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Introduction

This book is intended for all audiences ranging from beginners at machine 

learning, to advanced machine learning engineers, or even to machine 

learning researchers who wish to learn how to better organize their 

experiments.

The first two chapters cover the premise of the problem followed by 

the book, which is that of integrating MLOps principles into an anomaly 

detector model based on the credit card dataset. The third chapter covers 

what MLOps actually is, how it works, and why it can be useful.

The fourth chapter goes into detail about how you can implement and 

utilize MLFlow in your existing projects to reap the benefits of MLOps with 

just a few lines of code.

The fifth, sixth, and seventh chapters all go over how you can 

operationalize your model and deploy it on AWS, Microsoft Azure, and 

Google Cloud, respectively. The seventh chapter goes over how you 

can host a model on a virtual machine and connect to the server from 

an external source to make your predictions, so should any MLFlow 

functionality described in the book become outdated, you can always go 

for this approach and simply serve models on some cluster on the cloud.

The last chapter, Appendix, goes over how you can utilize Databricks, 

the creators of MLFlow, to organize your MLFlow experiments and deploy 

your models.

The goal of the book is to hopefully impart to you, the reader, 

knowledge of how you can use the power of MLFlow to easily integrate 

MLOps principles into your existing projects. Furthermore, we hope that 

you will become more familiar with how you can deploy your models to 

the cloud, allowing you to make model inferences anywhere on the planet 

so as long as you are able to connect to the cloud server hosting the model.
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At the very least, we hope that more people do begin to adopt MLFlow 

and integrate it into their workflows, since even as a tool to organize your 

workspace, it massively improves the management of your machine 

learning experiments and allows you to keep track of the entire model 

history of a project.

Researchers may find MLFlow to be useful when conducting 

experiments, as it allows you to log plots on top of any custom-defined 

metric of your choosing. Prototyping becomes much easier, as you can 

now keep track of that one model which worked perfectly as a proof-of- 

concept and revert back to those same weights at any time while you keep 

tuning the hyperparameters. Hyperparameter tuning becomes much 

simpler and more organized, allowing you to run a complex script that 

searches over several different hyperparameters at once and log all of the 

results using MLFlow.

With all the benefits that MLFlow and the corresponding MLOps 

principles offer to machine learning enthusiasts of all professions, there 

really are no downsides to integrating it into current work environments. 

With that, we hope you enjoy the rest of the book!

InTroduCTIon
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CHAPTER 1

Getting Started: Data 
Analysis
In this chapter, we will go over the premise of the problem we are attempting 

to solve with the machine learning solution we want to operationalize. We 

will also begin data analysis and feature engineering of our data set.

 Introduction and Premise
Welcome to Beginning MLOps with MLFlow! In this book, we will be taking 

an example problem, developing a machine learning solution to it, and 

operationalizing our model on AWS SageMaker, Microsoft Azure, Google 

Cloud, and Datarobots. The problem we will be looking at is the issue of 

performing anomaly detection on a credit card data set. In this chapter, we 

will explore this data set and show the overall structure while explaining a 

few techniques on analyzing this data. This data set can be found at  

www.kaggle.com/mlg-ulb/creditcardfraud.

If you are already familiar with how to analyze data and build machine 

learning models, feel free to grab the data set and skip ahead to 3 to jump 

right into MLOps.

https://doi.org/10.1007/978-1-4842-6549-9_1#DOI
http://www.kaggle.com/mlg-ulb/creditcardfraud
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Otherwise, we will first go over the general process of how machine 

learning solutions are generally created. The process goes something  

like this:

 1. Identification of the problem: First of all, you need 

to have an idea of what the problem is, what can be 

done about it, what has been done about it, and why 

it is a problem worth solving.

Here’s an example of a problem: an invasive snake 

species harmful to the local environment has 

infested a region. This species is highly venomous 

and looks very similar to a harmless species of snake 

native to this same environment. Furthermore, 

the invasive species is destructive to the local 

environment and is outcompeting the local species.

In response, the local government has issued a 

statement encouraging citizens to go out and kill 

the venomous, invasive species on sight, but the 

problem is that it turns out citizens have been killing 

the local species as well due to how easy it is to 

confuse the two species.

What can be done about this? A possible solution 

is to use the power of machine learning and build 

an application to help citizens identify the snake 

species. What has been done about it? Perhaps 

someone released an app that does a poor job at 

distinguishing the two species, which doesn’t help 

remedy the current situation. Perhaps fliers have 

been given out, but it can be hard to identify every 

member of a species correctly based on just one 

picture.

Chapter 1  GettinG Started: data analySiS
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Why is it a problem worth solving? The native 

species is important to the local environment. 

Killing the wrong species can end up exacerbating 

the situation and lead to the invasive species 

claiming the environment over the native 

species. And so building a computer vision-based 

application that can discern between the various 

snake species (and especially the two species 

relevant to the problem) could be a great way to help 

citizens get rid of the right snake species.

 2. Collection of data: After you’ve identified the 

problem, you want to collect the relevant data. 

In the context of the snake species classification 

problem, you want to find images of various snake 

species in your region. The location depends on 

how big of a scale your project will operate on. Is it 

going to identify any snake in the world? Just snakes 

in Florida?

If you can afford to do so, the more data you collect, 

the better the potential training outcomes will be. 

More training examples can introduce increased 

variety to your model, making it better in the long 

run. Deep learning models scale in performance with 

large volumes of data, so keep that in mind as well.

 3. Data analysis: Once you’ve collected all the raw 

data, you want to clean it up, process it, and format 

it in a way that allows you to analyze the data better.

For images, this could be something like applying an 

algorithm to crop out unnecessary parts of the image 

to focus solely on the snake. Additionally, maybe 

Chapter 1  GettinG Started: data analySiS
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you want to center-crop the image to remove all the 

extra visual information in the data sample. Either 

way, raw image data is rarely ever in good enough 

condition to be used directly; it almost always 

requires processing to get the relevant data you want.

For unstructured data like images, formatting this 

data in a way good enough to analyze it could be 

something like creating a directory with all of the 

respective snake species and the relevant image 

data. From there, you can look at the count of 

images for each snake species class that you have 

and determine if you need to retrieve more samples 

for a particular species or not.

For structured data, say the credit-card data set, 

processing the raw data can mean something like 

getting rid of any entries with null values in them. 

Formatting them in a way so you can analyze 

them better can involve dimensionality-reduction 

techniques such as principal component analysis 

(PCA). Note: It turns out that most of the data in the 

credit card data set has actually been processed with 

PCA in part to preserve the privacy of the users the 

data has been extracted from.

As for the analysis, you can construct multiple 

graphs of different features to get an idea of the 

overall distribution and how the features look 

plotted against each other. This way, you can see any 

significant relationships between certain features 

that you might keep in mind when creating your 

training data.
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There are some tools you can use in order to find 

out what features have the greatest influence on 

the label, such as phi-k correlation. By allowing 

you to see the different correlation values between 

the individual features and the target label, you can 

gain a deeper understanding of the relationships 

between the features in this data set. If needed, you 

can also drop features that aren’t very influential 

from the data. In this step, you really want to get a 

solid understanding of your data so you can apply a 

model architecture that is most suitable for it.

 4. Feature engineering and data processing: Now you 

can use the knowledge you gained from analyzing 

the various features and their relationships to each 

another to potentially construct new features from 

combinations of several existing ones. For example, 

the Titanic data set is a great example that you can 

apply feature engineering to. In this case, you can take 

information such as class, age, fare, number of siblings, 

number of parents, and so on to create as many 

features as you can think up.

Feature engineering is really about giving your 

model a deeper context so it can learn the task 

better. You don’t necessarily want to create random 

features for the sake of it, but something that’s 

potentially relevant like number of female relatives, 

for example. (Since females were more likely 

to survive the sinking of the Titanic, could it be 

possible that if a person had more female relatives, 

they were less likely to survive as preference was 

given to their female relatives instead?)
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The next step after feature engineering is data 

processing, which is a step involving all preparations 

made to process the data to be passed into the model. 

In the context of the snake species image data, this 

could involve normalizing all the values to be between 

0 and 1 as well as “batching” the data into groups.

This step also usually creates several subsets of 

your initial data: a training data set, a testing data 
set, and a validation data set. We will go into more 

detail on the purpose of each of these data sets 

later. For now, a training data set contains the data 

you want the model to learn from, the testing data 
set contains data you want to evaluate the model’s 

performance on, and the validation data set is 

used to either select a model or help tune a model’s 

hyperparameters to draw out a better performance.

 5. Build the model: Now that the data processing 

is done, this step is all about selecting the proper 

architecture and building the model. For the snake 

species image data, a good choice would be to use a 

convolutional neural network (CNN) because they 

work very well for any tasks involving images. From 

there, it is up to you to define the specific architecture 

of the model with respect to its layer composition.

 6. Training, evaluating, and validating: When you’re 

training your CNN model, you’re usually passing in 

batches of data until the entire data makes a full pass 

through the model. From the results of this “forward 

pass,” calculations are made that tell the model how to 

adjust the weights as they are made going backwards 

across the network in what’s called the “backward 
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pass.” The training process is essentially where the 

model learns how to perform the task and gets better 

at it the more examples it sees.

After the training process, either the evaluation step 

or the validation step can come next. As long as the 

testing set and validation set come from different 

distributions (the validation set can be derived from 

the training set, while the testing set can be derived 

from the original data), the model is technically seeing 

new data in the evaluation and validation processes. 

The model will never learn anything from the 

evaluation data, so you can test your model anytime.

Model evaluation is where the model’s performance 

metrics such as accuracy, precision, recall, and so on are 

evaluated on a data set that it has never seen before. We 

will go into more detail on the evaluation step once it 

becomes more relevant in the next chapter, Chapter 2.

Depending on the context, the exact purpose of 

validation can differ, along with the question of 

whether or not evaluation should be performed first 

after training. Let’s define several sample scenarios 

where you would use validation:

• Selecting a model architecture: Of several 

model types or architectures, you use k-fold 

cross-validation, for example, to quickly train and 

evaluate each of the models on some data partition 

of the validation set to get an idea of how they are 

performing. This way, you can get a good idea of 

which model is performing best, allowing you to pick 

a model and continue with the rest of the process.
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• Selecting the best model: Of several trained 

models, you can use something like k-fold cross- 

validation to quickly evaluate each model on the 

validation data to allow you to get an idea of which 

ones are performing best.

