importing subprocess. If you're using the
same notebook, make sure to import this module as well.
Refer to Figure 4-101 to see this code in a cell.

import pandas as pd
import mlflow
import mlflow.sklearn

import seaborn as sng
import matplotlib.pyplet as plt
from skleazn.preprocessing import StandardScaler

model selection import trein tess_split
trics import roc_auc_score, Accuracy_score

confusion matrix

import isen

Figure 4-101. Importing the necessary modules

Now, open up your command prompt/terminal so that you can begin
to serve your local model. First, you need to change your directory to one
that contains the mlruns folder with all your experiments. Next, you need
two things: your model run and your model name.

Again, your model run can be anything you pick from the MLFlow UI
or it can simply be the latest run. The model name is whatever you set it to
when logging the model. In this case, it will be 1og_reg model.

Once you have that, run the following command in your command
prompt/terminal. We have generalized the command, so be sure to replace
the fields with your model run and model name, respectively:

mlflow models serve --model-uri runs:/YOUR_MODEL RUN/
YOUR_MODEL_NAME -p 1235
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In our case, our model run was 3862eb3bd89b43e8ace610c521d974€6,
and our model name was once again log_reg model. And so, the
command we ran looks like Figure 4-102.

{p36) C:\Users\Shumpu\work\Books'2828 MLOps\Chapter 4>mlflow models serve --model-uri runs:/3862eb3bd89b43eBaces18c521d:
4e6/log_reg_model -p 1235

Figure 4-102. The command that we ran to serve our model locally

In text, the command looks like this:

mlflow models serve --model-uri runs:/3862eb3bd89b43e8ace610c52
1d974e6/1log_reg model -p 1235

MLFlow should start constructing a new conda environment right
away that it will use to serve locally. In this environment, it installs basic
packages and specific packages that the model needs to be able to run.

After some time, you should see something like in Figure 4-103.

B Command Prompt - miflow models serve led-uri nung: /386 b 521497, og_reg_model -p 1235 - o x

Buccessfull nstalled Flask-1.1.2 linja2-2.11.2 Mako-1.1.3 MarkupSafe-1.1.1 Werkzeug-1.9.1 alembic-1.4.2 azure-core-1.7
.8 azure-storage-blob-12.3.2 cffi-1.14.1 chardet-3.9.4 click-7.1.2 cloudpickle-1.3.8 cryptography-3.0 databricks-cli-8.1
1.8 docker-4.2.2 entrypoints-@.3 gitdb-4.8.5 gitpython-3.1.7 gorilla-@.3.@ idna-2.19 isodate-@.6.9 itsdangerous-1.1.9 ml
{flow-1.18.8 msrest-9.6.13 ocauthlib-3.1.8 pandas-1.1.@ prometheus-client-8.8.9 prometheus-flask-exporter-2.15.4 protobuf-|
3.12.4 pycparser-2.20 pypiwin32-223 python-dateutil-2.8.1 python-editor-1.0.4 pytz-2020.1 pywin32-228 pyyaml-5.3.1 query|
string-parser-1.2.4 requests-2.24.8 requests-oauthlib-1.3.8 smmap-3.8.4 sqlalchemy-1.3.13 sglparse-98.3.1 tabulate-8.8.7
urllib3-1.25.10 waitress-1.4.4 websocket-client-8.57.8

=
# To activate this environment, use
$ conda activate mlflow-dd9ag3@4dofed3d6ofdoectadrasfibbadcaelaa

To deactivate an active environment, use

IEE T T B

$ conda deactivate

[2820/08/82 19:12:27 INFO mlflow.pyfunc.backend: === Running command 'conda activate mlflow-dd9a93e4dofed3deofdoecTad7asf

l26badcae2aa & waitress-serve --host=127.0.0.1 --port=1235 --ident=mlflow mlflow.pyfunc.scoring_server.wsgi:app'

b s \users\shumpul\anaconda2\envs\ml flow-dd9a9384dofed 3d69Fd90c Tad7a0f 26babcae2aal\ l1ib\site-packages\waitress\ad justments. p

:445: DeprecationWarning: In future versions of Waitress clear_untrusted_proxy_headers will be set to True by default. V¥

ou may opt-out by setting this value to False, or opt-in explicitly by setting this to True.
DeprecationWarning,

serving on http://kubernetes.docker.internal 11235

Figure 4-103. The result of running the command to deploy
the model locally. You might see something different, such as
localhost:1235, but this is because we have docker installed
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MLFlow should create a new conda environment before hosting the
model on your local server. The port option -p lets you set a specific port to
host the model on. We selected a specific port so that we can have MLFlow
Ul running at the same time, as both of them default to port 5000. In our
case, our MLFlow Ul is running on port 1234, so we are serving the model
on port 1235.

Querying the Model

You are now ready to query the model with data and receive predictions.
This is where the subprocess module comes in, and you'll see why shortly.
First, let’s load up your data frame again. Run the following code:

df = pd.read _csv("data/creditcard.csv")

You should see something like Figure 4-104.

df = pd.read cav("data/credictcard.csv”

Figure 4-104. Loading the credit card dataset

Next, select 80 values from your data frame to query your model with.
Run the following code:

input_json = df.iloc[:80].drop(["Time", "Class"],
axis=1).to json(orient="split")

You should see something like Figure 4-105.

input_json = df.iloc(:80].drop(["Time”, "Class"], axis=1).ta_json{orient="splic”)

Figure 4-105. Converting a selection of 80 rows, dropping the Time
and Class columns since they were dropped in the original x_train
used to train the model, to a JSON with a split orient
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The next step is important because of how you preprocessed the data
before training your model originally. To show why it’s so important, we
will quickly demonstrate the difference in evaluation metrics from passing
in non-scaled data and scaled data. First of all, here is the code to send
data to the model and receive predictions back:

proc = subprocess.run(["curl", "-X", "POST", "-H",
"Content-Type:application/json; format=pandas-split",
"--data", input_json, "http://127.0.0.1:1235/invocations"],
stdout=subprocess.PIPE, encoding="utf-8")

output = proc.stdout
df2 = pd.DataFrame([json.loads(output)])
df2

Essentially, what this does is run the following command within
Python itself:

curl -X POST -H "Content-Type:application/json;
format=pandas-split" -data "CONTENT_OF INPUT JSON"
"http://127.0.0.1:1235/invocations"

The core of the problem is that if you are running this in command
line, pasting the JSON format data of the data frame can get very messy
because there’s so many columns. That is why we chose to use subprocess
as it is easier to directly pass in the JSON itself using a variable name,
input_jsonin this case, to hold the contents of the JSON.

You should see something like Figure 4-106.

input_jacm
=subprocess.FIPE, enco

output = proc.stdout
dfi = pd.DataFrame ([3}son.loads (output)])
dfz

Figure 4-106. Sending data to the locally hosted model and receiving
predictions from the model

Now, you will query the model with input data that is not scaled.
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Querying Without Scaling

You will keep the selection of 80 values from earlier and query the model.
The model accepts data in the JSON format, so you will have to convert
the format of your data before sending it to the model. Run the cell in
Figure 4-106.

You should see something like Figure 4-107.

proc = subproceas.run(["curi®, *-X®, "POST", =-H", =
F--data®, input_json, “"hrep://
«PIPE, encodin

output = proc.stdout
4f2 = pd.DataFrame | [§son.loads (cutput) ]
ar2

01234656789 ..70T1 72 T3TMTETEITIET

a1 011100110 1 0 0 & 0 0 1 1 0 @

1 rows = 80 columns

Figure 4-107. The list of predictions that you get after querying the
model with input_json. Notice that it’s predicting a lot of anomalies.
This is the first red flag that indicates something’s wrong

The resulting data frame is what you get by converting the predictions
that you got back from the model into a data frame. Since you have the true
predictions, let’s calculate an AUC score and an accuracy score to see how
the model did. Run the following code:

y true = df.iloc[:80].Class
df2 = df2.T
eval acc = accuracy score(y true, df2)

y true.iloc[-1] = 1
eval auc = roc_auc_score(y true, df2)

print("Eval Acc", eval acc)
print("Eval AUC", eval auc)
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First of all, you had to transpose df2 using .T so that you can get the
predictions to be in a Pandas Series format. Next, the AUC score cannot
be calculated if one of the arrays y_true ory preds only have one class.
In this case, y_true is only comprised of normal values, so you had to
manipulate the last value and make it 1 when it really isn’t just to get an
AUC score. Of course, the resulting AUC score will be nonsense.

You should see something like Figure 4-108.

y_true = af.iloc[:80].Class
df2 = d4£2.T
uracy_score(y_true, df2)

1=1] = 1
roc_auc_score(y_true, dfi)

=", eval_acec)
C", eval_auc)

Eval 0.65
Eval AUC 0.3291139240506329%

Figure 4-108. Evaluating the accuracy and the AUC score from the
predictions. The AUC score is nonsense, but the accuracy score reveals
that the model has performed very poorly

As you can see, the accuracy score is horrible. This basically means
that the model doesn’t know the difference between the anomalies and the
normal points but seems to have some idea about normal points.

The reason the model did so poorly despite doing so well during the
training process is that the input data has not been scaled. You will see
the difference in model performance when you now scale the data before

passing it in.

219



CHAPTER 4  INTRODUCTION TO MLFLOW

Querying with Scaling

You will take the same split of data except you will now scale it before
passing it in. Run the following code to recreate the data that you used to fit
the scaler when training the model originally:

normal = df[df.Class == 0].sample(frac=0.5, random state=2020).
reset_index(drop=True)
anomaly = df[df.Class == 1]

normal train, normal test = train_test split(normal,
test size = 0.2, random state = 2020)

anomaly train, anomaly test = train test split
(anomaly, test size = 0.2, random state = 2020)

scaler = StandardScaler()
scaler.fit(pd.concat((normal, anomaly)).drop(["Time", "Class"],
axis=1))

You should see something like Figure 4-109.

normal = df[df.Class == (].sample(frac=0.5, random state=i020).reset_index (drop=True)
ancmaly = df[df.Class == 1]

mal _teat = Train_test_split(nommal, Test_size
© ancmaly

1_se .2, random state = 2020)
ancmaly test = train =plit (an 2, Tan t

ancmaly tr ze = 0.2, random state = 2020)

scaler = Standardicaler()
scaler.fic (pd.concat ( (normal, anomaly)).drop(["Time™, "Class™], axis=l))

: StandardScaler|copy=True, with mean=True, with_std=True)

Figure 4-109. Recreating the original dataset that you used to fit the
standard scaler when processing the data originally. Using this, you
will transform your new sample of data and pass it into the model

Now that you have fit the scaler, let’s transform your data selection:

scaled selection = scaler.transform(df.iloc[:80].drop
(["Time", "Class"], axis=1))

input_json = pd.DataFrame

(scaled selection).to json(orient="split")
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Refer to Figure 4-110.

scaled_selection = scaler.transform(df.iloc[:80].drop(["Time", "Class®], axis=1}

Z input_jscn = pd.DataFrame(scaled_selection).to_lson(orient="split”)

Figure 4-110. Scaling the selection of 80 values from the original
data frame and converting it into a JSON format to be sent to the
model

Now run the following:

proc = subprocess.run(["curl", "-X", "POST", "-H",
"Content-Type:application/json; format=pandas-split",
"--data", input_json, "http://127.0.0.1:1235/invocations"],
stdout=subprocess.PIPE, encoding="utf-8")

output = proc.stdout
preds = pd.DataFrame([json.loads(output)])
preds

You should see something like Figure 4-111.

proc = subprocess.run(["curl®, "-X", "POST", "-H", "C
"—-data®, input_json, "http://i
.PIPE,

on/ison; format~pandas-splic®,

cUtput = proc.stdout
preds = pd.DacaFrame ([json.loads (cutpuc)])
preds

0123468789 M2 RKITHEN
00 0000O0COGO0OD0OD o ¢ 0 0 0 0 & 0 0 O

1 rows = 80 columns

Figure 4-111. Querying the model with the scaled values. From a
first glance, the predictions appear to be correct this time around

One thing to note is that you are scaling it on the combination of all
normal data and all anomaly data, as you did when you were creating
the train, test, and validation splits. Since the model was trained on data
that was scaled on the partition of data you used in the training process
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(the training, testing, and validation data together), passing in data scaled
differently won’t result in the correct predictions. When you scale the new
data, it must be scaled after fitting it on the training set.

One problem that may eventually arise is that new data might have
a different distribution than the original training data. This could lead to
performance issues with the model, but really that’s a sign that you need to
train your model to update it on the new data.

Let’s check how your model did now:

y true = df.iloc[:80].Class
preds = preds.T
eval acc = accuracy score(y true, preds)

y true.iloc[-1] = 1
eval auc = roc_auc_score(y true, preds)

print("Eval Acc", eval acc)
print("Eval AUC", eval auc)

Refer to Figure 4-112.

y_rrue = df.ilec[:80].Class
preds = preds.T

eval_acc = a cre(y true, preds)

y_true.ilec[-1] = 1
eval_auc = roc_auc_score(y_true, preds)

. eval_acc)
, eval_auc)

Eval AUC 0.5

Figure 4-112. Checking the accuracy and the AUC scores of the
predictions. The accuracy score is far better, but you will need more
prediction data with both normal and anomaly values to be able to
get AUC scores

As you can see, the accuracy score is noticeably higher, and the
model’s performance is reminiscent of when it was trained and evaluated.

Unfortunately, the AUC score isn’t a very accurate reflection of the model’s
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performance since the samples you are querying the model with only have
normal data.

Let’s see how the model performs when you query it with a larger
sample of data.

Batch Querying

Unfortunately, there is a limit to how many data samples you can ask
the model to make predictions on. The number 80 is really close to the
maximum number of samples you can send at one time. So how do you get
around this issue and make predictions on more than just 80 samples? For
one, you can try batching the samples and making predictions one batch at
atime.

Run the following code:

test = df.iloc[:8000]

true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))
preds = []

batch_size = 80
for f in range(100):
sample = pd.DataFrame(test[f*batch size:(f+1)*batch size]).
to_json(orient="split")
proc = subprocess.run(["curl", "-X", "POST", "-H",
"Content-Type:application/json;
format=pandas-split", "--data",
sample, "http://127.0.0.1:1235/
invocations"],
stdout=subprocess.PIPE,
encoding="utf-8")
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output = proc.stdout
resp = pd.DataFrame([json.loads(output)])
preds = np.concatenate((preds, resp.values[0]))

eval acc = accuracy score(true, preds)

eval auc = roc_auc_score(true, preds)

print("Eval Acc", eval acc)
print("Eval AUC", eval auc)

Here, you are selecting the first 8,000 samples from the data frame.
Since the batch size is 80, you have 100 batches that you are passing to the
model. Of course, you must scale this data as well before passing it in. You
will scale it in a manner similar to how you did it earlier: you will fit the
scaler on the same normal and anomaly data that you used in the model
training pipeline samples to transform the values you want to send to the
model. Once finished, you should see something like Figure 4-113. This
might take several seconds to finish, so sit tight!

eval_acc = accuracy_score(true, preds)
eval_auc = roc_auc_score(true, preds)

Figure 4-113. The results of querying the model with the first 8,000
samples in the data frame. Notice that the AUC score is far better
samples
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This time, you don’t have to worry about only having one class in
the entire data. This is because there are examples of anomalies in this
selection of 8,000 data points, so the true labels and predictions should
contain samples of both classes.

You can see that the model performs quite well on this data, which
includes data that the model has never seen before. Although you did
end up using all of the anomalies when training the data, the model still
performs well on the normal data, as evidenced by the relatively high AUC
score.