• Tuning hyperparameters: Quickly train a model 

and test it with different hyperparameter setups to 

get an idea of which configurations work better. You 

can start with a broad range of hyperparameters. 

From there, you can use the results to narrow 

the range of hyperparameters until you get to a 

configuration where you are satisfied. Models 

in deep learning, for example, can have many 

hyperparameters, so using validation to tune those 

hyperparameters can work well in deep learning 

settings. Just beware of diminishing returns. After a 

certain precision with the hyperparameter setting, 

you’re not going to see that big of a performance 

boost in the model.

• Indication of high variance: This validation data 

is slightly different from the other three examples. 

In the case of neural networks, this data is derived 

from a small split of the training data. After one full 

pass of the training data, the model evaluates on 

this validation data to calculate metrics such as loss 

and accuracy.

If your training accuracy is high and training loss 

is low, but the validation accuracy is low and the 

validation loss is high, that’s an indication that 

your model suffers from high variance. What 
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this means is that your model has not learned to 

generalize what it is “learning” to new data, as the 

validation data in this case is comprised of data it 

has never seen before. In other words, your model 

is overfitting. The model just isn’t recreating the 

kind of performance it gets on the training data on 

new data that it hasn’t seen before.

If your model has poor training accuracy and high 

training loss, then your model suffers from high 
bias, meaning it isn’t learning how to perform the 

task correctly on the training data at all.

This little validation split during the training 

process can give you an early indication of when 

overfitting is occurring.

 7. Predicting: Once the model has been trained, 

evaluated, and validated, it is then ready to make 

predictions. In the context of the snake species 

detector, this step involves passing in visual images 

of the snake in question to get some prediction back. 

For example, if the model is supposed to detect 

the snake, draw a box around it, and label it (in an 

object detection task), it will do so and display the 

results in real time in the application.

If it just classifies the snake in the picture, the user 

simply sends their photo of a snake to the model 

(via the application) to get a species classification 

prediction along with perhaps a probability 

confidence score.

Hopefully now you have a better idea of what goes on when creating 

machine learning solutions.
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With all that in mind, let’s get started on the example, where you will 

use the credit card data set to build simple anomaly detection models 

using the data.

 Credit Card Data Set
Before you perform any data analysis, you need to first collect your data. 

Once again, the data set can be found at the following link:  www.kaggle.

com/mlg-ulb/creditcardfraud.

Following the link, you should see something like the following in 

Figure 1-1.

From here, you want to download the data set by clicking the 

Download (144 MB) button next to New Notebook. It should take you to 

a sign-in page if you’re not already signed in, but you should be able to 

download the data set after that.

Figure 1-1. Kaggle website page on the credit card data
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Once the zip file finishes downloading, simply extract it somewhere 

to reveal the credit card data set. Now let’s open up Jupyter and explore 

this data set. Before you start this step, let’s go over the exact packages and 

their versions:

• Python 3.6.5

• numpy 1.18.3

• pandas 0.24.2

• matplotlib 3.2.1

To check your package versions, you can run a command like

pip show package_name

Alternatively, you can run the following code to display the version in 

the notebook itself:

import module_name

print(module_name.__version__)

In this case, module_name is the name of the package you’re importing, 

such as numpy.

 Loading the Data Set
Let’s begin! First, open a new notebook and import all of the dependencies 

and set global parameters for this notebook:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from pylab import rcParams

rcParams['figure.figsize'] = 14, 8

Chapter 1  GettinG Started: data analySiS



12

Refer to Figure 1-2.

Now that you have imported the necessary libraries, you can load the 

data set. In this case, the data folder exists in the same directory as the 

notebook file and contains the creditcard.csv file. Here is the code:

data_path = "data/creditcard.csv"

df = pd.read_csv(data_path)

Refer to Figure 1-3.

Figure 1-2. Jupyter notebook cell with some import statements 
as well as a global parameter definition for the size of all 
matplotlib plots
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Now that the data frame has been loaded, let’s take a look at its contents:

df.head()

Refer to Figure 1-4.

Figure 1-3. Defining the data path to the credit card data set .csv file, 
reading its contents, and creating a pandas data frame object

Figure 1-4. Calling the head() function on the data frame to display 
the first five rows of the data frame
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If you are not familiar with the df.head(n) function, it essentially 

prints the first n rows of the data frame. If you did not pass any arguments, 

like in the figure above, then the function defaults to a value of five, 

printing the first five rows of the data frame.

Feel free to play around with that function as well as use the scroll bar 

to explore the rest of the features.

Now, let’s look at some basic statistical values relating to the values in 

this data frame:

df.describe()

Refer to Figure 1-5.

Feel free to scroll right and look at the various statistics for the rest of 

the columns. As you can see in Figure 1-5, the function generates statistical 

summaries for data in each of the columns in the data frame.

The main takeaway here is that there are a huge number of data points. 

In fact, you can check the shape of the data frame by simply calling

df.shape

Refer to Figure 1-6.

Figure 1-5. Calling the describe() function on the data frame to get 
statistical summaries of the data in each column
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There are 284,807 rows and 31 columns in this data frame. That’s a lot 

of entries! Not only that, but if you look at Figure 1-5, you’ll see that the 

values can get really large for the column Time. In fact, keep scrolling right, 

and you’ll see that values can get very large for the column Amount as well. 

Refer to Figure 1-7.

As you can see, there are at least two columns with very large values. 

What this tells you is that later on, when building the various data sets for 

the model training process, you definitely need to scale down the data. 

Otherwise, such large data values can potentially mess up the training 

process.

Figure 1-6. Calling the shape() function on the data frame to get an 
output in the format (number_of_rows, number_of_columns)

Figure 1-7. Scrolling right in the output of the describe function 
reveals that the maximum data value in the column Amount is also 
very large, just like the maximum data value in the column Time
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 Normal Data and Fraudulent Data
Since there are only two classes, normal and fraud, let’s split up the data 

frame by class and continue with the data analysis. In the context of 

anomaly detection, the fraud class is also the anomaly class, hence why 

we chose to name the data frame representing fraudulent transaction 

data anomalies and interchangeably refer to this class as either fraud or 

anomaly.

Here is the code:

anomalies = df[df.Class == 1]

normal = df[df.Class == 0]

After that, run the following in a separate cell:

print(f"Anomalies: {anomalies.shape}")

print(f"Normal: {normal.shape}")

Refer to Figure 1-8.

From here, you can see that the data is overwhelmingly biased towards 

normal data, and that anomalies only comprise a vast minority of data 

points in the overall data set. What this tells you is that you will have to 

craft the training, evaluation, and validation sets more carefully so each of 

these sets will have a good representation of anomaly data.

Figure 1-8. Defining data frames for fraudulent/anomalous data 
and for normal data and printing their shapes
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In fact, let’s look at this disparity in a graphical manner just to see how 

large the difference is:

class_counts = pd.value_counts(df['Class'], sort = True)

class_counts.plot(kind = 'bar', rot=0)

plt.title("Class Distribution")

plt.xticks(range(2), ["Normal", "Anomaly"])

plt.xlabel("Label")

plt.ylabel("Counts")

Refer to Figure 1-9.

The graph visually shows the immense difference between the number 

of data values of the two classes.

Figure 1-9. A graph visually demonstrating the difference in counts 
for normal data and anomalous data
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So now you can begin analyzing some of the characteristics of data 

points in each class. First of all, the columns in this data set are Time, 

values V1 through V28, Amount, and Class.

So, do anomalous data values comprise transactions with excessive 

amounts? Let’s look at some statistical summary values for Amount:

anomalies.Amount.describe()

Refer to Figure 1-10 for the output.

It seems like the data is skewed right, and that anomalous transactions 

comprise values that are not very high. In fact, most of the transactions are less 

than $100, so it’s not like fraudulent transactions are high-value transactions.

normal.Amount.describe()

Refer to Figure 1-11 for the output.

Figure 1-10. Output of the describe() function on the data frame for 
fradulent values for the column Amount

Figure 1-11. Output of the describe() function on the data frame for 
normal values for the column Amount
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If you look at the normal data, it’s even more skewed right than the 

anomalies. Most of the transactions are below $100, and some of the 

amounts can get very high to values like $25,000.

 Plotting
Let’s now turn to a graphical approach to help visually illustrate this better. 

First, you define some functions to help plot the various columns of the 

data to make it much easier to visualize the various relationships:

def plot_histogram(df, bins, column, log_scale=False):

    bins = 100

    anomalies = df[df.Class == 1]

    normal = df[df.Class == 0]

    fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)

    fig.suptitle(f'Counts of {column} by Class')

    ax1.hist(anomalies[column], bins = bins, color="red")

    ax1.set_title('Anomaly')

    ax2.hist(normal[column], bins = bins, color="orange")

    ax2.set_title('Normal')

    plt.xlabel(f'{column}')

    plt.ylabel('Count')

    if log_scale:

        plt.yscale('log')

    plt.xlim((np.min(df[column]), np.max(df[column])))

    plt.show()
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def plot_scatter(df, x_col, y_col, sharey = False):

    anomalies = df[df.Class == 1]

    normal = df[df.Class == 0]

     fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, 

sharey=sharey)

    fig.suptitle(f'{y_col} over {x_col} by Class')

     ax1.scatter(anomalies[x_col], anomalies[y_col], color='red')

    ax1.set_title('Anomaly')

    ax2.scatter(normal[x_col], normal[y_col], color='orange')

    ax2.set_title('Normal')

    plt.xlabel(x_col)

    plt.ylabel(y_col)

    plt.show()

Refer to Figure 1-12 to see the code in cells.

Figure 1-12. Each of the plotter functions in their own Jupyter cells
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Now, let’s start by plotting values for Amount by Class for the entire 

data frame:

plt.scatter(df.Amount, df.Class)

plt.title("Transaction Amounts by Class")

plt.ylabel("Class")

plt.yticks(range(2), ["Normal", "Anomaly"])

plt.xlabel("Transaction Amounts ($)")

plt.show()

Refer to Figure 1-13.

It seems like there are some massive outliers in the normal data set, as 

suspected. However, the graph isn’t very informative in telling you about 

Figure 1-13. A scatterplot of data values in the data frame 
encompassing all the data values. The plotted columns are Amount 
on the x-axis and Class on the y-axis
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value counts, so let’s use the plotting functions defined earlier to draw 

graphs that provide more context:

bins = 100

plot_histogram(df, bins, "Amount", log_scale=True)

Refer to Figure 1-14.