In fact, let’s plot a confusion matrix to see how the model did and
what'’s bringing down the AUC score. Run the following code:

conf matrix = confusion matrix(true, preds)

ax = sns.heatmap(conf matrix, annot=True,fmt="'g")
ax.invert xaxis()

ax.invert_yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted")

plt.title("Confusion Matrix")

Refer to Figure 4-114 to see the output.
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197] rix = cenfusion matrix(true, preds)
heat {conf_marrix, annot=True,fmec='g')

Confusion Matrix

Figure 4-114. The confusion matrix for the predictions and true
values. The model performed excellently and was able to classify every
normal point correctly and a majority of the anomaly points correctly
samples

As you can see, the confusion matrix shows that the model has
performed very well on this data. Not only did it classify the normal points
perfectly, but it even classified most of the anomaly points correctly as
well.

With that, you hopefully know more about the process of deploying
and querying a model. When you deploy to a cloud platform, the querying
process follows a similar path where you must deploy a model on the cloud
platform and query it by sending in the data in a JSON format.

Summary

MLFlow is an API that can help you integrate MLOps principles into your
existing code base, supporting a wide variety of popular frameworks.

In this chapter, we covered how you can use MLFlow to log metrics,
parameters, graphs, and the models themselves. Additionally, you learned
how to load the logged model and make use of its functionality. As for
frameworks, we covered how you can apply MLFlow to your experiments
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in scikit-learn, TensorFlow 2.0/Keras, PyTorch, and PySpark, and we also
looked at how you can take one of these models, deploy it locally, and
make predictions with your model.

In the next chapter, we will look at how you can take your MLFlow
models and use MLFlow functionality to help deploy them to Amazon
SageMaker. Furthermore, we will also look at how you can make
predictions using your deployed model.
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Deploying in AWS

In this chapter, we will cover how you can operationalize your MLFlow
models using AWS SageMaker. We will cover how you can upload your
runs to S3 storage, how you can build and push an MLFlow Docker
container image to AWS, and how you can deploy your model, query it,
update the model once it is deployed, and remove a deployed model.

Introduction

In the previous chapter, you learned what MLFlow is and how you can
utilize the functionality it provides to integrate MLOps principles into

your code. You also looked at how to deploy a model to a local server and

perform model inference. However, now it’s time to move to the next stage

and explore how you can deploy your machine learning models to a cloud

platform so that multiple entities can use its prediction services.
Before you begin, here are some important prerequisites:

e You must have the AWS command line interface (CLI)
installed and have your credentials configured.

— Once your credentials are verified, the AWS CLI lets
you connect to your AWS workspace. From here,
you can create new buckets, check your SageMaker
endpoints, and so on all through the command
line.

© Sridhar Alla, Suman Kalyan Adari 2021
S. Alla and S. K. Adari, Beginning MLOps with MLFlow,
https://doi.org/10.1007/978-1-4842-6549-9_5
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e You must have an Identity and Access Management
(IAM) execution role defined that grants SageMaker
access to your S3 buckets. Refer to Figure 5-8 to see

more on this.

e You must have Docker installed and working properly.
Verify that you can build Docker images.

— Itis essential to have Docker working on your
system because without it, MLFlow cannot build
the Docker container image to push to the AWS
ECR.

We also recommend that you learn about AWS in general and how it
works. Having background knowledge of AWS and how it works can help
you understand this chapter and allow you to fix any issues much more
easily.

In detail, we will go over the following in this chapter:

o Configuring AWS: Here, you set up a bucket and push
your mlruns folders here to be stored on the cloud.
These folders contain information about all of the runs
associated with the experiments along with the logged
models themselves. Next, you build a special Docker
container as defined by MLFlow and push that to AWS
ECR. SageMaker uses this container image to serve the
MLFlow model.

o Deploying a model to AWS SageMaker: Here, you
use the built-in MLFlow SageMaker module code to
push a model to SageMaker. After SageMaker creates
an endpoint, the model is hosted on here utilizing the
docker image that you pushed earlier to the ECR.

230



CHAPTER 5  DEPLOYING IN AWS

e Making predictions: Once the model has finished
deployment and is ready to serve, you use Boto3 to
query the model and receive predictions.

o Switching models: MLFlow provides functionality that
enables you to switch out a deployed model with a new
one. SageMaker essentially updates the endpoint with
the new model you are trying to deploy.

e Removing the deployed model: Finally, MLFlow lets
you remove your deployed model altogether and delete
the endpoint. This is important to do so that you don’t
incur the charges of leaving an endpoint running.

Also, it is important to note that AWS is actively being worked on, and
functionality and operating procedures can change! What that means is
that something that works now may not work later on.

However, MLFlow specifically provides support for SageMaker, so if
something fundamental to how SageMaker runs changes in the future,
MLFlow is likely to account for it in the next build.

In the absolute worst-case scenario where that doesn’t happen,
you can still run an MLFlow server and host it on AWS. You will still be
able to deploy models and make inferences with them, and the overall
functionality is still preserved. Instead of SageMaker directly hosting the
model using an MLFlow container image, you would do something similar
to the local model deployment experiment we did in Chapter 4, except
you would connect to the server IP and port that the MLFlow server is
hosted on.

We will explore how to do this with Google Cloud, as MLFlow does not
support Google Cloud like it does SageMaker and Azure.

With that, let’s get started!
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Configuring AWS

Before you can actually push any model to SageMaker, you need to set up
your Amazon workspace. You can push models from your local mlruns
directory, similar to how you did local model deployment, but it is much
more convenient and centralized to have all your runs be pushed to AWS
and stored in a bucket. This way, all teams can access models that are
stored here. In a sense, this can act as your “model registry,” although it
doesn’t offer the same functionality as the model registry provided by
MLFlow.

What MLFlow allows you to do is take specific runs and determine
whether to stage that model to the development branch or to production.
In this case, you can have buckets for each team, separated into
development or production branches. It’s a couple extra steps on top of
MLFlow’s model registry, but it would still allow you to enjoy the benefits
of having a model registry.

In this case, you will simply be creating one bucket to host all of your
MLFlow runs. From here, you will be picking a specific run and deploying
to SageMaker. To keep it simple, you will once again use the scikit-learn
logistic regression model that you trained as the model you are deploying.

So with that, create a simple bucket and name it something like
mlflow-sagemaker. You can either create it through the AWS CLI or do so
through the AWS console in your browser.

We will do the latter so that you can visually see what Amazon is really
doing when a bucket is created.

Keep in mind that AWS is always working on its U, so your screen may
not look exactly like what is portrayed. That being said, you are still likely
able to access S3 bucket storage services, so the core functionality should
still be the same, despite the UI changes.

When you log into your portal, you should see something like Figure 5-1.
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AWS Management Console

AW services Stay connected to your AWS resources on-the-
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Figure 5-1. The home screen of the AWS console. Keep in mind that
yours is likely to look different to the one shown here

As you can see, you can look up services with the search bar. Here,
type S3 and click the result that states “S3” with the description “Scalable
Storage in the Cloud”

You should go to a page that looks like Figure 5-2.

Figure 5-2. What your screen might look like when you open the S3
bucket services module. We have greyed out the names of the buckets,
but you can see string names here
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You should see a button that says Create Bucket. Click it and you will
see something like Figure 5-3.

@ We're gradually updating the design of the Amazon S3 console. You will notice some updated screens as we improve the performance and user interface. To help us impro

Amazon 53 Create bucket

Create bucket

Buckets are containers for data stored in 53. Learn more [

General configuration

Buckat name

miops-sagemaker-runs

e 3 must rct contain spaces o uppercase letters. See rubes for bucket naming [

Region
US East (Ohio) us-east-2 v

Bu

ket settings for Block Publi

and its access points. AWS rec
apglications will work comectly t lic access
customize the ndividual settings below to suit your specific storage use cases. Leam more (2

‘anry of these settings, ensure that your
s bucket or chjects within, you can

Block all public access

Figure 5-3. This is how your bucket creation screen may look. In
this case, you are just naming the bucket and aren’t concerned with
anything else

We named our bucket mlops-sagemaker-runs. You don’t have to worry
about the rest of the options, so scroll down to the bottom and click Create
Bucket. Once done, you should be able to see your bucket in the list of
buckets.

From here, let’s use a subprocess to sync the local mlruns directory to
this bucket. What this does is upload the entire mlruns directory to your
bucket, so that all of your runs are stored on the cloud.
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First, collect the following attributes:

e 53 bucket name: What is the name of the S3 bucket you
are trying to push to?

o mlruns_directory: What is the location of the mlruns
directory you're pushing to the bucket?

Based on that, run the following. We included the bucket name and
mlruns directory in our case, so just replace them with your respective
values.

import subprocess

s3_bucket_name = "mlops-sagemaker-runs"
mlruns_direc = "./mlruns/"

output = subprocess.run(["aws", "s3", "sync", "{}".
format(mlruns direc), "s3://{}".format(s3_bucket name)],
stdout=subprocess.PIPE, encoding="utf-8")
print(output.stdout)
print("\nSaved to bucket:

, S3_bucket name)

After running that code, you should see something similar to Figure 5-4,
letting you know that it has synchronized your local mlruns directory with
the bucket. If you see no output, that means there’s nothing new to push
(if you are rerunning it). Ensure that the mlruns directory is in the same
directory as this notebook; otherwise it won’t be able to find it.
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In [4]: import subprocess

53_bucker_name =
mlruns_direc = *.

subprocess.run(["aws®, ®s3%, "sync®, “(}".format(mlruns direc), *s3://{}".formac(a3_bucket_name)],

", 53_bucket_name)

9 KiB/72.6 KiB (22.8 KiB/s) with 4 file(s) remaining

3 KiB/72.6 KiB (22.9 KiB/3) with 4 file(s) zemaining

2\ 6\ 188d42Tb0ef8424eb26084adcb4Ta253 \taga'\mlflow. log-model . hastory to 33://mlops-sagemaker-runs
f4ebl6084adcodTa2s3/tage/mlflow. log-model . history

eis) remaining

e(3) remaining

s\E\meta.vaml to 33://mlops-sagemaker-runs/E/meta.yaml

4 FiB/72.6 KiB (22.9 KiB/s) wicth e(s) remaining

T EiB/72.6 KiB (22.7 KiB/s) with &(8) remaining

2\ 8\ 1eb805b446d549d5aT0ale22edbe 428\ artifacta\log_reg_model\Mimcdel to s3://mlops-sagemaker-ru
46a948dsaToalelledb4r428 arcifaces/log_reg model/Mimodel

T EiB/72.6 KiB (22.7 KiR/s) with 1 file(s) remaining

& KiB/72.6 KiB I23 0 KiB/s) with 1 file(s) remaining

ILENL Sb4 i5d5aTlaleiledbifd2t\arcifacta\log_reg_model\model.pkl to 33://mlcpa-sagemakez-
runs/g f.eb.)ibi16:!!49:!5&'-‘0!-!222"7““2 farcifactsSlog_reg model/model.pkl

/8/488d427b0e
Completed 71.3 KiB/72.6 KiB (22.9 KiB/s) with 3 £1

4 KiB/72.6 KiB (22.9 KiBd/s) with

Saved to bucket: mlops-sagemaker-zuns o

Figure 5-4. This is what your output may look like when you are first
syncing your mlruns directory with the bucket. Make sure that your
mlruns directory is in the same directory as this notebook file

Once this is done, you can proceed to building the container that
SageMaker will use to host the model once you get to deployment. To do

that, run the following command in your terminal:
mlflow sagemaker build-and-push-container

Again, this requires you to have your Amazon credentials configured.

You do not need to create a new docker image each time you use a new
framework. This one image will be able to handle all your MLFlow models
thanks to modularization. This is similar to the deployment pipeline we
discussed in Chapter 3 from which you simply need to swap models in and
out.

This step can take some time, so sit back, relax, and let it do its thing.
You should see something like Figure 5-5.
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{p36) C:\Users\Shumpu>mlflow sagemaker build-and-push-container

[2020/08/86 22:49:46 INFO mlflow.models.docker_utils: Building docker image with name mlflow-pyfunc

FIND: Parameter format not correct
Jsending build context to Docker daemon 3.@72kE

[Step 1/16 : FROM ubuntu:13.84

---» c3c384cbaf22

[Step 2/16 : RUN apt-get -y update && apt-get install -y --no-install-recommends wWget curl ngi
i ca-certificates bzip: build-essential cmake openjdk-8-jdk git-c
fore maven &8 rm -rf /var/libfapt/lists/*

===> Using cache

==--> 9Bde6fbaebSe

[Gtep 3/16 : RUN curl -L https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-xB6_64.sh »>> miniconda.sh

---> Using cache

--=> 3f24bc53a181

IStep 4/16 : RUN bash ./miniconda.sh -b -p /miniconda; rm ./miniconda.sh;

=== Using cache

-» 527909d672ac

[Step 5/16 : ENV PATH="/miniconda/bin:$PATH" b

Figure 5-5. Something similar to what you should see when you run
the command to build the container

Once this is finished, the console should output something like
Figure 5-6.

B Command Prompt - [u] »

Successfully built céddeScdaSbe -
lSuccessfully tagged mlflow-pyfunc:latest

[SECURITY WARNING: You are building a Docker image from Windows against a non-Windows Docker host. All files and directon
ies added to build context will have *-rwxr-xr-x’ permissions. It is recommended to double check and reset permissions
or sensitive files and directories.

2020/08/086 22:53:02 INFO mlflow.sagemaker: Pushing image to ECR

[2020/08/06 22:53:04 INFO mlflow.sagemaker: Pushing docker image mlflow-pyfunc to 188072566886.dkr.ecr.us-east-2.amazonaw
s . com/mlflow-pyfunc:1.108.0

[2020/08/86 22:53:84 INFO mlflow.sagemaker: Executing: aws ecr get-login-password | docker login --username AWS --passwe
ord-stdin 1880872566886.dkr.ecr . us-east-2, amazonaws.com &% docker tag mlflow-pyfunc 180@72566886.dkr.ecr. us-east-2.amazon
taws . com/mlflow-pyfunc:1.18.8 && docker push 1B0072566886.dkr.ecr.us-east-2.amazonaws.com/mlflow-pyfunc:1.18.8

Login Succeeded

(The push refers to repository [180972566886.dkr.ecr.us-east-2.amazonaws.com/mlflow-pyfunc]

pa27edddaddc: Pushed

|c878d42e8962: Pushed

M28bcdbeadlf: Pushed

[Pc9e@2cc7f76: Pushed

p62bfb2ceab?: Pushed

(a95d516eb3iaa: Pushed

252d3082950e: Layer already exists

3f19d6798a82: Layer already exists

Pec2dbbafiif: Layer already exists

Sded279f751d: Layer already exists

28ba7458d84b: Layer already exists

[838a37a24627: Layer already exists

la6ebef4ad5c3: Layer already exists

b7f7d29675087: Layer already exists

[1.18.9: digest: sha256:4784feeb5244580b4b40dc5e07206F044a1Fc8118c7798e@8Fc5c@0ascFl6acd size: 3263

{p36) C:\Users\Shumpus W

Figure 5-6. What you should see when the docker container image
has successfully been built and pushed to Amazon ECR

Now, you should be able to see a new container in the portal when you
navigate to Amazon ECR.
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From your home console, navigate to Amazon ECR, and verify you see
something called m1flow-pyfunc. You should see something like Figure 5-7,
confirming that the docker image has successfully been pushed to AWS ECR.

Repasitories

Figure 5-7. After running the command, you should be able to see
your container in the ECR repository list

With that, you have set up everything related to MLFlow functionality
that you need in your AWS console in order to deploy your models to
SageMaker.

Let’s now look at deploying one of the models.

Deploying a Model to AWS SageMaker

To deploy a model to SageMaker, you need to gather the following
information:

e app_name
e model uri

o execution_role
e region

o image ecr_ url

The execution role refers to the Identity and Access Management
(IAM) role, which you can find by searching for “IAM” in the console. Once
you have created or selected an execution role (make sure it can access S3
and can perform get, put, delete, and list operations on it), copy the entire
value that exists there.
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As for the specific policy that this role should follow, refer to Figure 5-8
to see how our IAM execution role is set up.