From this, you can definitely notice a right skew as well as the massive 

outliers present in the normal data. Since you can’t really see much of the 

anomalies, let’s create another plot:

plt.hist(anomalies.Amount, bins = bins, color="red")

plt.show()

Figure 1-14. A histogram of counts for data values organized into 
intervals in the column Amount in the data frame. The number of 
bins is 100, meaning the interval of each bar in the histogram is the 
range of the data in the column Amount divided by the number of bins
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Refer to Figure 1-15.

The anomalies seem to be right skewed as well, but much more heavily 

so. This means that the majority of anomalous transactions actually have 

quite low transaction amounts.

Alright, so what about time? Let’s plot another basic scatterplot:

plt.scatter(df.Time, df.Class)

plt.title("Transactions over Time by Class")

plt.ylabel("Class")

plt.yticks(range(2), ["Normal", "Anomaly"])

plt.xlabel("Time (s)")

plt.show()

Refer to Figure 1-16.

Figure 1-15. A histogram of just the values in the anomaly data 
frame for the column Amount. The number of bins is also 100 here, as 
it will be for the rest of the examples
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This graph isn’t very informative, but it does tell you that fraudulent 

transactions are pretty spread out over the entire timeline. Once again, let’s 

use the plotter functions to get an idea of the counts:

plot_scatter(df, "Time", "Amount")

Refer to Figure 1-17.

Figure 1-16. A scatterplot for values in the data frame df with data 
in the column Time on the x-axis and data in the column Class in the 
y-axis
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You have a better context now, but it doesn’t seem to tell you much. 

You can see that fraudulent transactions occur throughout the entire 

timeline and that there is no specific period of time when it seems like 

higher-value transactions occur. There do seem to be two main clusters, 

but this could also be a result of the lack of data points compared to the 

normal points.

Let’s now look at the histogram to take into account frequencies:

plot_scatter(df, "Time", "Amount")

Refer to Figure 1-18.

Figure 1-17. Using the plot_scatter() function to plot data values for 
the columns Time on the x-axis and Amount on the y-axis in the df 
data frame
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From this, you get a really good context of the amount of fraudulent/

anomalous transactions going on over time. For the normal data, it seems 

that they occur in waves. For the anomalies, there doesn’t seem to be a 

particular peak time; they just occur throughout the entire timespan.

It does appear that that they have defined spikes near the start of 

the first transaction, and that some of the spikes do occur where normal 

transactions are in the “trough” of the wave pattern shown. However, 

a good portion of the fraudulent transactions still occur where normal 

transactions are at a maximum.

So what does the data for the other columns look like? Let’s look at 

some interesting plots for V1:

plot_histogram(df, bins, "V1")

Refer to Figure 1-19.

Figure 1-18. Using the plot_histogram() function to plot data values 
for the column Time in the df data frame
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Here, you can see a clear difference in the distribution of points for 

each class over the same V1 values. The range of values that the fraudulent 

transactions encompass extend well into the values for V1. Let’s keep 

exploring, looking at how the values for Amount relate to V1:

plot_scatter(df, "Amount", "V1", sharey=True)

What the sharey parameter does is it forces both subplots to share 

the same y-axis, meaning the plots are displayed on the same scale. You 

are specifying this so it will be easier to tell what the distribution of the 

anomalous points looks like in comparison to the normal points. Refer to 

Figure 1-20.

Figure 1-19. Using the plot_histogram() function to plot the data in 
the column V1 in df
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From this graph, the fraudulent points don’t seem out of place 

compared to all of the other normal points.

Let’s continue and look at how time relates to the values for V1:

plot_scatter(df, "Time", "V1", sharey=True)

Refer to Figure 1-21.

Figure 1-20. Using the plot_scatter() function to plot the values in the 
columns Amount on the x-axis and V1 on the y-axis in df
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Other than a few defined spikes that stand out from where the normal 

points would have been, most of the fraudulent data in this context seems 

to blend in with the normal data.

Doing this one at a time for all of the other values will be tedious, so 

let’s just plot them all at once using a simple script. Here is the code to plot 

all of the frequency counts for each column from V1 to V28:

for f in range(1, 29):

    print(f'V{f} Counts')

    plot_histogram(df, bins, f'V{f}')

Refer to Figure 1-22.

Figure 1-21. Using the plot_scatter() function to plot the values in the 
columns Time on the x-axis and V1 on the y-axis in df
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Since the output has been minimized, hover where the bar darkens 

and click to expand the output so you can see the graphs a lot better. Refer 

to Figure 1-23.

Now you should see something like in Figure 1-24.

Figure 1-22. A script to plot histograms using the plot_histogram() 
function for data in each column from V1 to V28 in df

Figure 1-23. Hovering over the bar to the left of the plots (it should 
darken and show the tooltip as shown) and clicking it to expand the 
output
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Scrolling through, you can see a lot of interesting graphs such as 

Figure 1-25 and Figure 1-26.

Figure 1-24. What the expanded output should look like. All of the 
graphs should display continuously, as depicted in the figure
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In this case, you can see a clear differentiation between the fraudulent 

data and the normal data that you didn’t see in the graphs earlier. And 

so, features such as V12 are certainly more important in helping give the 

model a better context.

Figure 1-25. A histogram of data for the column V12 in df. As you 
can see, there is a very clear deviation seen with the anomalous values 
compared to the normal values. Both plots share the same x-axis 
scale, so while the counts might be very low compared to the normal 
values, they are still spread out far more than the normal values for 
the same range of V12 column values
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This time you can see an even bigger difference between fraudulent 

data and normal data. Once again, it’s features like V12 and V17 that hold 

the data that will help the model understand how to differentiate between 

the anomalies and the normal points.

To minimize the output, click the same bar as earlier when you 

expanded the output. Let’s now look at how all of these data points vary 

according to time:

for f in range(1, 29):

    print(f'V{f} vs Time')

    plot_scatter(df, "Time", f'V{f}', sharey=True)

Once again, expand the output and explore the graphs. Refer to 

Figure 1-27 and Figure 1-28 to see some interesting results.

Figure 1-26. A histogram of data for the column V17 in df. Just like 
with the column V12, there is also a clear deviation seen with the 
anomalous values compared to the normal values. This indicates 
that the column V17 is more likely to help the model learn how to 
differentiate between normal and fraudulent transactions than some 
of the other columns that don’t show such a deviance
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Once again, with V12 you can see a significant difference between the 

anomalies and the normal data points. A good portion of the anomalies 

remain hidden within the normal data points, but a significant amount of 

them can be differentiated from the rest.

Figure 1-27. The scatterplot for Time on the x-axis and V12 on the 
y-axis shows a deviation between the anomalies and the normal data 
points. Although a significant portion of the anomalies fall under the 
band of normal points, there are still a good number of anomalies 
that fall out of that range. And so you can see that against Time, the 
data for the column V12 also shows this deviation from the normal 
data points
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The difference between the anomalies and the normal points are 

highlighted even further when looking at V17. It seems that even in 

relation to time, columns V12 and V17 hold data that best help distinguish 

fraudulent transactions from normal transactions. You can see in the 

graph that a few normal points are with the anomalous points as well, but 

hopefully the model can learn the true difference taking into account all of 

the data.

Finally, let’s see the relationship between each of these columns and 

Amount:

for f in range(1, 29):

    print(f'Amount vs V{f}')

    plot_scatter(df,  f'V{f}', "Amount", sharey=True)

This time there seems to be a few more graphs more clearly showing 

the differences between the normal and fraudulent points. Refer to 

Figure 1-29, Figure 1-30, and Figure 1-31.

Figure 1-28. The scatterplot for Time on the x-axis and V17 on the 
y-axis shows a deviation between the anomalies and the normal data 
points. As with the values for V12, you can observe another deviation 
between the normal points and the fraudulent points. In this case, the 
difference seems to be a bit more pronounced, as the anomalies seem 
to be more spread out than in Figure 1-27
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The graphs from V9 through V12 all show a clear differentiation 

between the anomalies and the normal points, even if a good portion 

of the anomalies are within the cluster of normal points. One thing to 

note is that it may not be the same anomalies that differ each time in the 

graphs, allowing the model to better learn how to differentiate between the 

anomalies and the normal points.

Figure 1-29. Looking at the scatterplot for Amount on the y-axis and 
V10 on the x-axis, you can see a pronounced deviation of fraudulent 
points from the normal points. For the relationship of the V columns 
against Amount, it seems that more columns show an increased 
deviation compared to the earlier plots. This difference is not so large, 
as you still see that a sizeable portion of the anomalies are within the 
normal data cluster. However, this still gives the model some context 
in how a fraudulent transaction differs from a normal transaction
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You can once again see that V12 consistently differentiates between 

anomalies and normal data. However, there is still the problem of a good 

portion of the anomalies staying hidden within the normal data cluster.

Figure 1-30. A scatterplot for the column Amount on the y-axis and 
V12 on the x-axis. Once again, you can see a pronounced deviation of 
fraudulent points from the normal points. In this case, the majority of 
fraudulent points seem to deviate from the normal point cluster. You 
can also see that there is a band of normal points far from the main 
cluster, and that the band coincides with the anomalous data points. 
It is a possible reason to keep in mind if the model classifies points like 
these as anomalies
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You can also see that this differentiation between normal points and 

fraudulent points holds for V17 looking at transaction amounts.

You could also look at the data for each of the V columns and plot them 

against each other, but that’s more useful to help identify precise changes 

in trends that will be more useful to know if you want to further train the 

model to improve its performance on the new data. First of all, it’s possible 

that not every feature is very significant. So, if trends do shift, it does not 

necessarily mean that the model’s performance will be downgraded.

Thorough analysis of the data helps data scientists get a much better 

understanding of how the various data columns relate to each other and 

lets them identify if trends are shifting over time. As data is continuously 

collected over time, data biases and trends are bound to shift. So perhaps 

a year from now, it’s the column V18 that shows profound differences 

between anomalous points and normal points, and V17 now shows that 

most anomalous points are contained within the cluster of normal points.