As for the execution role ARN number, you should see something like
Figure 5-8.

Identity and Access Pobcies > Amanoad
Management (LAM] ' Summary

etk £t OnPOR Y- 23181 12T 142060

Cashboard Polbicy ARN 3 e i3 1H007 2566456 POl yHannoe mleimazons ageMaker Executon oy 201811121 142060 )

managsment Detenption
Permissions FPolicyusage  Policyversions  Access Advisor

Poibicy summary 308 Edet policy

Figure 5-8. In the IAM tab, under policies, select (or create) the role
you are going to use to execute the deployment process. There, you
should be able to see the specific Policy ARN value, which you must
copy and keep track of

Make sure you have the Policy ARN value copied down. AWS lets you
copy it to the clipboard if you click the little clipboard symbol next to the
policy.

To find the image_ecr_url value, go back to the ECR and look for
something like Figure 5-7. Now click it to see something like Figure 5-9.
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miflow-pyfunc [ pr—

Figure 5-9. The Image URI is the value you want to copy

Copy the value where it says Image URI, except for the version you
want. We are running MLFlow version 1.10.0, so copy the value for that one.

Next, find the specific run that you want to deploy. Go to your list of S3
buckets and click the one you created, which should be titled
mlops-sagemaker-runs.

In here, navigate until you see the folder with several runs displayed.
We picked the top run. Refer to Figure 5-10.

lops-sagemaker-runs
Derren
a

Figure 5-10. Look at your bucket to find the run you want to deploy.
(These runs all have the same performance metrics, so it does not
matter which one we pick. If it did, we could look at it through the
MLFlow UI (ensuring the terminal is in the same directory as the
same miruns directory we pushed) and select the best run.) Also,
remember to take note of the experiment ID and the name of the
model you logged. You should be able to find it if you click the run ID
and then artifacts. For our case, it is log_reg_model
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With all that information gathered, let’s proceed to the deployment.
Run the following

import boto3
import mlflow.sagemaker as mfs
import json

app_name = "mlops-sagemaker"

execution _role arn = "arn:aws:iam::180072566886:role/
service-role/AmazonSageMaker-ExecutionRole-20181112T7142060"
image ecr_url = "180072566886.dkr.ecr.us-east-2.amazonaws.com/
mlflow-pyfunc:1.10.0"

region = "us-east-2"

s3_bucket_name = "mlops-sagemaker-runs"
experiment_id = "8"

run_id = "1eb809b446d949d5a70ale22e4b4f428"
model name = "log reg model"

model uri = "s3://{}/{}/{}/artifacts/{}/".format
(s3_bucket name, experiment id, run_id, model name)

This will set up all of the parameters that you will use to run the
deployment code.
Finally, let’s get on to the actual deployment code:

mfs.deploy(app_name=app_name,
model uri=model uri,
execution_role arn=execution_role arn,
region_name=region,
image url=image ecr url,
mode=mfs.DEPLOYMENT MODE_CREATE)

You should see something like Figure 5-11.
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Ia | 1
mfs.deploy (app_name=app_name,

model_uriemodel uri,

execution _role arm=execution_role_asm,

region name=region,

image url=image ecr url,

mode=mfs. DEFLOYMENT MODE_CREATE)
2020/08/06 23:30:51 INFO mlflew.sagemaker: Using the python functicn flaver for deployment!
2020/08/06 23:30:52 INFO mlflew.sagemaker: No model data bucket apecified, using the default bucker
2020/08/06 23:30:53 INFO mlflow.ssgezaker: Defsult bucket 'Elflow-sagemaker-us-sast-2-18007I566E26° alresdy ax
ists. Skipping creatiom.
2020/08/06 23:30:54 INFO miflow 1 tag r ¥ di ol I Id': *AJREN £0D
', 'Hostld': 'ISsPVBAN Q. 3+rHdunTaaisgsl GU=*', *‘HTIPStatusCode’:
200, ‘HITPHeaders': {'x- d-2'1 ' B0v1ZCEoEdb+gh, 3+rHdun T 3845
ey, ey id': “R3IAGE o "daze’: 'Fri, 0T Rug 1020 03:30:54 GMT', ‘content-lengTh': *0', °
server': "Amazen33'), ‘RerryAttemprat: 0))
2020/08/06 23:30:54 INFO mlflew : new with name: mlopa-sagemaker ...
2020/08/06 23:30:54 INFO mlflow.sagemaker: Created model with arn: arn:iaws: +1800°
del, 5 1
2020/08/06 23:30:54 INFO mlflow. : Created : wicth arn: arn:aws:sagemaker:us-east-
2:1800 219,71 £ Jxfew
2020/08/06 23:30:84 INFO miflow.sagemaker: Created endpoint with arni armiaws:sagemakerrus-east-2:1800725s688
&:endpoint/mlops-sagemaker
2020/08/06 23:30:54 INFO mlflow.sagemaker: Waiting for the deployment operation To complete...
2020/08/06 23:30:55 INFO mlflow i Waiting for to reach the "InService" state, Current endpoi
At atatus: "Creating”
2020/08/06 23:31:15 INFO mlflow : Waiting for to reach the "InService™ state. Current endpol
nt atatus: "Creating"
2020/08/06 23:31:3% INFO miflow : Waicing for to reach the *InService® state. Current endpoi
nt status: "Creating”™
2020/08/06 23:31:56 INFO miflow. ¢ Waiting for to reach the "InService® state. Current endpoi
nt atatus: “Creacing®
2020/08/06 23:32:16 INFO miflow i Waiting for to reach the “InService” state, Current endpol
nt atatus: "Creating™
2020/08/0: 37 INFO mlflow : Waiting for to reach the "InService™ state, Current endpoi
AT aTaTus: Ting"
2020/08/06 57 INFO mlflow : Waiting for to reach the "InJervice™ state, Current endpoi
nt atacus: "Creating”
2020/08/06 23:33:18 INFO miflow, : Waiting for to reach the "InService” state. Current endpol
nt status: "Crescing”
2020/08/06 23:33:38 INFO miflow : Waiting for to reach the *InService® state. Current endpoi
nt atatus: "Creating”
2020/08/06 23:33:58 INFO mlflow : Waiting for to reach the "InService™ state, Current endpoi
nt status: "Creating”
2020/08/06 23: 19 INFO mlflow i Waiting for to reach the "InService” state, Current endpoli
nt stacus: "Creating™

In [ ¢

Figure 5-11. You should see something like this when you are
attempting to deploy the model. Don’t worry if it takes its time

This step can take a while. If you want to check on the status of your
SageMaker endpoint, open up the portal and search for and navigate to
SageMaker. There should be a section for Endpoints where you can see
all of the SageMaker endpoints that exist. You should see your current
endpoint with the status of “creating,” as in Figure 5-12.
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— o |

-

Figure 5-12. What you should see in the Endpoints section of
Amazon SageMaker. Once it has finished creating the endpoint, you
should see it update the status to “InService.”

Once this endpoint is successfully created, which you will know when
you see the status update to “InService,” you can now move on to making
predictions.

Making Predictions

Making predictions is simple. All you need is the name of the endpoint and
the functionality that boto3 provides in order for the model to be queried.
Let’s define a function to query the model:

def query(input_json):

client = boto3.session.Session().client
("sagemaker-runtime", region)

response = client.invoke_endpoint(
EndpointName=app_name,
Body=input_json,
ContentType="application/json; format=pandas-split',
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preds = response['Body'].read().decode("ascii")
preds = json.loads(preds)

return preds

Now, let’s load your data, process it, and scale it just like you did for the
local model deployment example. Make sure that the folder data exists,
ensuring that creditcard.csv exists within it. Run the following:

import pandas as pd
import mlflow
import mlflow.sklearn

import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model selection impert train test split

from sklearn.metrics import roc auc_score, accuracy score,
confusion_matrix

impoxt numpy as np
df = pd.read csv("data/creditcard.csv")

Once the import statements and the data frame has been loaded, run
the following:

normal = df[df.Class == 0].sample(frac=0.5, random state=2020).
reset_index(drop=True)
anomaly = df[df.Class == 1]

normal train, normal test = train_test split(normal,
test size = 0.2, random state = 2020)

anomaly train, anomaly test = train test split(anomaly,
test size = 0.2, random state = 2020)
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scaler = StandardScaler()
scaler.fit(pd.concat((normal, anomaly)).drop(["Time",
"Class"], axis=1))

Once this is all finished, run the following to ensure that the model is
actually making predictions:

scaled selection = scaler.transform(df.iloc[:80].drop
(["Time", "Class"], axis=1))

input_json = pd.DataFrame

(scaled selection).to json(orient="split")

pd.DataFrame(query(input_json)).T

You should see an output like Figure 5-13.

scaled_selecticn = scaler.transform(df.iloc(:80).drop(["Time®, "Class"], axis=l))
input_jsca = pd Frame (scaled_seclection) .to_json (orienc="splic")

pd.Cazaframe (guery(input_lascn)).T

01234586789 O NDMIEENITIRD

oooo0®O00OO0OOECO .. O O C OO0 O O C O O

1 rows = 80 colimns

Figure 5-13. Querying the deployed model with the scaled data
representing the first 80 rows of the data frame and getting a response
back

Figure 5-13 shows a successful query of the model while it is hosted on
a SageMaker endpoint and the predictions received as a response.
Let’s run the batch query script with some modifications:

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))
true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))
preds = []
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batch_size = 80
for f in range(25):
print(f"Batch {f}", end=" - ")

sample = pd.DataFrame(test[f*batch size:(f+1)*batch size]).
to_json(orient="split")

output = query(sample)
resp = pd.DataFrame([output])
preds = np.concatenate((preds, resp.values[0]))

print("Completed")

eval acc = accuracy score(true, preds)

eval auc

roc_auc_score(true, preds)

print("Eval Acc", eval acc)
print("Eval AUC", eval auc)

Once finished, you should see something like Figure 5-14.
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In [35): test = pd.concat ((normal.iloc[:1200], ancmaly.ilec[:100]))
czue = test.Class
cest = scaler.transform(cest.drop([®Time®, "Class"], axis=l})
preds = []

batch_size
for £ in

sanple = pd.DataFrame (Cest[ftbatch _size: (f+1)*bacch_size]}.to_Jjson(orient="splic®)
CUTRUT = query(sample)

resp = pd.CacaFrame [ [outpuc])

preds = np.concatenate((preds, resp.values[0]}))

print ["Completed”)

eval _scc = accuracy score (true, preds)
eval auc = roc_auc_sceze(tzue, preds)

Bateh 0 - Compleced
Batch 1 - Completed
Batch 2 - Compleced
Batch 3 - Completed
Batch 4 - Compleced
Batch 5 - Completed
Batch 6 - Compleced
Bacch 7 - Completed
Batch 8 - Completed
Batch 9 - Compleced
Bateh 10 - Completed
Bacch 11 - Completed
Bacch 12 - Completed
Bacch 13 - Completed
Batch 14 - Complezed
Bactch 15 - Completed
Batch 16 - Completed
Cempleted
- Completed
Cempleted

= Completed
Batch 21 - Conpleced
Batch 22 - Cempleted
Batch 23 - Completed
Batch 24 - Completed
Eval Acc 0.9915
Eval AUC 0.915

Figure 5-14. Output of the batch querying script. You included a mix
of 100 anomalies with 1900 normal points so that you can get a better
idea of how the model performs against anomalies as well. Otherwise,
you would have gotten a handful of anomalies

All this is great, but what do you do when you want to switch the model
that is deployed? Well, SageMaker allows you to update the endpoint and
switch to a new model. Let’s look at how to do this.

Switching Models

Perhaps you want to update your model, or you have no more use for the
current model and its prediction services so you want to replace it without
having to delete and create a new endpoint. In this case, you can simply
update the endpoint and swap out the model that is currently hosted on
there. To do so, you only need to collect the new model uri.
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This time, the model_uri refers to the URI of the new model that you
want to deploy. In your case, you are selecting the second run of the three
runs you uploaded to your bucket. Everything else remains the same, so
you only have to get a newmodel uri.

Now, run the following, replacing the run_id value with your chosen
run_id:

new run_id = "3862eb3bd89b43e8ace610c521d974e6"

new model uri = "s3://{}/{}/{}/artifacts/{}/".format
(s3_bucket _name, experiment id, new _run id, model name)

Now that you have run this, run the following code to update the
model:

mfs.deploy(app _name=app _name,
model uri=new model uri,
execution_role arn=execution_role arn,
region_name=region,
image url=image ecr url,
mode=mfs.DEPLOYMENT MODE_REPLACE)

You will find that this function looks quite similar to the one you
used to deploy the model. The only parameter that differs is the mode,
as you are now doing mfs.DEPLOYMENT MODE REPLACE instead of mfs.
DEPLOYMENT MODE_CREATE.

Refer to Figure 5-15 to see what the output should look like.

Note that this also can take some time to finish.
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4 mfa.deploy(app_Rname=app_name,
model urisnew modsl uri,
executien_role_arn=execution_role arn,
regicn_names=region,
image url=image ecr_url,
mode~mis. DEFLOYMENT _MODE_REFLACE)

2020/08/07 00:19:31 INFO mlflow.sagemaker; Using the python f flaver for i

2020/08/07 00:19:32 INFC mlflow.sagemaker: No model data bucket specified, using the default bucket
2020/08/07 00:19:33 INFO mlflow.sagemaker: Default bucket “mlfl ast-2-1800 © alzsady ex
ists. Skipping creaticn.

2020/08/07 00:19:34 INFO mlflow i oTag o ¢ {'ReguestId': "19E60C2TS5AOFS6EE
+ 'HostId': 'm2SMEVESolavYlFulqPY300yC gl T0ntE 164m4Y2I0/1NSn+a=", 'HITPStatusCoede’:
200, ‘HIT (F 0 da-2': lavylFalgPY ™ ZL16+mAY2I0/1NSn+
amr, ¥ d*: "19E60C2 s ‘date’: "Fri, 07 Aug 2020 04:19:34 GNT', ‘content-length': '0', *

e i
sezver': 'Amazon$3'l, ‘ReczyAttempra’: 0h}
2020/08/07 00:19:34 INFO mlflow.sagemaker: Found active endpeint with AFR: Arn:aws:sagemaker:us-east-2:1800725

2020/08/07 00:19:34 INFO mlflow.sagemaker: Created new model With Arm: Arniaws:sagemaker:us-east-2:18007256688
&:model/mlop. 4 Otbrg
2020/08/07 00:19:34 INFO miflow.sagemaker: Created new endpoint configuration with AIn: AIn:aws:sagemaker:us-e

aat-2: 1800 dpeint-config/mlop ekd0ulbvg

2020/08/07 00:19:35 INFQ mlflow : Updated WATR new !

2020/08/07 00:19:35 INFO mlflow.sagemaker: Waiting for che deployment operation to complece...

2020/08/07 00:19:35 INFO mlflow.sagemaker: The cperation is atill in progress.

2020/08/07 00:19:55 INFO mlflow t Ine update iz sT1ll in progress. Current endpoint status:
*Updating®

2020/08/07 C0:20:16 INFO mlflow.sagemaker: The update cperation 18 still in progress. CUIrent endpoint STatus:
"Updacing™

2020/08/07 00:20:36 INFO mlflow.sagemaker: The update cperacion is still in progress. Current endpoint status:
"Updating”

Figure 5-15. This is what your output should look like after running
the update code

While this is running, you can check on the endpoint in your portal to
see that it is now updating. Refer to Figure 5-16 to see this.

Figure 5-16. The endpoint is now updating. Once finished, it should
show “InService” just like when the endpoint was being created
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Once it finishes running, you can query this model again using the
same function. You don’t have to modify the batch script either.

Now that you know how to update the endpoint with a new model, we
will look at how you can remove the endpoint and the deployed model.