Figure 1-31. A scatterplot for the column Amount on the y-axis and 
V17 on the x-axis. Just as with Figure 1-30, you can see a deviation 
again of fraudulent points from the normal point cluster. Once again, 
the majority of fraudulent points show this deviation, but you can also 
see some normal points that coincide with these anomalous points
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 Summary
Data analysis is a crucial step in the process of creating a machine learning 

solution. Not only does it determine the type of model and influence the 

set of features that will be selected for the training process, but it also helps 

identify any changes in trends over time that may signify that the model 

needs to be further trained. You explored and analyzed the data in the 

credit card data set, generated many plots to get an idea of the relationship 

between the two plotted variables, and identified some features that 

distinguish between normal points and anomalies. In the next chapter, you 

will process the data to create various subsets to help train several types of 

machine learning models.
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CHAPTER 2

Building Models
In this chapter, we will go over how to build a simple logistic regression 

model in both scikit-learn and PySpark. We will also go over the process of 

k-fold cross validation to tune a hyperparameter in scikit-learn.

 Introduction
In the previous chapter, you loaded the credit card data set and analyzed 

the distribution of its data. You also looked at the relationships between 

the features and got a general idea of how heavily they influence the labels.

Now that you’ve gained a better understanding of the data set, you 

will proceed with building the models themselves. You will be using the 

same credit card data set as in the previous chapter. In this chapter, you 

will look at two frameworks: scikit-learn, and PySpark. The models you 

build in scikit-learn and in PySpark will stay relevant for the rest of the 

book, as you will be using both of them later on when you host them on 

cloud services to make predictions. You will keep it simple and construct 

logistic regression models in these two frameworks. Since the input data 

format is different for these two frameworks, you can’t just conduct the 

data processing in advance and use those train/test/validate sets for these 

two frameworks. However, it is possible to do so for scikit-learn and Keras, 

for example, depending on how the last layer is constructed in the Keras 

model.

https://doi.org/10.1007/978-1-4842-6549-9_2#DOI
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You will be performing the validation step with the scikit-learn model 

to tune a hyperparameter. Hyperparameters can be thought of as model- 

related parameters that influence the training process and result.

That being said, let’s get started with scikit-learn and build a logistic 

regression model. One thing to note is that we will provide a lot of 

commentary in the scikit-learn model that we may skip over in the PySpark 

example, so be sure to at least read through the process for scikit-learn to 

get a general idea of how train-test-validate works.

 Scikit-Learn
Before we get started, here are the packages and their versions that you 

will need. We will provide an easy way for you to check the versions of your 

packages within the code itself.

Here are the versions of our configuration:

• Python 3.6.5

• numpy 1.18.5

• pandas 1.1.0

• matplotlib 3.2.1

• seaborn 0.10.1

• sklearn 0.22.1.post1

In the code below, you will find that some of the imports are 

unnecessary, such as importing all of sklearn when you only use a bit of 

its functionality. This is done for the purpose of displaying the version and 

such statements have a # beside them.
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 Data Processing
So now, let’s begin with the import statements:

import numpy as np

import pandas as pd

import matplotlib #

import matplotlib.pyplot as plt

import seaborn as sns

import sklearn #

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import roc_auc_score, plot_roc_curve, 

confusion_matrix

from sklearn.model_selection import KFold

print("numpy: {}".format(np.__version__))

print("pandas: {}".format(pd.__version__))

print("matplotlib: {}".format(matplotlib.__version__))

print("seaborn: {}".format(sns.__version__))

print("sklearn: {}".format(sklearn.__version__))

Refer to Figure 2-1 to see the output.
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Now you can move on to loading the data. You will be using the same 

credit card dataset as from the previous chapter:

data_path = "data/creditcard.csv"

df = pd.read_csv(data_path)

Refer to Figure 2-2 to see this code in a cell.

Figure 2-1. The output showing the printed versions of the modules 
you will need. Some modules are imported for the sake of printing the 
versions and have been marked with a # beside them to indicate that 
they are not necessary to run the code

Figure 2-2. Loading the data frame using pandas. The credit card 
data set is located in a folder called data, which is located in the same 
directory as the notebook file
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There shouldn’t be any output from loading the data frame. To see the 

data frame you just loaded, call the following to ensure it has read the data 

correctly:

df.head()

You should see something like in Figure 2-3.

If you remember from the previous chapter, there is a massive 

imbalance in the distribution of data between the normal data and the 

anomalies. Because of this, you are going to take a slightly alternative 

approach in how you craft this data.

This is where data analysis comes into play. Because you know that 

a massive disparity between the data counts in each class exists, you will 

now take care to specially craft the data sets so that it is ensured that a 

good amount of anomalies end up in each data set. If you simply select 

100,000 data points from df, split it into your training/test/validate sets 

and continue, it is entirely possible that very few or even no anomalies 

end up in one or more of those sets. At that point, you would have a lot of 

trouble in getting the model to properly learn this task.

This is why you will be splitting up the anomalies and normal points to 

create your training/test/validate sets.

With that in mind, let’s create data frames for the normal points and for 

the fraudulent points:

Figure 2-3. The output of the head() function. The data has loaded 
correctly, and you can see the first five rows of the data frame
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normal = df[df.Class == 0].sample(frac=0.5, random_state=2020).

reset_index(drop=True)

anomaly = df[df.Class == 1]

You have set the random_state to a specific value so that the results of 

the random sampling should be the same no matter how many times you 

repeat it, helping with reproducibility. Unfortunately, given the nature of 

how models learn, you cannot expect to get the same results every time for 

something like neural networks, for example.

In the code, you filter out the respective values by class, and sample 

50% of the entire data frame’s normal points to comprise the normal data 

in this context.

Refer to Figure 2-4 to see this code in a cell.

You can add some code to check the shapes as well:

print(f"Normal: {normal.shape}")

print(f"Anomaly: {anomaly.shape}")

Refer to Figure 2-5 for the output.

Figure 2-5. Printing the shapes of the normal and anomaly data 
frames. There is a clear difference in the number of entries in the two 
data frames

Figure 2-4. Filtering the data frame values by class to create the 
normal and anomaly data frames. The normal data frame contains 
50% of all normal data points, randomly selected as determined by 
the seed (random_state)
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As you can see, there is still a big disparity between the normal points 

and the anomalies. In the case of logistic regression, the model is still 

able to learn how to distinguish between the two, but in the case of neural 

networks, for example, this disparity means the model never really learns 

how to classify anomalies. However, as you will see later in this chapter, 

you can tell the model to weigh the anomalies far more in its learning 

process compared to the normal points.

Now you can start creating the train/test/validate split. However, scikit- 

learn provides functionality to create train/test splits only. To get around 

that, you will create train and test sets, and then split the train set again 

into train and validate sets.

First, you will split the data into train and test data, keeping the normal 

points and anomalies separate. To do this, you will use the train_test_

split() function from scikit-learn. Commonly passed parameters are

• x: The x set you want to split up

• y: The y set you want to split up corresponding to  

the x set

• test_size: The proportion of data in x and y that you 

want to randomly sample for the test set.

And so, to split up x and y into your training and testing sets, you may 

see code like the following:

x_train, x_test, y_train, y_test = train_test_split(x, y, test_

size=0.2, random_state = 2020)

Just like earlier, random_state is setting the random seed so that every 

time you run it, the data will be split the same way.

Chapter 2  Building Models



48

If you don’t pass in the y parameter, you simply get a split on the x 

data. And so, keeping that in mind, let’s split up your normal points and 

anomalies into training and testing sets:

normal_train, normal_test = train_test_split(normal, test_size 

= 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split(anomaly,  

test_size = 0.2, random_state = 2020)

There should be no output but refer to Figure 2-6 to see the code  

in a cell.

Now, you can create your training and validation sets by calling the 

same function on the respective training sets. You don’t want to split it 

by 20% again, though, since the training set is already 80% of the original 

data set. If you used a 20% split again, the validation set would be 16% of 

the original data, and the training set would be 64% of the original data. 

You will instead be doing a 60-20-20 split for the training, testing, and 

validation data, respectively, and so you will be using a new test_size 

value of 0.25 to ensure these proportions hold (0.25 * 0.8 = 0.2).

With that in mind, let’s create your training and validation splits:

normal_train, normal_validate = train_test_split(normal_train, 

test_size = 0.25, random_state = 2020)

anomaly_train, anomaly_validate = train_test_split(anomaly_

train, test_size = 0.25, random_state = 2020)

Refer to Figure 2-7 to see the code in a cell.

Figure 2-6. Splitting the normal and anomaly data frames into train 
and test subsets. The respective test sets comprise 20% of the original sets
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To create your final training, testing, and validation sets, you have to 

concatenate the respective normal and anomaly data splits.

First, you define x_train, x_test, and x_validate:

x_train = pd.concat((normal_train, anomaly_train))

x_test = pd.concat((normal_test, anomaly_test))

x_validate = pd.concat((normal_validate, anomaly_validate))

Next, you define y_train, y_test, and y_validate:

y_train = np.array(x_train["Class"])

y_test = np.array(x_test["Class"])

y_validate = np.array(x_validate["Class"])

Finally, you have to drop the column Class in the x sets since it would 

defeat the purpose of teaching the model how to learn what makes up a 

normal and a fraudulent transaction if you gave it the label directly:

x_train = x_train.drop("Class", axis=1)

x_test = x_test.drop("Class", axis=1)

x_validate = x_validate.drop("Class", axis=1)

To see all this code in a cell, refer to Figure 2-8.

Figure 2-7. You create train and validate splits from the training 
data. You have chosen to make the validation set comprise 25% of 
the respective original training sets. As these original training sets 
themselves comprise of 80% of the original normal and anomaly data 
frames, the respective validation splits are 20% (0. 25 * 0.8) of their 
original normal and anomaly data frames. And so, the final training 
split also becomes 60% of the original, as 0.75 * 0.8 = 0.6
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Let’s get the shapes of the sets you just created:

print("Training sets:\nx_train: {} y_train: {}".format(x_train.
shape, y_train.shape))
print("\nTesting sets:\nx_test: {} y_test: {}".format(x_test.
shape, y_test.shape))
print("\nValidation sets:\nx_validate: {} y_validate:  
{}".format(x_validate.shape, y_validate.shape))

Refer to Figure 2-9 to see the output.

Looking at the data analysis, you can see that some of the values get 

really large. The fine details are beyond the scope of this book, but when 

some features have a relatively small range but others have an extremely 

large range (think of the range of V1 and Time from the previous chapter), 

the model will have a much harder time learning.