Removing Deployed Model

Perhaps you have multiple endpoints each with a different model hosted,
and you no longer want to keep an endpoint running because of the cost.
To delete an endpoint, you only need the following information:

e app_name
e region

With that information defined, which it already should be, you can
simply run the following:

mfs.delete(app _name=app name,region name=region)

You should see it output something like Figure 5-17. This process
finishes quite quickly.

mfs.delete (app_name=app name, region_name=region

2020/08/07 00:28:49 INFO mifiow : Deleted with arn: arn:aws:sagemaker:us-east-2:18007256688
&1endpoint/mlops-sagemaker

2020/08/07 00:28:49 INFO mlflow.sagemaker: Waiting for the delete operation to complete...

2020/08/07 00:28:49 INFO mlflcw.sagemaker: Deletion is still in progress. Current endpoint status: Deleting
2020/08/07 00128184 INFO mlflcw.sagemaker: The deletion completed 11y with ge: *“The Sa
geMaker endpoint was deleted success: fully.”

2020/08/07 00: 54 INFO mlflow.sagemaker: Cleaning up unused resources...

2020/08/07 00:28:54 INFO mlflow.sagemaker: Deleted associated endpoint CONZAgUIATACH WATA AERI AIDIAWS:sagemak
exr 2:180072566886 fig/mlep fig cekilulbvg

2020/08/07 00:28:55 INFO mlflow : Deleted ciated model with arn: arn:aws:sagemaker:us-sasc-2:1800
7566886 :model/mlop: el brg

Figure 5-17. The output of the deletion command

You can go check the endpoint in the portal as well, and it should show
something like Figure 5-18.
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Amazon SageMaker %

Figure 5-18. SageMaker endpoint resources after the deletion. There
should be nothing here if the deletion process went successfully

Asyou can see, the endpoint is now completely gone.

One thing to note is that you should make sure you don’t accidentally
leave any resources running because the costs can certainly stack up over
time and put a dent in your wallet. For services like SageMaker endpoints,
you are charged by the hour, so be sure to delete them once you're done
with them.

As for the S3 bucket and the ECR container, those are a one-time
charge that only bill for data transfer.

With that, you now know how to operationalize your MLFlow model
with AWS SageMalker.

Summary

MLFlow provides explicit AWS SageMaker support in its operationalization
code. And so we covered how to upload your runs to an S3 bucket and
how to create and push an MLFlow Docker container image for AWS
SageMaker to use when operationalizing your models. We also covered
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how to deploy your model on an endpoint, query it, update the endpoint
with a new model, and delete the endpoint. Hopefully now you now know
how to operationalize your machine learning models with MLFlow and
AWS SageMaker.

In the next chapter, we will look at how you can operationalize your
MLFlow models with Microsoft Azure.
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Deploying in Azure

In this chapter, we will cover how you can use Microsoft Azure to
operationalize your MLFlow models. In particular, we will look at how
you can also utilize Azure’s built-in functionality to deploy a model to a
development branch and to a production branch, along with how you can
query the models once deployed.

Introduction

In the previous chapter, we went over how to deploy your models to
Amazon SageMaker, manage them through update or delete events,
and query them. Now, we will shift our focus to show how you can
operationalize your MLFlow models using Microsoft Azure.

Before you begin, here is an important prerequisites:

o Install azureml-sdk in your Python environment.

Just like with AWS, Microsoft Azure is constantly being worked on and
updated. Since MLFlow supports Microsoft Azure, you should be able
to utilize MLFlow to operationalize your models. Any new functionality
is sure to be documented by MLFlow, and in the absolute worst-case
scenario, you should still be able to host a server on Azure and maintain
your MLOps functionality that way.

Again, we will explore how to do this in the next chapter when we look
at how to operationalize your MLFlow models with the Google Cloud API.
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In detail, we will go over the following in this chapter:

Configuring Azure: Here, you basically use MLFlow’s
functionality to build a container image for the model
to be hosted in. Then, you push it to Azure’s Azure
Container Instances (ACI), similar to how you pushed
an image to the Amazon AWS Elastic Container
Registry (ECR).

Deploying a model to Azure (dev stage): Here, you
use built-in azureml-sdk module code to push a
model to Azure. However, this is a development stage
deployment, so this model is not production-ready
since its computational resources are limited.

Making predictions: Once the model has finished
deployment, it is ready to be queried. This is done
through an HTTP request. This is how you can verify
that your model works once hosted on the cloud since
it's in the development stage.

Deploying to production: Here, you utilize MLFlow
Azure module code to deploy the model to production
by creating a container instance (or any other
deployment configuration provided, like Azure
Kubernetes Service).

Making predictions: Similar to how you query the
model in the dev stage, you query the model once it
has been deployed to the production stage and run the
batch query script from the previous chapter.

Switching models: MLFlow does not provide explicit
functionality to switch your models, so you must delete
the service and recreate it with another model run.
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e Removing the deployed model: Finally, you undo
every deployment that you did and remove all
resources. That is, you delete both the development
and production branch services as well as the container
registries and any additional services created once you
are done.

With that, let’s get started!

Configuring Azure

Before you can start using Azure’s functionality to operationalize your
models, you must first create or connect to an existing Azure workspace.
You can do this either through code or the Ul in a browser.

In your case, you will open up the portal in the browser and learn how
to create a workspace. Refer to Figure 6-1.

mCoCl. ODT.. 9ISL eSTT..

Useful fskes Arure makde apn
lhodea Susrasis s Sy i den Lodena " PSSR P

Figure 6-1. An example of the Microsoft Azure portal home screen
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Next, click the Create a resource option and search for “Machine
Learning.” You should see something like Figure 6-2.

Machine Learning =

Machine Learning
! v
[ cree ]

| e
—— ==

| e |

Figure 6-2. An example of the service “Machine Learning” provided
by Azure. You want to create a workspace within this service, so click
the Create button

Click the Create button. You should see something like Figure 6-3. (We
filled the fields with our own parameters.)

Your subscription might differ from ours. For the resource group, we
created a new one titled azure-mlops.

The fields you completed in Figure 6-3 are enough to create your
workspace. Next, click the Review + create option and click Create once
Azure states that the validation procedure has been passed and allows you
to click Create.
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Basics  Tags Review + create
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Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage

all your resources.

Subscription * ()

Resource group *

Workspace details

Azure for Students |
(New) azure-miops v |
Create new

Specify the name, region, and edition for the workspace.

Workspace name * (O
Region * ©

Workspace edition * O

[ azure-mlops-workspace

East US w |

Basic A

0 For your convenience, these resources are added automatically to the workspace, if regicnally available: Azure Storage, Azure

Apglication Insights, Azure Key Vault

Review + create

Mext : Tags

Figure 6-3. Workspace creation UI (we filled in the fields with our

own parameters)

This will take some time to deploy. Once the workspace has been

created, go back to the home portal and click the All resources option. You
should see something like Figure 6-4.

Click your workspace, which should have an image of a chemical

beaker next to it.

In this overview, you will see several parameters associated with

this workspace. Make sure to keep track of the following attributes of the
workspace so that you can connect to it in the code:
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e workspace name (azure-mlops-workspace )
e subscription (The value where it says Subscription-ID)
e resource group (azure-mlops)

e location (East-US)

All resources ¢

[Fe=iy e ] e s e g e X hpeeel X s s Xy adiee
-
&

Figure 6-4. You might see something like this when you look at the
All resources option

Refer to Figure 6-5.

A azure-mlops-workspace

r
*
2
En s Ky at
sty A s a0 .

 Exsemiisn

Azure Machine Learning studio

An immersive experience for mansging the end-to-snd maching
teaming Hecycke.

Geting Sraried
|| View Decumentasicn ] ! View mere saem ples i1 GhtHut
xt rrgan l
View Forum d | Lewm about Enterprise Edition (previen)

Figure 6-5. You should see something like this for your own
workspace. Here we've censored potentially sensitive fields, but you
should be able to see your own unique subscription ID on your screen.
This is the value you want to use
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Now that you have that, run the following to create/connect to your
own workspace:

import azureml
from azureml.core import Workspace

workspace name = "MLOps-Azure"

workspace _location="East US"

resource_group = "mlflow_azure"

subscription id = "XXXXXXXX-XXXX-XXXX-XXXX=XXXXXXXXXXXX"

workspace = Workspace.create(name = workspace name,
location = workspace location,
resource_group = resource_group,
subscription id = subscription id,
exist ok=True)

If you have successfully connected to your workspace, the cell should
run without any issues.

Next, you must build the MLFlow container image to be used by Azure.
Here, you also specify the run of the model you are trying to deploy.

In the case of Amazon SageMaker, you were able to reference runs
from your local machine or runs from an S3 bucket. You can do the same
thing for Azure, except using Azure’s storage entities called blobs.

Either way, you need the run ID of the model you are deploying and
the artifact scheme that the model is logged in. For the models you stored
in Amazon S3 buckets, you used the scheme s3:/, but this time you will
just use a run locally. If you'd like, you can still use your Amazon S3 bucket
or Google Cloud buckets. Where you store your run does not matter.

Run the following, replacing the values with your specific run and
storage scheme:

Tu n_id = "1eb809b446d949d5a70a1e22e4b4 428"
model name = "log reg model"
model uri = f"runs:/{run_id}/{model name}"
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The model name should be the same in your case unless you changed
it. Since we are using local runs, we have a URI starting with runs:/. Again,
change this to whatever is appropriate in your case.

Finally, with all that information set, let’s create the container image:

import mlflow.azureml

model_image, azure model = mlflow.azureml.build image
(model_uri=model uri,
workspace=workspace,
model name="sklearn logreg dev",
image name="model",
description="SkLearn LogReg Model
for Anomaly Detection”,
synchronous=False)

You should see something like Figure 6-6. You may or may not see the
warning messages depending on your version of MLFlow.

import mlflow.azarenl

model_image, azure model = mlflow.szureml.build_image

synchrenous=Palss)

Registering model sklearn_logreg

2020/08/21 14:55:27 INFO mlflow.azureml: Registered an Arure Model with mame: “sklearn logreg® and wersion: °1°

€:\Users\Shuspa\Anacondalienva\pieilab asse-packages \mlflow\azurenl’  anaz_ .py:20l: cla
53 has been depucn:ed and will be removed in a future release. Please migrate to using Eovirsaments. fitpss//docs.aicrosct
=.cemfen-us/azure/zachine-lesrning/how-to-use-en .

taga=! t,nua
Cr\Users\ Shusg N\p3E\Lib s ite-p \a
eCe nlla Glh?’ H.Q hlﬂ ﬂ.P"‘ I¥‘¢ Ohl

emlicore\imagelcontainer.py:161: DeprecaticnWarning: ContainerTmag
fw“l in a future 'Qlll,. Please migrate o using Environmenta. hutpa: do
-cnﬂn vl!’xnli

C:\Users\Shuapu\Anaconda2\enva\p36hliblaite-packagesiml flow\azuresl)  init .py:206: Deprecat .an’arrlng naqg clnxa has be
en de; ed .md wlll be xe:mud in & Eu:um release. Flease migrate to using Environments. https://docs.mic

ase m:rl Tasa 1ug( uqutzv md.n

sodus [xeqast.eud muel]l

Creating image

C:\Users\Shusp d "p3E 11k site-packages\azazenl \core) imagel izage. py: 4071 Deprecationar
een d.epfrecnud and will be removed in a future release. Please migrate %o using Envirsnments. nttps:

ng: Image class has b

;aqo = l:nuue:lunn .=a=a=o ad)
2020/08/21 14:55:43 INPO mlflow.azureml: Building an Azure Container Image with mame: model® and versiom: "1°

Figure 6-6. Building and pushing the container to Azure’s container
registry. Ignore the warning messages for now. You might not see these
messages in the future. Since this is code created and maintained by
MLFlow, it is likely that they will provide support for whatever new
functionality Azure pushes

260



CHAPTER 6  DEPLOYING IN AZURE
Next, run the following to check the status of the container:
model image.wait for creation(show_output=True)

You should see something like Figure 6-7.

sodel_image.wsit_for_crestionshow_sutput=True)
Succeeded
Image creation operation finished for image model:l, operation "Succeeded”

Figure 6-7. Checking the output of the progress in the image creation
operation

Once the image has been created, you can now deploy your model.

Deploying to Azure (Dev Stage)

One interesting bit of functionality that Azure provides is the ACI
webservice. This webservice is specifically used for the purposes of
debugging or testing some model under development, hence why it is
suitable for use in the development stage.

You are going to deploy an ACI webservice instance based on the
model image you just created.

Run the following:

from azureml.core.webservice import AciWebservice, Webservice

aci service name = "sklearn-model-dev"
aci_service config = AciWebservice.deploy configuration()

aci service = Webservice.deploy from image
(name=aci_service name,
image=model image,
deployment config=aci_service config,
workspace=workspace)
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You should see something like Figure 6-8.

from azureml.core.webaesvice lmport AciWebservice, Webmervice

i ng: deploy _from image has bee

Figure 6-8. The output of creating the ACI service. It seems that this
function may be removed in the future, but for now this is one way to
access the ACI service and deploy the model

This exact way of starting the service may be deprecated in the near
future in favor of Environments. For the time being, you should still be able
to start an ACI service in this manner, but the important thing to know
is that there is a web service specifically tailored for development stage
testing.

Now run the following to check the progress:

aci_service.wait for deployment(show output=True)

You should see something like Figure 6-9.

sci_service.wait_for deployment (show _cutput=Trua)

ucceeded
ITice CXEATion cperation finished, cperaticn “Succesded”

Figure 6-9. The output you should see from checking if the
deployment has succeeded

Before making your predictions, let’s first verify that you can reach your
service:

aci_service.scoring uri
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You should see something like Figure 6-10. If not, try going into your
resources in the portal to verify that a new container exists with the name
sklearn-model-dev. If not, try rerunning the cells in the same order. It
should display some URI this time.

You should see something like Figure 6-10.

aci_service.scoring urd

[ t 'htetpr//baTebec2-10a5=-48cf-0594=-0c7IbE4ff1al eastus. . azurecontainer. o/ score

Figure 6-10. The scoring URI is displayed, indicating that you can
connect to it and make predictions

You can now make predictions with this model.

Making Predictions

Now you need to acquire some data to predict with.

Just like before, you will be loading the credit card dataset,
preprocessing it, and setting aside a small batch that you will query the
model with. Run the following blocks of code, and make sure you have the
folder named data in this directory with creditcard.csv in it:

import pandas as pd
import mlflow
import mlflow.sklearn

import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model selection import train test split

from sklearn.metrics import roc_auc_score, accuracy score,
confusion matrix
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import numpy as np

import subprocess
import json

df = pd.read csv("data/creditcard.csv")

Once you have loaded all the modules and have loaded the data, run
the following:

normal = df[df.Class == 0].sample(frac=0.5, random state=2020).
reset_index(drop=True)
anomaly = df[df.Class == 1]

normal train, normal test = train test split(normal, test size
= 0.2, random state = 2020)

anomaly train, anomaly test = train test split(anomaly,
test_size = 0.2, random state = 2020)

scaler = StandardScaler()
scaler.fit(pd.concat((normal, anomaly)).drop(["Time", "Class"],
axis=1))

In cells, the above two blocks of code should look like Figure 6-11.
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In [38): import pandas as pd
import mlflow
import mlflcw.sklearn

import sesborn as sns
import matplatlib.pyplot as plt
from skiea: import S 1e

from sklearn.mcdel_selecticn import train_test_split
from SRLOAIL.BATILCE LEPOrt IOS_AUC_SOIIe, ASCUZASY #SODe, CORIUSLCD BATIIX

import numpy as np

tmport subprocess
import json

df = pd.read_cev("data/creditcard.cov”)

forzal = df[df.Class == 0].sample(frac=.5, randea state=2020).reset_index(drop=Trua)
sncmaly = df[df.Class == 1]

normal train, normal test = train_test_split(normal, test_size = 0.2, random_state = 2020
sncmaly train. ancealy test = traim test split{oncmaly, test_size = 0.2, rondes_state = 2020)

scaler ® StandardScaler()
scaler. fit (pd.concat { [normal, anomaly)).drop((”Tize”, "Class"], axis=1})

401: standardScaler (copy=True, with_sean=True, wath_std=True)

Figure 6-11. The import statements and data processing code. You
also define the scaler here and fit it to the data, just as you did when
originally training these models

Once you are all done with preparing the data, let’s define a function to
help you query the deployed model:

import requests

import json

def query(scoring uri, inputs):
headers = {

"Content-Type": "application/json",
}

response = requests.post(scoring uri, data=inputs,
headers=headers)

preds = json.loads(response.text)

return preds
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Now you can select a few points and make a prediction:
data_selection = df.iloc[:80].drop(["Time", "Class"], axis=1)

input_json = pd.DataFrame(scaler.transform(data_selection)).
to_json(orient="split")

preds = query(scoring uri=aci service.scoring uri,
inputs=input_json)
pd.DataFrame(preds).T

Together, you should see something like Figure 6-12.