Figure 2-8. Creating the respective x and y splits of the training, 
testing, and validation sets. The x sets are the combinations of the 
normal and anomaly sets for each split (train, test, validate), while 
the y sets are simply the data in the Class columns of those x sets. You 
then drop the label column from the x sets

Figure 2-9. Printing the output of the different sets. The three sets 
should comprise 60%, 20%, and 20% of the original union of the 
normal and anomaly sets
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In more detail, the model will have a hard time optimizing the cost 

function and may take many more steps to converge, if it is able to do so at all.

And so it is better to scale everything down by normalizing the data. 

You will be using scikit-learn’s StandardScaler, which normalizes all of 

the data such that the mean is 0 and the standard deviation is 1.

Here is the code to standardize your data:

scaler = StandardScaler()
scaler.fit(pd.concat((normal, anomaly)).drop("Class", axis=1))

x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
x_validate = scaler.transform(x_validate)

It is important to note that you are fitting the scaler on the entire data 

frame so that it standardizes all of your data in the same way. This is to 

ensure the best results since you don’t want to standardize x_train, x_test, 

and x_validate in their own ways since it would create discrepancies in 

the data and would be problematic for the model. Of course, once you’ve 

deployed the model and start receiving new data, you would still standardize 

it using the scaler from the training process, but this new data could possibly 

come from a slightly different distribution than your training data. This 

would especially be the case if trends start shifting - this new standardized 

data could possibly lead to a tougher time for the model since it wouldn’t fit 

very well in the distribution that the model trained on.

Refer to Figure 2-10 to see the code in a cell.

Figure 2-10. Fitting a standard scaler object on a concatenation of 
the normal and anomaly data frames. This is done so that each of 
the train, test, and validate subsets will be scaled according to the 
same standards, ensuring that there are no discrepancies between the 
scaling of the data
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 Model Training
Finally, you can now define your logistic regression model:

sk_model = LogisticRegression(random_state=None, max_iter=400, 

solver='newton-cg').fit(x_train, y_train)

Refer to Figure 2-11 to see the code in a cell. There should not be any 

outputs after execution if it all goes well. Any errors you might see could 

involve a failure to converge. For that, changing the max_iter parameter 

could help, and changing the solver algorithm could help as well.

After the training process, either the evaluation step or validation 

step can come next. As long as the testing set and the validation set come 

from different distributions (the validation set is derived from the training 

set, while the testing set is derived from the original data), the model is 

technically seeing new data in the evaluation and in the validation processes.

The context also matters. If you are using the validation process to 

select the best model out of a set of trained models, then the validation 

process can come after the training process. You can still evaluate one or 

all of your trained models, but it could be unnecessary because in this 

context you’re trying to find the best model for the code.

In the context where you’re trying to tune your hyperparameters for 

a model you are going to stick with, it doesn’t matter whether you do the 

evaluation first or the validation first. Doing the evaluation first, as you will 

be doing shortly, can give you a good idea of how well the model is doing 

currently before starting the validation step. The model will never learn 

from the evaluation data, so there’s no harm in evaluating the model on 

this data.

Figure 2-11. Defining the logistic regression model and training it on 
the training data
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In this example, you are looking at tuning the hyperparameter for class 

weights (how much to weight a normal sample and how much to weight a 

fraudulent sample).

But first, let’s evaluate your model to get a deeper understanding of 

how everything works.

 Model Evaluation
You can now look at accuracy and AUC scores. First, you find the accuracy 

using the built-in score function of the model:

eval_acc = sk_model.score(x_test, y_test)

Next, let’s get the list of predictions from the model to help calculate 

the AUC score. AUC is usually a better metric since it better explains 

the performance of the model. The general gist of it is that a model that 

perfectly classifies every point correctly will have an AUC score of 100%.

The problem with accuracy in this context is that if there are 100,000 

normal points and perhaps around 100 anomalies, the model can classify 

all of the normal points correctly and none of the anomalies and still get 

a really high accuracy above 99%. However, the AUC score would show 

a value much lower at around 0.5. An AUC of 0.5 means that the model 

knows nothing and is practically just guessing randomly, but in this case, it 

means the model only ever predicts “normal” for any point it sees. In other 

words, it hasn’t actually learned much of anything if it doesn’t know how 

to predict an anomaly.

It’s also worth mentioning that AUC isn’t the sole metric by which one 

should base the worthiness of a model, since context matters. In this case, 

normal points far outnumber anomalies, so accuracy is a relatively poor 

metric to solely judge model performance on. AUC scores in this case 

would reflect the mode’s performance well, but it’s also possible to get 

higher AUC scores but lower accuracy scores. That just means you must 

Chapter 2  Building Models



54

look at the results carefully to understand exactly what’s happening. To 

help with this, you will look at a “confusion matrix” shortly.

Now, let’s get the predictions and calculate the AUC score:

preds = sk_model.predict(x_test)

auc_score = roc_auc_score(y_test, preds)

Finally, let’s print out the scores:

print(f"Auc Score: {auc_score:.3%}")

print(f"Eval Accuracy: {eval_acc:.3%}")

Refer to Figure 2-12 to see all three of the cells above and the output 

that results.

In this case, both the AUC score and the accuracy score are high. 

Between the two, the accuracy score is definitely inflated by the number of 

normal points that exist, but the AUC score indicates that the model does 

a pretty good job at distinguishing between the anomalies and the normal 

points.

Scikit-learn actually provides a function that lets you see the ROC 

curve—the figure from which the AUC score (or “area under curve”) is 

derived from. Run the following:

roc_plot = plot_roc_curve(sk_model, x_test, y_test, 

name='Scikit-learn ROC Curve')

Refer to Figure 2-13 for the output.

Figure 2-12. Printing out the AUC score and the accuracy for the 
scikit-learn logistic regression model
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What’s basically happening is that scikit-learn takes in the model and 

the evaluation set to dynamically generate the curve as it predicts on the 

test sets. The metrics you see on the axes are derived from how correctly 

the model predicts each of the values. The “true positive rate” and the 

“false positive rate” are derived from the values on the confusion matrix 

that you will see below.

From that graph, the AUC score is generated. You can see that it differs 

from the score that was calculated earlier, but this can be attributed to the 

two functions calculating the scores slightly differently.

Let’s now build the confusion matrix and plot it using seaborn:

conf_matrix = confusion_matrix(y_test, preds)

ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

ax.invert_xaxis()

ax.invert_yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted')

Refer to Figure 2-14 for the output.

Figure 2-13. The ROC curve generated for the logistic regression 
model you just trained. An ROC curve starting with a true positive 
value of 1.0 at a false positive value of 0.0 is the best possible curve in 
theory. From that point, it should keep going right while maintaining 
its value as it hits 1.0 on the x-axis. This graph is quite close to that 
ideal, hence why the AUC score is so high at 0.98. The discrepancy in 
AUC score here compared to when you calculated it earlier has to do 
with how the value is actually calculated
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This is what a confusion matrix looks like. The y-axis consists of 

the true labels, while the x-axis consists of predicted labels. When the 

true label is “0” and the model predicts “0,” we call this a true negative. 

“True” refers to the true label, and “negative” refers to the label the model 

predicts.

What counts as “positive” and what counts as “negative” can differ. In 

tasks such as disease detection, if a test finds someone to have the disease, 

they are said to “test positive.” Otherwise, they “test negative.” Anomaly 

detection is similar. When a model thinks that a point is an anomaly, it 

flags it with the label “1.” And so, a point is labeled “positive” if the model 

thinks it is an anomaly, and “negative” if it doesn’t.

Figure 2-14. The confusion matrix plot of the results of training. The 
accuracy for the normal points is very good, but the accuracy for the 
anomaly points is ok. There is still further room for improvement 
looking at these results, as you have not tuned the hyperparameters of 
the model yet, but it already does ok in detecting anomalies. The goal 
now is to keep the accuracy for the normal points as high as possible, 
or at a high enough level that’s acceptable, while raising the accuracy 
for the anomaly points as high as possible. Based on this confusion 
matrix plot, you can now see that the lower AUC score is more 
accurate at reflecting the true performance of the model. You can see 
that a non-negligible amount of anomalies were falsely classified as 
normal, hence an AUC score of 0.84 is a much better indicator of the 
model’s performance than the graph’s apparent score of 0.98
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You may notice that we have inverted the axes in the code. This is 

simply to get it in the format so that the top left of the matrix corresponds 

to “true positives,” the top right of the matrix corresponds to “false 

negatives,” the bottom left of the matrix corresponds to “false positives,” 

and the bottom right of the matrix corresponds to “true negatives.”

To quickly recap these concepts:

• True positives are values that the model predicts as 

positive that actually are positive.

• False negatives are values that the model predicts as 

negative that actually are positive.

• False positives are values that the model predicts as 

positive that actually are negative.

• True negatives are values that the model predicts as 

negative that actually are negative.

To look at how well the model identifies anomalies, look at the 1 

row on the y-axis. The sum of this row should equal the total number 

of anomalies in the test set: 99 anomalies. The model predicted about 

68.7% of the anomalies correctly (68/(68+31)) and predicted 99.98% of the 

normal points correctly (28425/(28425 + 7)) looking at the bottom row.

As you can see, the confusion matrix gives us a really good look at 

the true performance of the model. You now know that it does very well 

in the task of predicting normal points but does an ok job at predicting 

anomalies. That being said, the model can still predict a majority of 

anomalies correctly. And so you can see that the AUC score of 0.84 was 

much more accurate at indicating the performance of the model than the 

graph, which had an AUC of 0.98. With an AUC of 0.98, you can expect that 

there are very, very few instances of false negatives or false positives.
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 Model Validation
Let’s now look at how to use the process of k-fold cross-validation to 

compare several hyperparameter values. After the validation process has 

ended, you will compare the evaluation metrics to get a better idea of what 

hyperparameter setting works best.

The hyperparameter you want to tune is how much you want to weight 

the anomalies by compared to the normal data points. By default, both of 

them are weighted equally. Let’s define a list of weights to iterate over:

anomaly_weights = [1, 5, 10, 15]

Next, you define the number of folds and initialize your data fold 

generator:

num_folds = 5

kfold = KFold(n_splits=num_folds, shuffle=True,  

random_state=2020)

What this KFold() function does is that it splits the data passed in into 

num_folds different partitions. A single fold acts as a validation set at a 

time, while the rest of the folds are used for training. In this context, the 

“validation fold” is basically what the model will be evaluating on. It is 

called “validation” since it helps us get an idea of how the model is doing 

on data it has never seen before.