In [56]: import requests
import json

def query(scoring_uri, inputs):

- “applicaticn/json”,
}
response = requests. :\eu (scoring_uri, data=inputs, headers=headers}

preds = json.loads(response.text)
return preds

n [64): duo selection = df.ilec(:80].drep(["T C. "1, axia=l}

nput_json = pd.Datafzame (scale:z. t'o"a:'n"dro selecticn)).te_json (orient="aplic")
In [€5]: preds = query[scoring_uriwaci_service.scoring_uri, inputs=input_jsen)
2 pd.DataFrame(preds).T

0123456789 0N TITNRDMIBTETED

oo 0 CORO0OD0 QOO0 e 0 ¢ 0 0 0 0 00 2

1 rows = 80 columns.

Figure 6-12. Querying the model deployed on an ACI webservice
with some sample data and receiving a response

Asyou can see, the model has returned predictions that look correct
(thanks to the scaling).

Now that you know how to deploy to a development branch, let’s look
at how you can deploy the model to production using built-in MLFlow
functionality.
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Deploying to Production

MLFlow provides Azure support and helps us deploy our models directly,
using a container instance by default.
Let’s get straight into it. Run the following, replacing the names with

anything else preferred:

azure_service, azure model = mlflow.azureml.deploy(model uri,
workspace,
service name="sklearn-logreg",
model name="log-reg-model",
synchronous=True)

It's worth mentioning that you can deploy to a specific web service. By
default, MLFlow will host the model on a container instance, but you can
specify a computer cluster. To learn more, refer to the documentation here:

www.mlflow.org/docs/latest/python_api/mlflow.azureml.html.

Once the code finishes running, which can take some time, you can

also check to see if the URI can be printed:
azure_service.scoring uri

Together, you should see something like Figure 6-13.

2020/08/21 16:06:56 INFO mlfiow.azurenl: Registersd am Azuze Model with name: ‘log-reg-sodel’ and wersica: "1°
2020/08/21 16107303 INFO mlflow.azurenl: Deploying an Asure Webservice with name: "sklearn-logreg

mcozing uri

+ ‘httpr//1060fccé-afcl-419da-b361-084€£d80357a. . castus,  azurecontainer. io/acore

Figure 6-13. Successfully creating the endpoint and verifying that the
service has a URI
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Now that you have successfully deployed your model, let’s move on to
making predictions.

Making Predictions

Now that you have your model deployed, let’s run your code to make
predictions.

First of all, let’s run the following to make sure that you are receiving
predictions. You should already have defined input_json:

preds = query(scoring uri=azure service.scoring uri,
inputs=input_json)
pd.DataFrame(preds).T

You should now see something like Figure 6-14.

preds = query(acoring_uri=azure service.scoring uri, imputs=imput_json)
pd.DataFrane (preds).T

0123458789 _T0OTMT2ZTITTISTETTTET

00000O0O0O0OD0O0OO 0 0 0 0 O 0 0 0 0 O

1 rows 80 columns

Figure 6-14. Querying the deployed model with your batch of scaled
data to ensure it works

Now, let’s run your batch querying script:

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))
true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))
preds = []
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batch_size = 80
for f in range(25):
print(f"Batch {f}", end=" - ")

sample = pd.DataFrame(test[f*batch size:(f+1)*batch size]).
to_json(orient="split")

output = query(scoring uri=azure service.scoring uri,
inputs=sample)

resp = pd.DataFrame([output])

preds = np.concatenate((preds, resp.values[0]))

print("Completed")

eval acc = accuracy_score(true, preds)
eval auc = roc_auc_score(true, preds)

print("Eval Acc", eval acc)
print("Eval AUC", eval auc)

Once finished, you should see something like Figure 6-15.
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In [69): test = pd.comcat((normal.iloc[:1900), ancmaly.ilec[:100)))
2 true = test.Class
test = scaler.transform(test.drop([“Time”, "Class"], axis=l))
preds = []

batch_size = §
for £

sample = pd.DataFrame(test(f+batch size: (£+41)*batch_size]).to_json(orients<split®)

cutput = gquery(scoring_urisazure_service.scoring_uri, inputsesample)
reap = pd.Dataframe ([outpuc])
preds = np.concatenate((preds, resp.values[0]))

eval_acc = accuracy_scors(trus, preds
eval_auc = roc_suc_score(true, preds

o, eval_acc)
c", eval_auc)

- Completed
- Completed
- Completed
- Completed

Cempleced
- Conpleted
- Compleced
- Complezed
- Completed
= Complece:

Batch 24 -
Eval Acc 0. 991!
Eval AUC 0.91%

Figure 6-15. The results of running the batch querying script. This
effectively made predictions on 2,000 data points

With that, you now know how to query your deployed model and make
predictions with it. This should be the same procedure if you've opted to
deploy to a specific compute cluster with, for example, Azure Kubernetes

Service.

Cleaning Up

Unfortunately, there does not seem to be any specific functionality to
update the service with a new model. The procedure seems to be to delete
the service and create a new service with another model URI.

So, with that, let’s now look at how you can remove all the services you
just created.
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Run the following:

aci_service.delete()
azure service.delete()

Refer to Figure 6-16.

aci_service.delete()

azure_service.delece()

Figure 6-16. Deleting the web services you launched earlier

Now, navigate to the All resources section again from the home portal.
Check every item with the resource group type named Container Instance.
You should see that there are none. Figure 6-17 shows what this might
look like. (We have a container instance here, but it is unrelated.) Since
you deleted the services just now, you should not see sklearn-logreg or
sklearn-model-dev.

All resources

o ne»

e
&

®
[ T

Figure 6-17. You should not see any resources titled sklearn-logreg or
sklearn-model-dev of type container instance. (There is one here, but
it is not related to the experiments from above, and only exists to show
what a resource with this resource type looks like.)
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If you want to remove services from here, you can simply delete the
container instances or other services, as in Figure 6-18.

All resources &

e

news% e

L]
8
B
B P sives-sconsn

Figure 6-18. Deleting services manually through the All resources Ul

You can now delete everything else (or just the new resources created
for this chapter) in your UI following this same procedure to clean up your
Azure workspace.

With that, you now know how to use MLFlow to deploy a model on
Microsoft Azure.

It's worth mentioning that Azure has a lot of additional functionality
relating to monitoring your machine learning experiments and more,
but that might also come with additional costs depending on the
depth of functionality you are going after. Be sure to refer to their
excellent documentation if you'd like to learn more about Azure and its
functionality.

Summary

Like Amazon AWS, Microsoft Azure is a cloud platform that performs many
advanced services for a wide range of users. In particular, Azure has a lot

of support for operationalizing machine learning models using built-in
functionality separate from MLFlow.
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In this chapter, you learned how to build a container image for a
specific MLFlow model run, deploy it in a development setting/production
setting, and query the model on Microsoft Azure.

In the next chapter, we will look at how you can use Google Cloud as
a platform to operationalize your MLFlow models. There is no explicit
MLFlow support for Google Cloud, so you will be adopting a different
approach where you serve the models on a server hosted on Google Cloud
and make predictions that way.
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Deploying in Google

In this chapter, we will cover how you can use MLFlow and Google Cloud
to operationalize your models even without MLFlow providing explicit
deployment support for Google Cloud.

More specifically, we will cover how to set up your Google Cloud
bucket and virtual machine (used to run the server) and how you can
operationalize and query your models.

Introduction

In the previous chapter, we went over how you can deploy your models to
Microsoft Azure, manage them through update or delete events, and query
them. This time, we will explore how you can operationalize your models
using Google Cloud.

MLFlow does not provide explicit support for deploying in Google
Cloud like it does with AWS SageMaker and Microsoft Azure, and so you
will approach this a bit differently from how you operationalized models in
the previous two chapters.

This time, you will use the same model serving functionality that you
used in Chapter 4 except you will host it on a Google Cloud machine that
is accessible by the Internet. However, deployment is far quicker this way
since you don’t have to wait for the creation of an endpoint. Furthermore,
once you set up the machine, swapping models is very simple, and you can
serve multiple models by using different ports.
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It's worth noting that Google Cloud has an assortment of advanced
tools and functionality dedicated to machine learning, such as Kubeflow.
Kubeflow is a tool that allows you to essentially integrate your machine
learning lifecycles into Kubernetes. And so all your machine learning
pipelines are managed through Kubernetes. Kubeflow also integrates into
the Google Cloud platform, seeing as how Kubernetes was built by Google.
In this chapter, we will just go over how you can deploy MLFlow logged
models. We won't get into any of the platform-specific tools that help
manage your machine learning lifecycles.

Before you begin, here is an important prerequisite:

o Download and install the Google Cloud SDK so you can
use the CLI to connect to your server.

In detail, we will go over the following in this chapter:

o Configuring Google: This is perhaps the hardest step
in this deployment process. First, you set up a bucket
and push the contents of your mlruns folder to be
stored on the cloud.

Next, you set up the virtual machine that will host
your server when you deploy the model. This
involves installing Conda and MLFlow.

Finally, you set up a firewall to allow your server
to have inbound access through the default port
of 5000 that MLFlow uses so that you can actually
connect to this server through your Jupyter
notebook.

o Deploying and querying the model: Here, you check
the IP address, pick a run, and launch the code to serve
the model. Then, you query the model and run the
batch query script as well.
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o Updating and removing a deployment: Here, you stop
deployment and simply rerun the model serving script
with a different model run to fulfill model switching
functionality. After you have updated the model,
removing the deployment is as easy as stopping the
model serving.

e Cleaning up: Here, you go through all of the new
services you used and delete them all so as not to incur
any charges.

With that, let’s get started!

Configuring Google

Most of the work that is involved in deploying your models using Google
Cloud is actually taken up by the configuration process. Once you set up
the storage and the machine to host your model, model serving becomes
an extremely easy task. To switch up models, you only need to change up
the model run and let MLFlow take care of the rest.

As for where you are storing the models, you will be using Google
Cloud Storage to do so. Once again, this fulfills a functionality similar to
storing your runs in Amazon S3 buckets or Azure blobs. The purpose of
pushing all of your runs to the cloud is so that there is a centralized storage
container that holds the models. Now anyone can access them anywhere
around the world, and there are no issues with version mismatch where
your copy of the run happens to differ with someone else’s. In a sense, this
is serving the role of a model registry, just without the added functionality
of the MLFlow Model Registry.
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Bucket Storage

And so, let’s begin. First, open up the Google Cloud portal. You should
see something like Figure 7-1. Be aware, though, that Google Cloud is also
constantly being updated, so your portal screen may look different.
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Figure 7-1. What our Google Cloud portal screen looks like

Notice the scroll bar on the left side of the screen. This is where you can
look at the services Google Cloud provides. Scroll to the section that says
Storage, and click the service named Storage. You should see something

similar to Figure 7-2.

Figure 7-2. Something similar to what you might see. In your case,
you might not have any buckets here
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Click the button that says CREATE BUCKET. Type in mlops-storage.
Next, where it asks for a location type, select the Region option to have
the lowest costs. Refer to Figure 7-3.

* Choose a default storage class for your data

Svtatsy 5LA 9L

*  Choose how o control access io cbjects Menihiy cott §0.00
+ Advanced settings (optional) !

Figure 7-3. Specifying the storage option for your bucket. Select
Region to keep the costs the lowest, although with the amount of data
you are pushing, the actual costs are very little

Keep the rest of the options as is and click the Create button. You
should now see something that looks like Figure 7-4.

B seage 4 Bucke detads Bocomreind for o

Your buchat s ready. et 30d data

Figure 7-4. What your bucket might look like after creation
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From here, you want to upload your MLFlow experiments (the
content of your mlruns directory) as folders, so click Upload Folder, and
upload all of the folders inside the mlruns directory. You can leave out
the folder named . trash. In our case, we only uploaded the experiment
using scikit-learn and left the rest out since we won'’t be using the other
experiments.

You should see something like Figure 7-5 when finished.

= Google Cloud Platform I santzy =

eee0w

Figure 7-5. Our bucket after uploading the contents of our mlruns
directory. We only uploaded the experiment using scikit-learn to save
on costs

With that, you have finished configuring your storage. The next thing to
configure is the virtual machine that will be hosting your model.
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Configuring the Virtual Machine

After going back to the portal, scroll to the Compute section and click the
Compute Engine option. You should see something like Figure 7-6. You
want to make sure you're in the portal for the service titled VM Instances.

= Google Cloud Platform s sty =

Figure 7-6. What your VM Instances screen may look like. In our
case, we already have another machine running, but that is irrelevant
since we are creating a new machine

281



CHAPTER 7  DEPLOYING IN GOOGLE

Now, click Create Instance and you should see something like Figure 7-7.

4 Create an instance

T convin 8 VMt nstoemc, pelect e ol # ptiars: s 2467 mentivy estimaty

| New VM instance
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B Mew VM instance from machine Soching by
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]
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Figure 7-7. The options you can fill in when creating your VM
machine instance. You should match the selections shown in the
figure to ensure consistency with our results

In our case, we filled in or selected the options that we want our VM
machine to use. We named our machine mlops-server, selected our region
(it autoselects a zone for you), and specified that we want to use Ubuntu
18.04 LTS. Finally, at the end, we want to allow HTTPS traffic from the
internet.

Finally, when finished, you should be able to see your VM machine on
the list of machines. What you want to do now is to open your VM machine
instance by clicking the name mlops-server. This should take you to a
screen that looks like Figure 7-8.
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Figure 7-8.
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What you should see when you click mlops-server. Notice

the box that says SSH. You will use that shortly

Now look at the box that says SSH. There should be a little down arrow
indicating that it is a drop-down list of something. Click that arrow and

select the View gcloud command option. Refer to Figure 7-9.

Figure 7-9.

Remote access
SSH E]
"™ Open in browser window
Open in browser window on custom port
Logs Open in browser window using provided private SSH key
Cloud L View gcloud command

Sevit Use another SSH client
- T

Instance Id
3476150646686625764

The drop-down options for connecting to this VM instance
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This should take you to a popup window that looks like Figure 7-10.
You have two options: running that command in a new instance of the
Google Cloud SDK CLI (in our case, we had to search “Google Cloud SDK
Shell” and it opened a configured Google Cloud terminal instance), or
running it through a shell directly on the portal page itself. You can do
either option, as both connect to the VM anyway.

geloud command line

B3 rgone et Ib Calopeuervert spreject TLalppedTMIT S

ko reference

CLOSE  RUN N CLOUD SHELL

Figure 7-10. The command that lets you connect to the VM via
SSH. You can also run it within the portal page itself if you'd like

Copy and paste that command in your terminal to connect to the
VM. When finished running, you should see something like Figure 7-11,
where it opens up a PuTTY instance of the actual shell inside the VM.
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Figure 7-11. The result of running the gcloud command that the
portal provided. On the right, you can see a PuTTY terminal where
you have the shell open inside the VM

This is where you must configure your VM so that it can host your
MLFlow models.
First, run the following commands:

sudo apt update

sudo apt upgrade

u__n

Answer “y” to any prompts.