If you have built deep learning models before, you may know that 

during the training process, you can split a small portion of the training 

set aside as a validation set. This lets you know during training if you’re 

overfitting or not, as decreasing training loss and increasing validation loss 

would indicate.

Refer to Figure 2-15 to see the code above in cells.
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Now you define the validation script:

logs = []

for f in range(len(anomaly_weights)):

    fold = 1

    accuracies = []

    auc_scores= []

    for train, test in kfold.split(x_validate, y_validate):

        weight = anomaly_weights[f]

        class_weights= {

            0:1,

            1: weight

        }

        sk_model = LogisticRegression(random_state=None,

                                      max_iter=400,

                                      solver='newton-cg',

                                       class_weight=class_

weights).fit(x_

validate[train],  

y_validate[train])

Figure 2-15. Setting the different values for anomaly weights to test 
with the validation script and constructing the KFold data generator. 
In this case, you are using five folds, so the data passed in will be split 
five ways
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        for h in range(40): print('-', end="")

        print(f"\nfold {fold}\nAnomaly Weight: {weight}")

         eval_acc = sk_model.score(x_validate[test],  

y_validate[test])

        preds = sk_model.predict(x_validate[test])

        try:

            auc_score = roc_auc_score(y_validate[test], preds)

        except:

            auc_score = -1

         print("AUC: {}\neval_acc: {}".format(auc_score,  eval_acc))

        accuracies.append(eval_acc)

        auc_scores.append(auc_score)

         log = [sk_model, x_validate[test], y_validate[test], preds]

        logs.append(log)

        fold = fold + 1

    print("\nAverages: ")

    print("Accuracy: ", np.mean(accuracies))

    print("AUC: ", np.mean(auc_scores))

    print("Best: ")

    print("Accuracy: ", np.max(accuracies))

    print("AUC: ", np.max(auc_scores))

That’s a lot to take in at once, so be sure to refer to Figure 2-16 to make 

sure your code is formatted correctly.
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Before you run the script, let’s go over what the code does, as that was a 

lot of code thrown out at once.

The first loop goes over each of the anomaly weights. You set the fold 

number here equal to 1 and define empty lists to hold values for accuracy 

and AUC scores for each run with the current weight parameter.

The second loop goes over the five fold boundaries that the KFold() 

object defines. You set the class_weights dictionary and pass it into the 

model as a hyperparameter. After the training process, you evaluate as 

usual. There is a try-except block for the AUC score in the event that the 

Figure 2-16. The validation script in a cell. The script is quite long, so 
be sure it is formatted correctly because a single space misalignment 
can cause issues

Chapter 2  Building Models



62

fold generated only has values of one class (so really if it only has normal 

data and no anomalies). If the AUC score is -1 for any fold, then you know 

there was a problem with one of the folds.

You do save the model, the validation data, and the predictions so that 

you can examine the confusion matrix and plot the ROC curve for any run 

you like. After the end of the five folds, the script then displays averages 

and the best scores.

The output will be truncated when you run this, so don’t forget to 

expand it like in the previous chapter to look at all of the runs. Feel free to 

explore the output or even change the number of folds but beware of the 

results because increasing the number of folds can mean that the number 

of anomalies must be spread across even more partitions. In this specific 

context, a lower number of folds is likely to be better because you have so 

few anomaly points.

When you sift through the output, you can see that the best results 

occur when the anomaly weight is set to 10. This setting had the highest 

average AUC score and had the best AUC score as well, resulting in an 

output like what you see in Figure 2-17.
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Figure 2-17. Looking at the results of the best setup in the validation 
script output. The best setup turned out to be one where the anomalies 
were weighted as 10, as it had the best average AUC score and the best 
AUC score with the other anomaly weight parameters. The true best 
weight is likely around an anomaly weight of 10, though you must 
perform another hyperparemter search with a more narrowed range 
to find the absolute best setting. You can keep narrowing the search as 
much as you’d like, but past a certain precision, you will find that you 
are getting diminishing returns
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Let’s examine the plots for this setup since it was the best performer of 

all of them on average.

First, you load the correct log in the list of logs. Since the anomaly 

weight was 10, and the second fold performed the best, you want to look at 

the twelfth index in the entries in logs. (The first five correspond to indices 

0-4, and the next five are indices 5-9. With index 10, you begin the first fold 

with weight ten, so the second fold is at index 11.)

sk_model, x_val, y_val, preds = logs[11]

Let’s look at the ROC curve. Keep in mind that since there is so little 

data in the validation set, the AUC score may not be so accurate. Here is 

the code:

roc_plot = plot_roc_curve(sk_model, x_val, y_val, name='Scikit- 

learn ROC Curve')

Refer to Figure 2-18 to see the output of the above two cells.

Figure 2-18. Viewing the ROC curve for a specific validation fold. 
As you can see, the ROC curve is quite optimal. A perfect ROC curve 
would start as close as possible to 1.0 on the y-axis while maintaining 
that level right as it reaches 1.0 on the x-axis. An ROC graph like that 
would mean the AUC would be as close to 1.0 as possible. In this case, 
you almost see the perfect AUC curve, and the AUC is stated to be 1.0. 
The confusion matrix in Figure 2-19 will reveal a lot more about why 
the AUC score is so low
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This graph looks different compared to the ROC plot you saw earlier. In 

fact, it almost seems perfect.

Let’s look at the confusion matrix to get a better idea of how the model 

performed on this fold:

conf_matrix = confusion_matrix(y_val, preds)

ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

ax.invert_xaxis()

ax.invert_yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted')

The resulting confusion matrix can be seen in Figure 2-19.

Figure 2-19. The confusion matrix for a specific validation fold. It 
has very good accuracy in labeling normal data points and does very 
well with anomaly points. Additionally, you can see that there are 
barely any anomalies in this validation fold if you count the entries 
in the top row: 21 anomalies to 5,685 normal points. It is no wonder, 
then, that having a higher weight on the anomaly helped the model 
factor in these anomalies in its learning process, resulting in better 
performance in anomaly detection
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The model did quite well on correctly classifying the anomalies, but 

the goal of validation in this case is just to help nudge the hyperparameter 

setting in the right direction. Based on the results of the validation process, 

you know that the optimal hyperparameter value lies within the values of 

10 and 15 because those two settings produced the best results.

Of course, you can narrow the range further to include values between 

10 and 15 for the anomaly weights and repeat this process again and again, 

further reducing the range until a good, optimal value is found. After a 

certain precision, however, you will find that you are getting diminishing 

returns, and that the effort you put into hyperparameter tuning only 

produces near-negligible boosts in performance.

With that, you now know how to train, evaluate, and validate a logistic 

regression model in scikit-learn.

 PySpark
We have provided the versions of the modules we will be using. Installing 

PySpark can be a little complicated as it’s not a matter of doing pip 

install PySpark depending on the version, so beware of that.

Here are the versions of our configuration:

• Python 3.6.5

• PySpark 3.0.0

• matplotlib 3.2.1

• seaborn 0.10.1

• sklearn 0.22.1.post1

With that, let’s begin. Again, we will not provide commentary as 

detailed as in the scikit-learn example, so be sure to review the whole 

process in scikit-learn to get a good idea of how it will go. Additionally, we 

won’t be validating the model in PySpark in this example.
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 Data Processing
Here are the import statements:

import pyspark #

from pyspark.sql import SparkSession

from pyspark import SparkConf, SparkContext

from pyspark.sql.types import *

from pyspark.ml.feature import VectorAssembler

from pyspark.ml import Pipeline

from pyspark.ml.classification import LogisticRegression as 

LogisticRegressionPySpark

import pyspark.sql.functions as F

import os

import seaborn as sns

import sklearn #

from sklearn.metrics import confusion_matrix

from sklearn.metrics import roc_auc_score

import matplotlib #

import matplotlib.pyplot as plt

os.environ["SPARK_LOCAL_IP"]='127.0.0.1'

spark = SparkSession.builder.master("local[*]").getOrCreate()

spark.sparkContext._conf.getAll()

print("pyspark: {}".format(pyspark.__version__))

print("matplotlib: {}".format(matplotlib.__version__))

print("seaborn: {}".format(sns.__version__))

print("sklearn: {}".format(sklearn.__version__))

The output should look something like in Figure 2-20.
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You will notice that there is some additional code relating to PySpark 

that you have had to define. With PySpark, you must define a Spark context 

and create a Spark session. What this really means is that you are creating 

a point of connection to the Spark engine, enabling the engine to run all of 

the code relating to Spark functionality.

Let’s now load the data set. PySpark has its own functionality for 

creating data frames, so you won’t be using pandas. Execute the following:

data_path = 'data/creditcard.csv'

df = spark.read.csv(data_path, header = True, inferSchema = True)

labelColumn = "Class"

columns = df.columns

numericCols = columns

numericCols.remove(labelColumn)

print(numericCols)

Figure 2-20. Importing the necessary modules and printing their 
versions. Once again, modules imported solely for the purpose of 
displaying versions are marked with a # so you may remove them and 
the print statements if desired
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You should see something like Figure 2-21.

Printing the columns is just to ensure that the label column has been 

removed successfully.

You can look at the data frame now just to ensure that it has been 

loaded properly. You will have to use built-in functionality to convert to a 

pandas data frame, because Spark data frames are not very clean to look at.

Look at the following two cells and their outputs:

df.show(2)

Refer to Figure 2-22.

Figure 2-21. Reading the credit card data set in PySpark and 
removing the Class column from the list of columns. This is done 
because you don’t want the Class column to be included in the feature 
vector, as you will see in Figure 2-22
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Now compare this to the following:

df.toPandas().head()

Refer to Figure 2-23.

Figure 2-22. The output of the Spark data frame. Since there are so 
many columns in the data frame, the output is very messy and very 
difficult to read. Fortunately, there is built-in functionality to convert 
PySpark data frames into pandas data frames, making it much easier 
to view the rows in the Spark data frame
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So whenever you want to check a Spark data frame, make sure to 

convert it to pandas if it has a lot of columns.

The data processing procedure for PySpark is slightly different than 

in pandas. To train the model, you must pass in a vector called features. 

Take a look at the following code:

stages = []

assemblerInputs = numericCols

assembler = VectorAssembler(inputCols=assemblerInputs, 

outputCol="features")

stages += [assembler]

dfFeatures = df.select(F.col(labelColumn).alias('label'), 

*numericCols )

This defines the inputs to the assembler so that it knows what columns 

to transform into the features vector.

From here, let’s add to the cell above and create the normal and 

anomaly data splits as with the scikit-learn example.

normal = dfFeatures.filter("Class == 0").

sample(withReplacement=False, fraction=0.5, seed=2020)

anomaly = dfFeatures.filter("Class == 1")

Figure 2-23. Using PySpark’s built-in functionality to convert the 
spark data frame into a pandas data frame for easier viewing. As seen 
in Figure 2-22, it is extremely hard to read the direct output of a Spark 
data frame
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normal_train, normal_test = normal.randomSplit([0.8, 0.2],  

seed = 2020)

anomaly_train, anomaly_test = anomaly.randomSplit([0.8, 0.2], 

seed = 2020)

The cell should look like Figure 2-24.

Just like in the scikit-learn example, you combine the respective 

normal and anomaly splits to form your training and testing sets. This 

time, however, you won’t have a validation set, so you are looking at an 

80- 20 split between the training and testing data.

train = normal_train.union(anomaly_train)

test = normal_test.union(anomaly_test)

Refer to Figure 2-25 to see the cell.

Figure 2-24. Constructing the VectorAssembler that will be used later 
to create a feature vector from the input data. You also create a normal 
and anomaly data split similar to how it was done in scikit-learn, and 
split it in a similar fashion into training and testing subsets

Figure 2-25. Creating the training and testing sets in a similar 
manner to how you did it in scikit-learn, but with PySpark’s 
functionality
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Let’s finish the rest of the pipeline and create the feature vector:

pipeline = Pipeline(stages = stages)

pipelineModel = pipeline.fit(dfFeatures)

train = pipelineModel.transform(train)

test = pipelineModel.transform(test)

selectedCols = ['label', 'features'] + numericCols

train = train.select(selectedCols)

test = test.select(selectedCols)

print("Training Dataset Count: ", train.count())

print("Test Dataset Count: ", test.count())

Refer to Figure 2-26 to see the output.

 Model Training
You can now define and train the model:

lr = LogisticRegressionPySpark(featuresCol = 'features', 

labelCol = 'label', maxIter=10)

lrModel = lr.fit(train)

trainingSummary = lrModel.summary

pyspark_auc_score = trainingSummary.areaUnderROC

Figure 2-26. Using a pipeline to create a feature vector from the data 
frame. This feature vector is what the logistic regression model will 
train on
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Refer to Figure 2-27 to see the above code in a cell.

 Model Evaluation
Once the model has finished training, run the evaluation code:

predictions = lrModel.transform(test)

y_true = predictions.select(['label']).collect()

y_pred = predictions.select(['prediction']).collect()

evaluations = lrModel.evaluate(test)

accuracy = evaluations.accuracy

Add the following code as well to display the metrics:

print(f"AUC Score: {roc_auc_score(y_pred, y_true):.3%}")

print(f"PySpark AUC Score: {pyspark_auc_score:.3%}")

print(f"Accuracy Score: {accuracy:.3%}")

Refer to Figure 2-28 to see the output.

Figure 2-27. Defining the PySpark logistic regression model, training 
it, and finding the AUC score using the built-in function of the model

Figure 2-28. The output metrics. The AUC score is calculated using 
scikit-learn’s scoring algorithm, while the PySpark AUC score metric 
comes from the training summary of the PySpark model. Finally, the 
accuracy score is also outputted
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You can see that the AUC score and the accuracy are quite high, so let’s 

examine the graphs.

First, let’s look at the ROC curve:

pyspark_roc = trainingSummary.roc.toPandas()

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('PySpark ROC Curve')

plt.plot(pyspark_roc['FPR'],pyspark_roc['TPR'])

To see the graph, refer to Figure 2-29.

Figure 2-29. The ROC curve for the PySpark logistic regression model 
you just trained. A perfect ROC curve would have the true positive 
rate starting at 1.0, where it continues right to a false positive rate 
value of 1.0. This curve is quite close to that, hence why its area (AUC) 
is said to be around 0.97997 by PySpark, keeping in mind a perfect 
AUC score is 1.00
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The curve looks quite optimal. Let’s now look at the confusion matrix 

to get a detailed idea of how the model performs:

conf_matrix = confusion_matrix(y_true, y_pred)

ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

ax.invert_xaxis()

ax.invert_yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted')

Refer to Figure 2-30 to view the confusion matrix plot.

Figure 2-30. The plotted confusion matrix of the PySpark logistic 
regression model you just trained. The accuracy of correctly labeled 
points for the normal data is very high and is decent for the 
anomalous data
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From this, you have a much more detailed account of how the model 

performed. Looking at just the anomalies, you see that the model has 

a 81.4% accuracy (70/(70+16)) in predicting anomalies. This is better 

than the model you trained in scikit-learn, though you haven’t tuned the 

hyperparameter to attain maximum performance.

PySpark does have an option to weight your data, but this is done on 

a sample-by-sample basis. What this means is that instead of passing in a 

weight dictionary for each class, you have to create a column in the data 

frame with each anomaly being weighted a certain amount and each 

normal point being weighted as 1, for example. By default, everything 

is weighted as 1, so that means the PySpark model may have a greater 

potential in performance than the scikit-learn model.

Moving on to the normal points, you see a really good accuracy of 

99.96% (28363/(28363+10)), so it is able to identify normal points very well.

 Summary
With the insights you gained from data analysis, you processed the data 

into training, testing, and validation sets in scikit-learn and PySpark 

(you only did a train-test split in PySpark, but you could have split the 

training data into training and validation sets just like in scikit-learn). 

From there, you constructed logistic regression models in each framework 

and trained and evaluated on them. You looked at accuracy and AUC 

scores as metrics and looked at the ROC curve and confusion matrix to 

get a better idea of how the model performed. For the scikit-learn model, 

you performed k-fold cross-validation to help tune the hyperparameter. 

In the next chapter, you will keep your experiences with data analysis 

and model creation in mind as you learn about MLOps and how you can 

operationalize your models.
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CHAPTER 3

What Is MLOps?
In this chapter, we will cover the concepts behind the term “MLOps” and 

go over what it is, why it’s useful, and how it’s implemented.

 Introduction
Creating machine learning solutions to various problems can be quite 

the arduous task. Let’s imagine ourselves in the shoes of a team that is 

attempting to solve a problem with machine learning. You may be familiar 

with this process if you read Chapter 1, but we will recap the entire process 

once again to establish the context. You may skip past this section if you 

are already familiar with this. The entire process may look somewhat like 

the following:

• Collect and process raw data: Raw data is rarely in 

a format that is easy to train a model on. Usually, it 

requires processing to remove aberrant data points 

such as null values and faulty data values. Other 

times, you might have to process the raw data to 

extract only the information you need among all of 

the noise.

https://doi.org/10.1007/978-1-4842-6549-9_3#DOI
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• Analyze the data: This step involves looking at the 

data points and understanding their characteristics. 

How is it structured? What does the distribution of the 

data points look like? Are there any identifiable trends 

or biases in the data? This step is crucial because it 

dictates how you are going to approach the problem. 

If you already have a trained model you are looking 

to update, it also tells you if there are any new trends 

in the data that your model should be updated to 

consider. If you identified any “useless features” that 

don’t really influence the output, you might drop them 

and train a new model to improve training speed while 

possibly boosting performance.

• Process the data for training: In this step, you could 

be scaling the data to a more appropriate range and 

perhaps removing any outliers and/or anomalies that 

could interfere with model performance. Furthermore, 

you could also be applying feature engineering to 

create new features from existing data points and 

perhaps give your model more or a better context 

during training. This is also where you create training 

and testing data sets, though optimal practice is to 

make training, testing, and validation data sets.

• Construct, train, and test the model: In this step, you 

are creating the model, setting hyperparameters, and 

training the model. In the case of deep learning, you 

can also select a subsection of the training set to be a 

data validation set. The purpose of this set is to have 

the model be evaluated on it at the end of every epoch 

or full forward pass of the data through the model. By 

comparing the model performance on data it’s seen 
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many times over during training versus data it hasn’t 

seen at all (or rather, data that has no effect on weight 

adjustment), you can see if the model is truly learning 

to generalize or if it’s just overfitting.

• Overfitting is when a model performs significantly 

better on a training set compared to data that it has 

never seen before. As just discussed, one way to 

give an early indication of overfitting is to set aside a 

portion of the training set as validation data during the 

training phase. This can give you an early indication 

of overfitting without having to find out after the 

training process has finished, which can take anywhere 

from minutes to days depending on the depth of the 

model and the equipment used. And so, it follows that 

overfitting can also be observed when the model is 

evaluated on the testing data or validation data, and 

discrepancies in model performance can be observed 

between these sets and the training set.

• This phenomenon of overfitting could partially result 

from the model not receiving enough data points 

during training to reflect the variety it is expected to 

see, so fixing the training set by introducing more 

variety or even increasing the number of data points 

can help. Additionally, including methods such as 

regularization or dropout into the model’s architecture 

can also help combat overfitting in the case of deep 

learning models.
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• An important thing to discuss is the purpose of the 

testing and validation sets. Testing sets are reserved 

for evaluating a model’s performance on data it’s never 

seen before.

• Validation sets are reserved for helping select models, 

select model architecture, tune hyperparameters, or 

simply to give an indication of model performance on 

data it’s never seen during the training process.

• An example of validation is k-fold cross-validation, 

where it generates k random partitions of test-train 

data from validation data and can be used to train/

evaluate the model on all of them to give an idea 

of the best performance it can attain with various 

hyperparameter settings. Of course, we can also use 

k-fold cross validation to perform the other functions 

that validation helps with. You looked at an example 

using this method of validation in Chapter 2, when you 

used it to help tune the weighting of anomalies.

• Coupling this technique with a script that has a set of 

hyperparameters can result in an optimal model with 

proper hyperparameters. From there, the model can 

be retrained and evaluated again on the test set to get a 

final performance benchmark.

• The specific order this is done in can differ, though. 

For example, trained models can also be evaluated 

first and then validated, compared to the other way 

around. This is because the training process is likely to 

be repeated with altered hyperparameters anyway after 

the evaluation stage reflects some form of performance 
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discrepancy or if validation data during the training 

process reveals that possible overfitting is occurring. 

Either way, it really depends, but good practice is to at 

least incorporate both testing and validation data to 

best tune the model.