Once finished, you can now install Conda. Without Conda, MLFlow
won’t be able to reconstruct the environment that the MLFlow model
was logged in. This is part of MLFlow’s modularization. In the case of
SageMaker and Azure, you built containers that, as their name suggests,
“contain” these Conda environments already. This way, SageMaker does
not have to reinstall any Conda packages once the container is in the
cloud. It simply has to run an instance of the container and it already has
everything configured.

First, find out how to install Anaconda on Linux by going to its
webpage. An install link should be provided. Copy the link and paste it
somewhere. You will retrieve that link using a command.
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Run the following one at a time:

cd /tmp
curl -0 https://repo.anaconda.com/archive/
Anaconda3-2020.07-Linux-x86_64.sh

You should see something like Figure 7-12.

Shumpu@mlops-server:~$ cd /tmp
Shumpu@mlops-server:/tmp$ curl -0 https://repo.anaconda.com/archive/Anaconda3-20|
20.07-Linux-x86 6€4.sh

% Total % Received & Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Leftr Speed
100 550M 100 5S50M 0 0 165M 0 0:00:03 0:00:03 —-:--:-— 165M
Shumpufmlops-server:/tmp$ I v

Figure 7-12. The output of fetching the Anaconda installation script

Next, let’s install Anaconda by running the following. You can type in
bash Anaconda and press Tab to autofill the rest of the script name.

bash https://repo.anaconda.com/archive/
Anaconda3-2020.07-Linux-x86_64.sh

It should ask you to look through the license agreement. At the end,
answer yes, and press Enter to confirm the default installation location.
Conda should then proceed with the installation. Answer yes to any
further prompts. Once it’s done, restart the shell (close the PuTTY client
and rerun the command or cloud shell), and you should now have Conda
fully configured.

As you will now see, Conda has already started the base environment.
Let’s create a new environment by running the following code:

conda create -n mlflow python=3.7

u__n

Answer “y” to any following prompts, and you should see something
like Figure 7-13.
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2P Shumpu@mlops-server: ~ - a x

Proceed ([y]/n)? y

Downloading and Extracting Packages

wheel-0.34.2 | 51 KB | $EFEEFFFFE 0400000048030 0088434
certifi-2020.6.20 156 KB | SESERERERERRRIIRIt e Enaaaistaes
python-3.7.7 45.1 MB | SEFRRERERERRRITIsIIanenaaarresiss
pip-20.1.1 1.7 MB | FEFFRERIFRRRRRIFIRRRIRARanaaaaananss
setuptools-49.2.0 743 KB | #FEFFFFFFFFERRaR 00000000080
Preparing transaction: done

Verifying transaction: done

Executing transaction: done

#

100%
100%
100%
100%
100%

To activate this environment, use

$ conda activate mlflow

#
#
#
#
# To deactivate an active environment, use
i

#

$ conda deactivate

(base) Shumpu@mlops-server:~$ l |v

Figure 7-13. Ifyou see this, then your Conda environment has
successfully installed

Next, you will install the following packages: mlflow and
google-cloud-storage. The former is self-explanatory: you will need MLFlow
to do anything with MLFlow. You need google-cloud-storage because you are
going to access your runs from the Google storage bucket from earlier.

Run the following:

conda activate mlflow

pip install mlflow google-cloud-storage

Running this code should also install all of the dependencies. In the
future, should you need to install any more dependencies, it’s as simple as
activating the mlflow environment and using pip install to get any more
packages or update existing packages.

Once it has finished installing everything, you should see something
like Figure 7-14.
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#P Shumpu@mlops-server: ~ = O X

chemy querystring-parser

Installing collected packages: pytz, six, python-dateutil, numpy, pandas, gorill
a, click, Werkzeug, MarkupSafe, Jinja2, itsdangerous, Flask, cloudpickle, python
-editor, sqglalchemy, Mako, alembic, urllib3, idna, chardet, requests, tabulate,
databricks-cli, websocket-client, docker, azure-core, isodate, ocauthlib, regquest
s-ocauthlib, msrest, pycparser, cffi, cryptography, azure-storage-blob, prometheu
s-client, prometheus-flask-exporter, pyyaml, gunicorn, protobuf, sglparse, query)|
string-parser, entrypoints, smmap, gitdb, gitpython, mlflow, pyasnl, pyasnl-modu
les, cachetools, rsa, google-auth, googleapis-common-protos, google-api-core, gol
ogle-cloud-core, google-crc32c, google-resumable-media, google-cloud-storage
Successfully installed Flask-1.1.2 Jinja2-2.11.2 Mako-1.1.3 MarkupSafe-1.1.1 Wer
kzeug-1.0.1 alembic-1.4.2 azure-core-1.7.0 azure-storage-blob-12.3.2 cachetools-|
4.1.1 cffi-1.14.1 chardet-3.0.4 click-7.1.2 cloudpickle-1.5.0 cryptography-3.0 d
atabricks-cli-0.11.0 docker-4.2.2 entrypoints-0.3 gitdb-4.0.5 gitpython-3.1.7 go
ogle-api-core-1.22.0 google-auth-1.20.1 google-cloud-core-1l.4.1 google-cloud-sto
rage-1.30.0 google-crc32c-0.1.0 google-resumable-media-0.7.1 googleapis-common-p
rotos-1.52.0 gorilla-0.3.0 gunicorn-20.0.4 idna-2.10 isodate-0.6.0 itsdangerous-
1.1.0 mlflow-1.10.0 msrest-0.6.18 numpy-1.1%.1 ocauthlib-3.1.0 pandas-1.1.0 prome|
theus-client-0.8.0 prometheus-flask-exporter-0.15.4 protobuf-3.12.4 pyasnl-0.4.8
pyasnl-modules-0.2.8 pycparser-2.20 python-dateutil-2.8.1 python-editor-1.0.4 p
ytz-2020.1 pyyaml-5.3.1 querysctring-parser-1.2.4 requests-2.24.0 requests-oauthl
ib-1.3.0 rsa-4.6 3ix-1.15.0 smmap-3.0.4 sqlalchemy-1.3.13 sglparse-0.3.1 tabulat
e-0.8.7 urllib3-1.25.10 websocket-client-0.57.0

(mlflow) Shumpu@mlops-server:~$ I

Figure 7-14. The final output after finishing installing the necessary
packages in the Conda environment

With that, you have fully configured your VM. All that is left is to
configure the firewall.

Configuring the Firewall

First, you need to look at the internal IP that your VM instance is using. To
do that, run the following:

ifconfig

You should see something like Figure 7-15.
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Q Shumpu@mlops-server: ~ —_ [m] x

pyasnl-modules-0.2.8 pycparser-2.20 python-dateutil-2.8.1 python-editor-1.0.4 p|
yrz=-2020.1 pyyaml-5.3.1 querystring-parser-1.2.4 requests-2.24.0 requests-oauthl
ib-1.3.0 rsa-4.6 six-1.15.0 smmap-3.0.4 sqglalchemy-1.3.13 sqlparse-0.3.1 tabulart
e-~0.8.7 urllib3-1.25.10 websocket-client-0.57.0
(mlflow) Shumpu@mlops-server:~$ ifconfig
ens4: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1460

inet 10.142.0.4 netmask 255.255.255.255 broadcast 0.0.0.0

inet6 fef0::4001l:aff:fefe:4 prefixlen €64 scopeid 0x20<link>

ether 42:01:0a:8e:00:04 ctxqueuelen 1000 (Ethernet)

RX packers 48844 bytes 722521313 (722.5 MB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 29650 bytes 3269468 (3.2 MB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK, RUNNING> mtu €5536&
inet 127.0.0.1 netmask 255.0.0.0
ineté ::1 prefixlen 128 scopeid 0xl0<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 200 bytes 19892 (19.8 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 200 bytes 19892 (19.8 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

(mlflow) Shumpulmlops-server:~$ I

Figure 7-15. Something similar to what you should see when you
run the command. We have highlighted in red where you can find the
internal IP of your machine. In our case, it is 10.142.0.4. Yours will be
different

Make a note of the internal IP, which we have highlighted in red. In
your case, it will be different.

Now, you must add a firewall to allow access to your server once it is
started. Go back to the portal, scroll to the section that says Networking,
and click the VPC Networks option. You should see something like
Figure 7-16.
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Figure 7-16. The VPC Networks module in the portal. Click the
Firewall option to look at the firewall options

Now, click Firewall and then click Create Firewall Rule. Namely, you
want to enter the following values:

e Name: mlflow-server

o Target tags: mlops-server, http-server, https-server
e Source IP ranges: 0.0.0.0/0

o Protocols and Ports: Check TCP and type 5000

If you made a mistake, you can edit the firewall rules. You should see
something like Figure 7-17.
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n VPC network < Firewall rule details # EoT [ DELETE
B Vcnennie miflow-server
Descriots
O ExtemaliPaddresses Firewall rules for the MLFlow server.
B Firewall
X Routes
Logs
> VPC network peering Turning on firewall logs can generate a large number of loga which can increase costs in
Stackdriver. Laarn more
o
B4 Shared VPC O on
@ off
52 Serverless VPC access
Hetwork
di  Packet mimoring default
Prioity *
1000 )
Pricrity can be 0 - 65535 Check pricrity of other firewall rules
Direction
Ingress

Action on match
Allows

Targets
Specified target tags -

Target tags
miops-server )  bitp-server 0 htips-server O

Source filter
IP ranges *- @
Source IP ranges *

0.00.0/0 € forexample, 0.0.0.0/0, 192.168.2.0/24 (7]
Second source filter
None * @

Protocols and ports @
O Allow all
(@) Specified protocels and ports

e 5000
[ udp: all
< [_] Other protocols

Figure 7-17. What your firewall configuration should look like. We
have autofilled the values with our own
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Now click Create. You are done configuring the firewall and
configuring everything else in Google Cloud. Now you can move on to
deploying your model.

Deploying and Querying the Model

With your virtual machine fully configured, it’s time to deploy your model.
Make sure you still have that internal IP logged in. Go back to the
PuTTY client and now enter the following command:

mlflow models serve -m gs://mlops-storage/EXPERIMENT ID/RUN_ID/
artifacts/MODEL_NAME -h 10.142.0.4

Our command looks like the following. We simply took the first run in
the Google Storage bucket.

mlflow models serve -m gs://mlops-storage/8/1eb809b446d949d5a70
ale22e4b4f428/artifacts/log reg model -h 10.142.0.4

You should see something like Figure 7-18.
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# Shumpu@mlops-server: ~ - [m] b4

0.15.4 protobuf-3,12.4 pycparser-2.20 python-dateutil-2.8.1 python-editor-1.0.4 (A
lpytz-2020.1 pyyaml-5.3.1 querystring-parser-1.2.4 requests-2.24.0 requests-oauth
lib-1.3.0 8ix-1.15.0 smmap-3.0.4 sqlalchemy-1.3.13 sqglparse-0.3.1 tabulate-0.8.7
urllib3-1.25.10 websocket-client-0.57.0

To activate this environment, use
$ conda activate mlflow-dd9a9304d9fe43desfd90cTadT7a9f26balcae2aa

To deactivate an active environment, use

L I L

$ conda deactivate

2020/08/07 18:30:34 INFO mlflow.pyfunc.backend: === Running command 'source /hom|
e/Shumpu/anaconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-dd%a%3
04d9fe43d69£fd90cTad7a9f2ébalcae2aa 1>&2 && gunicorn --timeout=60 -b 10.142.0.4:5
000 -w 1 ${GUNICORN CMD ARG5S} -- mlflow.pyfunc.scoring_ server.wsgi:app'
[2020-08-07 18:30:34 +0000] [26836] [INFO] Starting gunicorn 20.0.4

[2020-08-07 18:30:34 +0000) [26836) [INFO) Listening at: http://10.142.0.4:5000
(26836)

[2020-08-07 18:30:34 +0000] [2683€] [INFO] Using worker: sync

[2020-08-07 18:30:34 +0000] [2€684€] [INFO] Booting worker with pid: 26846

Figure 7-18. This is what your output should look like if it
successfully built the Conda environment and is now serving the
model

There’s only one more step that remains before you can successfully
make predictions with this model. You must now see what your external
IP is. To do so, go back to the VM Instances page to find your VM machine.
You should see something like Figure 7-19.
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{5 compute Engine VM instances D CREATEWSTANCE & WPORTYM (P REFRESH S ks

Courme =

Figure 7-19. The VM Instances section in the portal should display
the external IP of your server. We have highlighted ours in red, but
yours is most likely something different

Once you have the external IP address, copy it down somewhere.

Now you can start up your Jupyter notebook and query this model.

In a Jupyter notebook cell, run the following. Make sure you have the
data folder in the same directory as this notebook, and that the data folder
contains the creditcard.csv file

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model selection import train test split

from sklearn.metrics import roc_auc_score, accuracy score,
confusion matrix
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import numpy as np

import subprocess
import json

df = pd.read csv("data/creditcard.csv")

Next, you define your query () function that you will use to get model
predictions:

def query(input json):
proc = subprocess.run(["curl", "-X", "POST", "-H",
"Content-Type:application/json; format=pandas-split",
"--data", input_json,
"http://34.75.74.9:5000/invocations"],
stdout=subprocess.PIPE, encoding="utf-8")

output = proc.stdout
preds = json.loads(output)
return preds

Notice that the IP is now http://34.75.74.9:5000/invocations
Basically, your IP should take the form of http://YOUR_EXTERNAL _
IP:5000/1invocations, replacing the placeholder with the external IP
address of your VM.

Let’s now query your model:

input_json = df.iloc[:80].drop(["Time", "Class"],
axis=1).to_json(orient="split")
pd.DataFrame(query(input_json)).T

Altogether, you should see something like Figure 7-20.
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import pandas as pd
import mlflow
import mlflew.sklearn

import seaborn as sns

from sklea import St lex
from sklearn.model_selection import train_test_splic
from sklearn.metrics 1mport ICC_AUC_JCOre, ACCUNACY_ICOre, COnIUILOn_NMATILX

import munpy as ap

import subprocess
5 import jsen

df = pd.read_csv("data/crediteard.cav®)
def query(i

y(inpue_json) :
proc = subprocess.run(["curl”, "-X",
=--daca”,

output = proc.stdout
preds = 3jacn.lcads(cutpus)

return preds
¢ ]
In [17): inpuc_json = df.iloc[:20].drop(["Time™, "Class”], axis=l).to_json{orienc="splic"”)
¢ pd.DacaFrame (querylinpus_lsen}) .1

013234667889 _ 707 T 73757708

P11 811100110 1 &0 0001100

1 rows = 80 columns

Figure 7-20. The output of querying the model with the first 80 rows
of your data frame

As expected, the predictions aren’t correct because you did not scale
the data before querying the model with it. However, you have verified that
you have queried the correct address and that the model is able to return
predictions.

Now run the following cells:

normal = df[df.Class == 0].sample(frac=0.5, random state=2020).
reset_index(drop=True)
anomaly = df[df.Class == 1]

normal train, normal test = train test split(normal, test size
= 0.2, random state = 2020)

anomaly train, anomaly test = train test split(anomaly,

test size = 0.2, random state = 2020)
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scaler = StandardScaler()
scaler.fit(pd.concat((normal, anomaly)).drop(["Time", "Class"],
axis=1))

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))
true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))
preds = []

batch size = 80
for f in range(25):
print(f"Batch {f}", end=" - ")

sample = pd.DataFrame(test[f*batch size:(f+1)*batch size]).
to_json(orient="split")

output = query(sample)
resp = pd.DataFrame([output])
preds = np.concatenate((preds, resp.values[0]))

print("Completed")
eval acc = accuracy score(true, preds)
eval auc = roc_auc_score(true, preds)

print("Eval Acc", eval acc)
print("Eval AUC", eval auc)

Once finished, you should see something like Figure 7-21.
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In [19]: test = pd.concat ((normal.ilec(:1900), ancmaly.ilec[:100)))
true = test.Class
Test = scaler.transform(test.drop(("Time®, “Class"], axis=l})
preds = []

bacch_size =
for £ in x
print(

", end=" - %)
sanple = pd.DataFrame (test[f+batch size: (£41) *batch size]).to_jscn(orient="spliz"}

output = query(sample)
resp = pd.DataFrame | [output)}

accuracy score(true, preds)
= roc_auc Score(true, preds)

¢ eval_acc)
. eval_auc)

Bateh 2 - ©
Batch 3 - C
Batch 4 -
Batch § - Ci
Batch 6 - C:
Bateh T - C
Batch B8 -
Batch 9 -
Batch 10 -

Batch 11 - Cempleted
Batch 12 - Completed
Batch 13 - Cempleted
Batch 14 - Completed
Batch 185 - Cempleted
Cempleted
Completed
- Cempleted
Cempleced
Completed
Cempleted
Completed
Cempleted
Cempleted
Eval Acc 0.9915

Eval RUC 0.915

Figure 7-21. The results of running your batch query script

Updating and Removing a Deployment

Updating the model deployment is extremely easy. With how you set it
up, it’s only a matter of quitting the model serving command (Ctrl-C), and
rerunning the command with a different run ID.

Let’s try deploying a different run. In your case, check your Google
Storage bucket and pick the second run.

In our case, we ran the following:

mlflow models serve -m gs://mlops-storage/8/3862eb3bd89b43e8ace
610c521d974e6/artifacts/log reg model -h 10.142.0.4

As you can see in Figure 7-22, it successfully deployed, and we can
simply query it using the same script.
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&P Shumpu@mlops-server: ~ - a %

[2020-08-07 18:45:42 +0000] [27183) [INFO) Starting gunicorn 20.0.4 ~
[2020-08-07 18:45:42 +0000] ([27183] [INFQO) Listening at: http://10.142.0.4:5000
(27183)

[2020-08-07 18:45:42 +0000] [27183] [INFO) Using worker: sync

[2020-08-07 18:45:42 +0000]) [27192] [INFO) Booting worker with pid: 271%2
~C[2020-08-07 19:00:08 +0000] [27183]) ([INFO] Handling signal: int

[2020-08-07 19:00:09 +0000] [27192] [INFO] Worker exiting (pid: 27192)

Aborted!

[2020-08-07 19:00:09 +0000] [27183] [INFO] Shutting down: Master

(mlflow) Shumpu@mlops-server:~$ mlflow models serve -m gs://mlops-storage/8/3862
Eb3bd8ob43e8ace6l0c521d974e6/arctifacta/log_reg_model -h 10.142.0.4

[2020/08/07 19:04:28 INFO mlflow.models.cli: Selected backend for flavor 'python_|
function'

[2020/08/07 19:04:30 INFO mlflow.pyfunc.backend: === Running command 'source /hom
le/Shumpu/anaconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-ddS%a%3|
104d9fe43d69£fd90cTadTas9f26balcae2aa 1>&2 && gunicorn --timeout=60 -b 10.142.0.4:5|
000 -w 1 S{GUNICORN_CHD_ARGS} -- mlflow.pyfunc.scoring_server.wsgi:app'
[2020-08-07 19:04:31 +0000] [27408] [INFO] Sctarting gunicorn 20.0.4

[2020-08-07 19:04:31 +0000) [27408] [INFO) Listening at: htctp://10.142.0.4:5000
(27408)

[2020-08-07 19:04:31 +0000] [27408] [INFO) Using worker: sync

[2020-08-07 19:04:31 +0000] [27417] [INFO] Booting worker with pid: 27417

Figure 7-22. Deploying a different model run using the same
command convention

As for removing a deployment, all you have to do is just cancel the
command with Ctrl-C and your deployment is now cancelled.

With that, you now know how to serve models, switch a model and
deploy a different one, and remove a deployment by simply canceling the
model serving command.

Cleaning Up

It’s time to delete every instance of a service that you created so that you
won't incur any charges. Here’s a list of all of the services you used:

e Google Cloud Storage Bucket
e Compute Engine VM Instance

e Networking Firewall Rule

299



CHAPTER 7  DEPLOYING IN GOOGLE

Beginning with your VM Instance, you want to click STOP to first
stop the VM from running. You should see something like Figure 7-23
depending on where you access this VM.

- VM instance details Z 3 CREATE MACHINE IMAGE B} CREATE SIMILAR » START / RESUME r W DELETE

Figure 7-23. The VM instance after stopping it

After that, you can simply click DELETE to remove the VM. Stopping
the VM only ensures that you won’t be billed for CPU/GPU utilization, but
it won’t stop any charges that result from services linked to the VM.

Next, let’s go to the Storage bucket. Simply check your bucket and click
DELETE to remove this storage. Refer to Figure 7-24.

Google Cloud Platform 8 saszpy «

5 storage Storage browser I CREATEBUCKET | DELETE  C REFRESH

@  Bowser = Filter buckets

¥ Bucket sorting and filbering are svnilable in the Storage browser. Now you can filter your buckets by sny value and sort by any column,
@i Monitoring
o e B teme 1 Created Location type Location
- snster

[0  dataprep-staping 107774eccaa5-4e91-3350-5e5260ee5500 Jun§ 2020, 11:3125AM  Multiregion us (mutt
& Tamier for aripoumises [0 dataproc-stagng-us-centran-571227167060-ydScnuga Jung, 2020, 90609 AM  Region us-centre
48 Transfer Appliance D dataproc-temnp-us-centrall -571227167060-brmadrvnl Jun 8, L 9:06:09 AM Region us-centra
o Settings miops-storage Aug 7, 2020, 11710 PM Region us-east]

”

Figure 7-24. Removing your storage bucket

Lastly, you may remove the firewall rule as well, but be sure to not
remove any other rules that you might have in there.
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With that, your workspace should be cleaned up, and there shouldn’t
be any more services that may incur charges.

Summary

Google Cloud is a cloud platform that provides many advanced services for
a wide range of users. While MLFlow does not explicitly provide support
for deployment for Google Cloud, you are still able to operationalize your
models using MLFlow’s model serving functionality and Google Cloud’s
compute engine to serve the models on the cloud.

In this chapter, you learned how to set up Google Cloud so that it can
deploy your models on a virtual machine. In particular, you looked at
how you can push your MLFlow runs to a bucket, how you can set up the
Conda environment on a virtual machine, how you can set up a firewall
to allow your model to be accessed in order to be queried, and how you
can manage your deployments by simply switching out run IDs (and
experiment IDs where appropriate).

In the Appendix, you can look at how Databricks helps you
operationalize your models and manage them through the use of a model
registry.
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Databricks

In this appendix, we will cover what Databricks is as well as how you

can utilize its built-in MLFlow functionality to log MLFlow runs within
Databricks itself, how to deploy models from Databricks to Azure, and how
the MLFlow model registry works in Databricks.

Introduction

Databricks is an open platform and cloud service that provides
interoperability with other popular Al and data services like AWS and
Microsoft Azure. Databricks also created Apache Spark, Delta Lake, and
MLFlow (see Chapter 4 to learn what MLFlow is).

Before we begin, you will need a Databricks account. You have the
option of creating a “community edition” account, which is free to users
but is limited in its functionality. You will be able to use basic MLFlow
functionality on top of whatever Python functionality you have (PySpark is
supported, for example), but you will not be able to use the model registry
functionality.

To sign up for one, head on over to this website:
https://community.cloud.databricks.com/.

Otherwise, you will have to pay to be able to use Databricks by
choosing a subscription plan for your account.

© Sridhar Alla, Suman Kalyan Adari 2021 303
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https://doi.org/10.1007/978-1-4842-6549-9


https://doi.org/10.1007/978-1-4842-6549-9#DOI
https://community.cloud.databricks.com/

APPENDIX  DATABRICKS

With Databricks, you can integrate with Amazon AWS or Microsoft
Azure. If you choose to subscribe to a plan from Databricks, you will be
integrating with AWS. However, you can also deploy Databricks in Azure,
which you can find more information about here:
https://azure.microsoft.com/en-us/services/databricks/.

Be warned, although Microsoft Azure does offer a free, 14-day trial of
Databricks, you cannot create clusters without upgrading to the premium
version of Azure Databricks (with a paid Azure subscription).

In this appendix, we will be using the community edition of
Databricks, which is free to sign up for an use. The only exception here is
the section in which we cover the model registry, which seems to only be
available to premium Databricks users.

In detail, we will go over the following:

o Logging MLFlow runs within Databricks: You can run
your Jupyter notebooks within Databricks itself, which
provides functionality to import your old notebooks.
For this part, you will import your notebook from
Chapter 4 where you conduct experiments using scikit-
learn. All runs will be logged within Databricks.

e MLFlow UI: Databricks has a built-in MLFlow UI that
allows you to see all of your runs per experiment just as
you would in the browser. You will look at your experiment
using this Ul and inspect a run that you will log.

o Deploying to AWS/Azure: Depending on what you integrate
with, you can deploy your models to one of these services. In

this chapter, we will be deploying to Microsoft Azure.

o« MLFlow Model Registry: With premium Databricks
(non-community edition), you have the added
capability of having a model registry. Here, we will go
over what the model registry is and how it works.

With that, let’s get started!
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Running Experiments in Databricks

Once you have Databricks set up, whether in community edition or
otherwise, you should be greeted with a home screen that looks somewhat
like Figure A-1.

Welcome to <= databricks

Figure A-1. The Databricks home screen. If you have the community
edition, you won't have the Models tab on the navigation bar to the
left, but otherwise it should look about the same

Where it says Common Tasks, go down until you see the option titled
New MLFlow Experiment. Click this option.

You can type in any other name you like, but you should see something
like Figure A-2.
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Create MLflow Experiment

Keep track of your machine learning experiments. Learn more
Name

skleam|

Artifact Location @

Create Cancel

Figure A-2. The screen you should see when creating an MLFlow
experiment

Go ahead and click Create. You should now see the MLFlow Ul
displaying the details of this experiment. Of course, there are no runs since
you just created it. You should see something like Figure A-3.

Ouee T &
Asersisadariftisewhale one'skiearn

Figure A-3. The screen displayed after experiment creation. Note that
the experiment name is now /Users/sadari@bluewhale.one/sklearn.
Be sure to make note of this as this is the full experiment name you
will use when setting the experiment in the code
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Something important to mention is that the experiment name in this
case is not sklearn, but rather it is /Users/sadari@bluewhale.one/sklearn
in its entirety. Whatever you see is what you will be using when setting the
experiment in the notebook code.

With that, simply click Databricks to return to the home screen.

You now have two choices:

1. Create a new notebook and fill in the cells from scratch.

2. Importyour MLFlow scikit-learn notebook from
Chapter 4.

In this chapter, you will be importing the MLFlow scikit-learn
notebook, but you will be making a few changes in order to ensure that it is
adapted to work with Databricks.

Before you even begin with the notebook, however, you need to create
the cluster that will run your notebook code. To do this, click the New
Cluster option, and you should see something like Figure A-4.

Create Cluster

L 0 Workers: 0.0 GB Memory, 0 Cores, 0 DBU
New Cluster  cance el

1 Driver: 15.3 GB Memory, 2 Cores,
Cluster Name
miops
Databricks Runtime Version @
Runtime: 7.2 ML (Scala 2.12, Spark 3.0.0}
Instance
Free 15GB Memory: As a Community Edition user, your cluster will automatically terminate after an idle peniod of two hours

For more configuration options, please upgrade your Databricks subscription

nstances Spark

Availability Zone @

us-west-2c

Figure A-4. Cluster creation Ul in the community edition of
Databricks. Here, the name and the 7.2 ML runtime are autofilled
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Make sure that you have the same runtime as in Figure A-4, or at least
something that has “ML” in the runtime name. Once finished, click the
Create Cluster option.

After that, you'll be taken to a UI that shows all the clusters you have.
Refresh if the cluster does not immediately show up. This can take a bit, so
in the meantime, let’s head back to the home screen.

At this point, you can proceed with your notebook. On the left
navigation pane, click Home > Users (if it’s not selected for you), and
then click your username to open a dropdown window. You should see
something like Figure A-5.

Workspace
Users v sadari@bluewhale one v
. AN
# sadari@bluewhale one logregskieam Create thC

B -experiment Clone
a

sklearn

|uickstart Tutorial

Figure A-5. Home menu that allows you to import a notebook. Don’t
worry about the other files you see here; you are likely to only have the
experiment named sklearn and perhaps the Quickstart Notebook file
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Click Import and navigate to your MLFlow notebook from Chapter 4 (if

you have one just for scikit-learn, that is preferable).

You will now be taken to a notebook with all the contents of the

notebook you just imported, except for the outputs.

Before you get to run this, you must import your data. To do this, refer

to Figure A-6. You must click File » Upload Data in the dropdown menu.

MLFlow Sklearn @nen

& Detached

1 dmport nuepy as np

2 dmport pandas as pd

3 import matplotlib #

4 {mport matplotlib.pyplot
5 dimport seaborn as sns

& dmport sklearn #

i from sklearn.linear_mode
& from sklearn.model_select
: from sklearn.preprocessin

from sklearn.metrics impe

11 from sklearn.model_select

3 import mlflow
14 import mlflow.sklearn

16 print("Numpy:
print("Pandas:
8 print{"satplotlib:
18 print("seaborn: {
print("Scikit-Learn: {
21 print("MLFlow:

1 data_path =

4 df = df.drop("Time"

{1". formatinp.
{}". format(pd.__version__))

3 df = pd.read_csv(data_path)
y BXI5=

)\ File = ZEdt~ @ View: Standard =

Hew Naotebook
Clone
Renamsa

Move

Delete

Upload Data
Export
Publish

on

it

Clear Rewision History

Change Default Language

version__})

{}".format (matplotlib.__version__))
-format(sns.__version__)}
*.format(sklearn.__version__))
{}". format (alflow. __version__))

"data/creditcard.csv"

oc_curve,

confusion_matrix

Figure A-6. Uploading the data so that it can be accessed by this

notebook

Leaving everything else as is, click Browse and locate and upload your

credit card dataset (creditcard.csv).

This will take some time to upload due to the size of the file, but once

itis all done, click Next, which will give you code samples that tell you how

to import this file. Make sure you have selected pandas. You can now paste

this code and try to run it. In our case, we had an error stating that the file
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did not exist, so we instead loaded it with Spark and converted it into a
pandas data frame, which does work for some reason given the same file
path.

Before you can execute anything, make sure that the cluster has
finished building. Above the first cell in the notebook, you'll notice a bar
that says “detached.” Click it and you should see your cluster available
here. If the cluster is ready to use, there should be a green dot beside
it. Otherwise, it will have the loading circle indicating that it’s still
configuring.

Go ahead and click the cluster. Once it is finished, you should see
something like Figure A-7.

MLFlow Sklearn ython

& @ miops B File

Figure A-7. An indication that the cluster is ready to use. If you see
the green dot, you can now execute the cells in the notebook

Now you can begin with the modifications to the code. Let’s start with
the import statements. Change the first cell to look like the following:

import numpy as np

import pandas as pd

import matplotlib #

import matplotlib.pyplot as plt
import seaborn as sns

import sklearn #

from sklearn.linear _model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
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from sklearn.metrics import roc_auc_score, plot roc_curve,
confusion matrix, accuracy score
from sklearn.model selection import KFold

import pyspark

from pyspark.sql import SparkSession

from pyspark import SparkConf, SparkContext
import os

import mlflow
import mlflow.sklearn

print("Numpy: {}".format(np._version_))
print("Pandas: {}".format(pd. version ))
print("matplotlib: {}".format(matplotlib. version ))
print("seaborn: {}".format(sns. version ))
print("Scikit-Learn: {}".format(sklearn. version ))
print("MLFlow: {}".format(mlflow. version ))
print("PySpark: {}".format(pyspark. version ))

Here, you have added extra import statements so that you import
PySpark.
Create a new cell beneath your first cell, adding the following:

os.environ["SPARK LOCAL IP"]='127.0.0.1"
spark = SparkSession.builder.master("local[*]").getOrCreate()
spark.sparkContext. conf.getAll()
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You should see something like Figure A-8 when executed.

import numpy as np

import pandas as pd

3 {mport matplotlib &

4 dmport matplotlib.pyplot as plt
import scaborn as sns

7 dmport sklearn #
from sklearn. Linear_model import LogisticRegression

from sklearn.model _selection import tradn_test split

from sklearn.proprocessing import Standarcscaler

from sklearn.metrics fmport roc_suc_score, plot_roc_curve, confusion_matrix, accuracy_score
from sklearn.model_selection import Kfold

14 dYmport pyspark

15 from pyspark.sql import SparkSession

16 from pyspark import SparkConf, SparkContest
17 import os

19 fmport alflow
28 import mlflow.sklearn

22 print(“Numpy: {}".format(np.__version__})

: {}".formac(pd.__version__))
+ )", forsat (matplotlib. _version__))
1" format{sns.__version__}))
26 print("Scikit-Learn: {}".format(sklearn.__version__}]
27 print{"MLFlow: (}".format(slflow.__version__)}
28 print(“PySpark: {}".format(pyspark.__version__))

PySpark: 3.9.8.deve

1 os.environ["SPARK_LOCAL_IP"]='127.0.0.1"
2 spark = SparkSession.builder.master("local(+]").getOrCreate()
3 spark.sparkContext._conf.getAll()

out[33]: [i*

urebfs. AzureBlobFileSysten'),

Figure A-8. Running the first two cells and ensuring you have a
Spark context

The next cell should be where you were loading the pandas data frame.
Change it to be just the following:

df = spark.read.csv("/FileStore/tables/creditcard.csv"”,
header = True, inferSchema = True).toPandas()
df = df.drop("Time", axis=1)

If you run this cell and the next, which should be df.head(), you
should see something like Figure A-9.
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1 df = spark.read.csv("/FileStore/tables/creditcard.csv®, header = True, inferSchema = True).toPandas()
2 df = df.drop("Tine™, axis=1)

obs

1 df.head()

out[6]:

Vi v2 V3 V4 Vs vE wr VB ve vio wm iz v V4 vis

-1.359807 -0.072781 2536347 1378155 -0.338321 0462388 0239599 0098698 0363787 0090794 -0551600 0617801 -09913%0 -0311169 1468177 -
1191857 0265151 0.166480 0448154 0060018 -0.082361 -0.078803 0085102 -0255425 -0 166974 1612727 1065235 0489095 0143772 0635558
<1.358354 1340163 1773209 0379760 0503188 1.500499 0794481 0247676 1514654 0207643 0624501 0056084 0717203 0650485 2345865 -
0986272 0185226 1792993 0863201 000309 1247203 0237609 0.3TT4IE 13BT024 QOS4D52 0226487 0ATE2ZE 0S0TTST 0287924 0631418

I

1158233 QETTTIT 1548718 0.402034 0407193 0095921 05920471 -0270533 0817739 O0TSI0T4 0822843 0538196 1345852 1119670 0.aTHI

Figure A-9. Ensuring that you have successfully loaded the data
Jframe in PySpark and have converted it to pandas

At this point, simply run the rest of the code up until the cell where you
actually start the MLFlow run.

You must split up this cell to ensure everything logs to the same run.
And so, you can create a new cell if you wish, with the following content:

sk_model = LogisticRegression(random state=None, max_iter=400,
solver="newton-cg")

mlflow.set experiment("/Users/sadari@bluewhale.one/sklearn™)
train(sk model, x train, y train)

Here are the next three cells. Each text box is supposed to be its own
cell:

evaluate(sk model, x test, y test)
mlflow.sklearn.log model(sk model, "log reg model")

mlflow.end run()
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Together, they should look like Figure A-10.

sk_model = LogisticRegression(random_state=None, max_iter=488, solver="newton-cg')

mlflow.set_experiment("/Users/sadarigbluewhale.one/sklearn”)

5 train(sk_model, x_train, y_train)

1 evaluate(sk_model, x_test, y_test)

1 mlflew.sklearn.log_model(sk_model, "log_reg_model"™)
1 mlflow.end_run()

Figure A-10. Splitting up the code to log the relevant metrics and
artifacts to ensure everything ends up in the same run. It seems
counterintuitive, but lumping it all under the same run with mlflow.
start_run() seems to cause the runs to fail

Now, run these cells. You should now see all of this logged in the
experiment.

To view your runs, click Workspace in the navigation pane, and then
click sklearn and the experiment name. You should see a run logged there.
Click it, and you should see something like Figure A-11, with all the metrics
and artifacts logged successfully.
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= Farameters

= anm

e Foll Falic bt it aonacis/ w161 51214 1T ot 25 baa a4 B IS L B4 S
TR pr—

Figure A-11. Viewing the metrics and artifacts of the run and
ensuring they were logged successfully

With that, you are now ready to deploy. Logging MLFlow runs is as
simple as in Databricks. One of the added benefits of Databricks is that
it integrates Spark within its functionality, so if you primarily want to log
PySpark models, Databricks might be ideal for you.

Deploying to Azure

Since we have already looked at how to deploy to Azure, we will get straight
to the point. If you would like to explore this process in more detail, refer to
Chapter 6.
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Connecting to the Workspace

In this step, you are simply connecting to an existing workspace through
Databricks. It’s important to note that Databricks does not have azureml-
sdk installed, so you must do so yourself. Luckily, Jupyter allows you to do
this in a cell, so simply run the following:

I'pip install azureml-sdk

Next, run the following, replacing all the placeholders with your own
corresponding values:

import azureml
from azureml.core import Workspace

workspace name = "databricks-deploy" # Your workspace name
workspace location="East US" # Your region

resource_group = "azure-mlops" #Your resource group
subscription_id = "XXXXXXXX-XXXX-XXXX~XXXX=XXXXXXXXXXXX"

# Your subscription ID above

workspace = Workspace.create(name = workspace name,
location = workspace_location,
resource_group = resource_group,
subscription id = subscription id,
exist ok=True)

When you run this, you should see something like Figure A-12 asking
you for authentication. Simply follow the instructions and you should be
good to go.
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9 workspace = Workspace.create(name = workspace_name,

) location = workspace_location,
resource_group = resource_group,
subscri
exist_o

web browser to open the page https://microsoft.con/devicelogin and enter the code F4GABGIKT to authenticate.

Figure A-12. The cell asking for authentication as you attempt to
connect to an existing workspace. Follow the instructions, and the cell
should finish with the statement, “Deployed Workspace with name
databricks-deploy. Took __ seconds”

Once this finishes, you can proceed with building and pushing a
container image using MLFlow functionality. Before you do that, make sure
to keep track of your run ID (you should be able to see this in Figure A-11),
and copy that information in the cell below:

run_id = "dabea5a03050455aa5ad4a61fa548093"
model name = "log reg model"
model uri = f"runs:/{run_id}/{model name}"

Next up are the two cells with MLFlow code to build and push the
container image:

import mlflow.azureml

model image, azure model = mlflow.azureml.build image
(model uri=model uri, workspace=workspace,
model name="sklearn logreg",
image name="model",
description="SkLearn LogReg
Model for Anomaly Detection",
synchronous=False)

model image.wait for creation(show_output=True)
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Together, the cells should look like Figure A-13.

Figure A-13. The three cells from above and their outputs. Here, you
specify a model run and then build and push a container to Azure
based on that model

With this step finished, you are ready to deploy the model using
MLFlow Azure.
To do so, simply run the following:

azure_service, azure model = mlflow.azureml.deploy(model uri,
workspace,
service name="sklearn-logreg",
model name="log-reg-model",
synchronous=True)

With that, let’s now check the URI that you will use to query, just to
ensure that it has successfully deployed:

azure_service.scoring uri
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Upon success, you should see something that looks like Figure A-14 for
both output cells.

1 azure_service, azure_model = mlflow.azureml.deploy(model uri,

2 workspace,

3 service_name="sklearn-logreg",
] model_name="log-reg-model”,

5 synchronous=True)

Registering model log-reg-model
2020/08/2
2028 /0

9:34:29 INFO mlflow.azureml: Registered an Azure Model with name: “log-reg-model” and version: "1
34:38 INFO mlflow.azureml: Depleying an Azure Webservice with name: "“sklearn-logreg
Succeeded

ACI service creation operation finished, operation "Succeeded”

1:34:24 PH
1 azure_service.scoring uri
Out[28]: "http://b64e673f-3de3-4727-9501-98d6f435fdT5. eastus. azurecontainer.io/score’
y sadarigbluewhale.one at 872472029, 3:44:01 PM on mlops

Figure A-14. The output of deploying the model as well as checking
the scoring URI of the service

Since there is a URI, you know that your model’s been deployed
successfully. You can move on to the querying process now.

Querying the Model

Before you make any predictions with your model, you need to define a
query function:

import requests
import json

def query(scoring uri, inputs):

headers = {
"Content-Type": "application/json",
}
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response = requests.post(scoring uri, data=inputs,
headers=headers)

preds = json.loads(response.text)

return preds

Let’s use your batch query code to query your deployed model and
get some relevant metrics. Fortunately, you should already have your
scaler object from earlier when you processed the data in the MLFlow
experiment.

Simply run the following:

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))
true = test.Class

test = scaler.transform(test.drop(["Class"], axis=1))
preds = []

batch_size = 80
for f in range(25):
print(f"Batch {f}", end=" - ")

sample = pd.DataFrame(test[f*batch size:(f+1)*batch size]).
to_json(orient="split")

output = query(scoring uri=azure service.scoring uri,
inputs=sample)

resp = pd.DataFrame([output])

preds = np.concatenate((preds, resp.values[0]))
print("Completed")

eval acc

accuracy score(true, preds)
eval auc = roc_auc_score(true, preds)

print("Eval Acc", eval acc)
print("Eval AUC", eval auc)
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Your output should look somewhat like Figure A-15.

Figure A-15. The output of the batch query script. If you cannot see
an output past batch 20, resize the output by holding the little arrow
on the bottom right

With that, you now know how to log MLFlow runs in Databricks and
deploy models to a cloud platform.
To delete the deployment, simply run the following:

azure_service.delete()

Be sure to delete all the resources that you created for this deployment
as well.

The procedure for AWS is very similar to what you did in Chapter 5, but
you just need to set up AWS to allow Databricks to access it.

Databricks has tutorials on how you can accomplish all of that as well.
One of the perks of Databricks is that they have extensive documentation
about almost everything, especially MLFlow.
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MLFlow Model Registry

In this section, we will briefly discuss the model registry. To use the model
registry, you do need a premium subscription to Databricks and whatever
cloud platform service you choose to deploy Databricks on (either AWS or
Azure).

With MLFlow, Databricks provides built-in model registry functionality
so that users can define what stage a particular model is in. The MLFlow
Model Registry allows for greater collaboration between various teams,
letting them all develop and maintain models at various stages in the
model life cycle and manage them all in a centralized, organized region.

The user is in control of the lifecycle stage changes (experimentation,
testing, production) of the models with options between automatic and
manual control. The MLFlow Model Registry tracks the history of the
model and allows for governance in managing who is able to approve
changes.

Some concepts to know:

e Registered model: Once registered in the MLFlow
Model Registry, it has a unique name, version, stage,
and more.

o Stage: Some preset stages are None, Staging,
Production, and Archived. The user can also create
custom stages for each model version to represent its
lifecycle. Model stage transitions are either requested
or approved, depending on the user’s level of

management.

o Description: The user can annotate the model for the
team.

e Activities: MLFlow records a registered model’s
activities, providing a history of the model’s stages.
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Some features include

Central repository: Register MLFlow models to a
centralized location.

Model versioning: Keep track of the version history of
models. Now, a model built for a specific task can have

several versions.

Model stage: Model versions have stages to represent
the cycle as a whole. Together with model versioning,
older model versions can gradually become phased out
while the newest versions are sent to staging first, for
example.

Model stage transitions: Respond to new changes
and events with automation. Training scripts can be
automated to train new models automatically and
assign them to staging, for example.

CI/CD workflow integration: Monitor changes to the
CI/CD pipelines as new versions are registered and
have their deployment stages changed. This allows for
better governance over the deployment process.

Model serving: MLFlow models can be served on
Databricks through REST APISs, on top of deploying
them on a cloud service like AWS or Azure.

With that, let’s look at how you can register your model in Databricks.

First, head over to your MLFlow experiment and pick a run. Scroll

down to artifacts and click the folder that contains your model. If you
don’t have premium Databricks, you won’t be able to see this Register
Model button. If you click the button and click Create New Model in the
dropdown menu, you will see something like Figure A-16.
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Figure A-16. Registering a MLFlow model

Once finished, the Register Model button should be replaced by a
green checkmark and a link to the model version page of this specific
model.

On this page, you can set the model’s stage, which is one of None,
Staging, Production, or Archived if you're only using preset stages.
Furthermore, you can add a description to this specific model.

On top of that, you can also request to change the model’s stage (and
add an optional comment to add some context), which can be approved,
rejected, or canceled.

This allows you to now keep better track of your models by knowing
their present stages. There is also support for model versioning, so there
can be multiple versions of the model, with the possibility of setting a
model stage for each, which you can view at once.

To view all the models that you registered, you can simply click the
Models tab in Databricks, as shown in Figure A-17.
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Pl VLFlow Skleam e

Figure A-17. The navigation pane on the left side of premium
Databricks, deployed in Azure in this instance, with the Models tab
that will take you to the model registry

With the model registry that you looked at in prior chapters, where it’s
just putting the models in a centralized area, you don’t have this type of
functionality. If you were to implement this, it would have to be through an
external program, although it’s actually a relatively simple task considering
how everything is modularized for you.

With regular MLFlow, this requires you to have a MLFlow server that
saves the runs in a mysql, myssl, sqlite, or postgresql dialect. Then, when
you open the Ul that pertains to this specific server’s storage, you can
register models and have all of the MLFLow Model Registry functionality.

All of that can get pretty complicated, so Databricks takes care of it all
for you, if you have the premium version of Databricks and a subscription
to either AWS or Azure, whichever platform you deployed Databricks to.

And that’s all there is to the MLFlow Model Registry in Databricks.

With that, you now know how to run Jupyter notebooks in Databricks,
how to log MLFlow runs and conduct experiments, and how to deploy
your models to a cloud platform.
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Summary

Databricks is a cloud platform that integrates with Amazon AWS or
Microsoft Azure. As the creator of MLFlow, Databricks integrates MLFlow
functionality into its services, allowing you to run all the MLFlow
experiments you'd like to on the cloud. Furthermore, it also takes care of
the mechanisms behind running a model registry for you, allowing you to
take full advantage of MLFlow on the cloud.

In this appendix, you learned how to import your existing notebook,
create a MLFlow experiment, and log your own MLFlow runs. On top of
that, you also looked at deploying this model to Azure within Databricks
itself, and you looked at the model registry and how it works in Databricks.

With this, you now know how to take your existing machine
learning experiments and operationalize them very easily with MLFlow.
Furthermore, you also know how to deploy your models to three different
cloud platforms: Amazon AWS, Microsoft Azure, and Google Cloud.

With this chapter, you've also added Databricks to that list, although it’s
mostly for running your MLFlow experiments on. That being said, you can
definitely run MLFlow experiments and log your runs on the other cloud
platforms; it’s just far easier to do so within Databricks.
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