• Validate and tune the model: As previously 

discussed, the validation set can be another “testing” 

set that the model has never seen before, and can 

be used in any of the several ways described earlier 

and in Chapter 1. Once your model has reached an 

acceptable level of performance on the validation set 

and is retrained and evaluated again, you can look at 

deploying the model.

• Deploy and monitor the model: In this step, the 

model has finally left the hands of the machine 

learning/data science team. It is now the job of 

engineering and operational teams to integrate this 

model into the application and put it into service. 

Operational teams are in charge of constantly 

monitoring the performance of the model, with dips 

in performance possibly indicating that this entire 

process may need to be repeated to update the model 

to understand new trends. Operational teams are also 

responsible for reporting any bugs and unexpected 

model predictions to the data science team, feedback 

that also contributes to the start of this whole cycle as 

the model needs to be fixed.
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Hopefully, it’s clear just how work-intensive the entire process can 

get, especially since it will most likely need to be repeated multiple times. 

While it is possibly easier the second time around since you’re only 

updating the model on new data patterns and trends, it is still a problem 

that can take up hours of manual labor that can be better spent elsewhere. 

After all, maintenance of applications in the software development 

process is usually where most of the money and resources go, not the 

initial construction and release of the application. The same can apply 

to machine learning models, worsening the overall maintenance costs 

because the costs for deployed machine learning models are added on top 

of the costs for the software application utilizing the services of the models.

Imagine if you could simply automate this entire process away, 

allowing you to take full advantage of high-performance machine 

learning models without all of that hassle. This is where MLOps comes in, 

something that can be thought of as the intersection between machine 

learning and DevOps practices. DevOps, or developmental operations, 

refers to a set of practices that combines the work processes of software 

developers with those of operational teams to create a common set 

of practices that functions as a hybrid of the two roles. As a result, the 

developmental cycle of software is expedited, and continuous delivery 

of software products is ensured. Total costs also go down because 

maintenance costs are reduced as a result of the increase in efficiency of 

the workflow in maintaining the software applications. Refer to Figure 3-1 

to see a graph representing the DevOps workflow.
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Figure 3-1. A graph depicting the workflow in a DevOps 
environment. Software development teams typically adopt the Agile 
methodology of software development, which is summarized above 
through the planning, building, and testing stages. Operational teams 
are in charge of deploying, maintaining, and collecting feedback in 
the form of bugs and user feedback and relaying this information to 
the development teams. From there, the development team enters the 
maintenance phase of the application, where they plan, build, test, 
and push the next patch/update for the application. Furthermore, 
automating the process of testing and deploying allows for continuous 
integration and delivery of software products, something we will 
expand upon later in this chapter
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Similarly, MLOps adopts DevOps principles and applies them to 

machine learning models in place of software, uniting the developmental 

cycles followed by data scientists and machine learning engineers 

with that of operational teams to help ensure continuous delivery of 

high-performance machine learning models. The process of model 

development in what’s called the experimental stage, something we will 

look at in detail later in the chapter, can lead to impressive performances 

and can seem like very promising solutions. However, the reality is more 

that most models simply never make it past this experimental stage, 

since deploying them is a massive undertaking on its own. Unfortunately, 

maintaining models once deployed also drains resources, as every new 

update requires reintegration into the application. This means that even 

if the model is deployed, all teams have their work cut out for them. For 

these reasons, most models simply never make it past the prototype phase.

Until the emergence of MLOps principles, deploying solutions created 

using the latest in machine learning technology served as a significant 

challenge to businesses due to the amount of resources that would be 

required. This is why MLOps is so crucial. It makes it significantly easier 

to deploy and maintain your machine learning solutions by automating 

most of the hard parts for you, massively expediting the development and 

maintenance processes. With a fully automated setup, teams can keep up 

with the latest in machine learning technology and deploy new models 

quickly. Services can maintain their high level of performance and perhaps 

even improve on this front as teams can deploy newer, more promising 

model architectures.

Now that you have a better idea of what MLOps is about and why it is 

so important, let’s jump into the details and look at how an ideal MLOps 

implementation is set up.
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 MLOps Setups
Before we look at any specific MLOps setups, let’s first establish three 

different setups representing the various stages of automation: manual 
implementation, continuous model delivery, and continuous 
integration/continuous delivery of pipelines.

Manual implementation refers to a setup where there are no MLOps 

principles applied and everything is manually implemented. The steps 

discussed above in the creation of a machine learning model are all 

manually performed. Software engineering teams must manually integrate 

the models into the application, and operational teams must help ensure 

all functionality is preserved along with collecting data and performance 

metrics of the model.

Continuous model delivery is a good middle ground between a 

manual setup and a fully automated one. Here, we see the emergence 

of pipelines to allow for automation of the machine learning side of the 

process. Note that we will mention this term quite often in the sections 

below. If you’d like to get a better idea about what a pipeline is, refer to the 

section titled “Pipelines and Automation” further down in this chapter. 

For now, a pipeline is an infrastructure that contains a sequence of 

components manipulating information as it passes through the pipeline. 

The function of the pipeline can slightly differ within the setups, so be 

sure to refer to the graphs and explanations to get a better idea of how the 

pipeline in the example functions.

The main feature of this type of setup is that the deployed model 

has pipelines established to continuously train it on new data, even 

after deployment. Automation of the experimental stage, or the model 

development stage, also emerges along with modularization of code 

to allow for further automation in the subsequent steps. In this setup, 

continuous delivery refers to expedited development and deployment of 

new machine learning models. With the barriers to rapid deployment lifted 
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(the tediousness of manual work in the experimental stage) by automation, 

models can now be created or updated at a much faster pace.

Continuous integration/continuous delivery of pipelines refers to 

a setup where pipelines in the experimental stage are thoroughly tested 

in an automated process to make sure all components work as intended. 

From there, pipelines are packaged and deployed, where deployment 

teams deploy the pipeline to a test environment, handle additional testing 

to ensure both compatibility and functionality, and then deploy it to the 

production environment. In this setup, pipelines can now be created 

and deployed at a quick pace, allowing for teams to continuously create 

new pipelines built around the latest in machine learning architectures 

without any of the resource barriers associated with manual testing and 

integration.

 Manual Implementation
Now that we’ve established three variations of setups, let’s look at the first 

of the three deployment setups of machine learning models, which has no 

MLOps principles integrated.

In this case, there is a team of data scientists and machine learning 

engineers, who will now be referred to as the “model development team,” 

manually performing data analysis and building, training, testing, and 

validating their models. Once their model has been finalized, they must 

create a model class and push this to a code repository. Software engineers 

extract this model class and integrate it into an existing application or 

system, and operational teams are in charge of monitoring the application, 

maintaining functionality, and providing feedback to both the software 

and model development teams.

Everything here is manual, meaning any new trends in the data lead 

to the model development team having to update the model and repeat 

the entire process again. This is quite likely to happen considering the 

high volume of users interacting with your model every day. Combined 
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with performance metrics and user data collection, the information will 

reveal a lot of aspects about your model as well as the user base the model 

is servicing. Chances are high that you will have to update it to maintain 

its performance on the new data. This is something to keep in mind as you 

follow through with the process on the graph.

Refer to Figure 3-2 for a graphical representation of the setup.

Let’s go through this step by step. We can split the flow into roughly 

two parts: the experimental stage, which involves the machine learning 

side of the entire workflow, and the deployment stage, which handles 

integration of the model into the application and maintaining operations.

Figure 3-2. Graph depicting a possible deployment setup of a 
machine learning model without MLOps principles. The arrows with 
a dotted border mean that progression to the next step depends upon 
a condition in the current step. For example, in the model validation 
step, machine learning engineers must ensure that the model meets a 
minimum benchmark in performance before pushing a model class to 
the repository
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Experimental Stage:

 1. Data store: The data store refers to wherever data 

relevant to data analysis and model development 

is stored. An example of a data store could be using 

Hadoop to store large volumes of data, which can 

be used by multiple model development teams. In 

this example, data scientists can pull raw data from 

this data store to start performing experiments and 

conducting data analysis.

 2. Process raw data: As previously mentioned, raw 

data must be processed in order to collect the 

relevant information. From there, it must also 

be purged of faults and corrupted data. When a 

company collects massive volumes of data every 

day, some of it is bound to be corrupted or faulty 

in some way eventually, and it’s important to get 

rid of these points because they can harm the 

data analysis and model development processes. 

For example, one null value entry can completely 

destroy the training process of a neural network 

used for a regression (value prediction) task.

 3. Data analysis: This step involves analyzing all 

aspects of the data. The general gist of it was 

discussed earlier, but in the context of updating 

the model, data scientists want to see if there are 

any new trends or variety in data that they think 

the model should be updated on. Since the initial 

training process can be thought of as a small 

representation of the real-world setting, there is a 

fair chance that the model will need to be updated 
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soon after the initial deployment. This does depend 

on how many characteristics of the true user base 

the original training set captured however, but user 

bases change over time, and so must the models. By 

“user base,” we refer to the actual customers using 

the prediction services of the model.

 4. Model building stage: This stage is more or less the 

same as what we discussed earlier. The second time 

around, when updating the model, it could turn out 

that slight adjustments to the model layers may be 

needed. In some of the worst cases, the current model 

architecture being used cannot achieve a high enough 

performance even with new data or architectural 

tweaks. An entirely new model may have to be built, 

trained, and validated. If there are no such issues, 

then the model would just be further trained, tested, 

validated, and pushed to the code repository upon 

meeting some performance criteria.

• An important thing to note about this experimental 

stage is that it is quite popular for experiments 

to be conducted using Jupyter notebook. When 

model development teams reach a target level 

of performance, they must work on building 

a workable model that can be called by other 

code. For example, this can be done by creating 

a model class with various functions that provide 

functionality such as load_weights, predict, and 

perhaps even evaluate to allow for easier gathering 

of performance metrics. Since the true label can’t be 

known in real-time settings, evaluation metrics can 

simply be something like a root-mean-squared error.
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Deployment Stage:

 5. Model deployment: In this case, this step is where 

software engineers must manually integrate 

the model into the system/application they are 

developing. Whenever the model development 

team finishes with their experiments, builds 

a workable model, and pushes it to the code 

repository, the engineering team must manually 

integrate it again. Although the process may not be 

that bad the second time around, there is still the 

issue of fixing any potential bugs that may arise from 

the new model. Additionally, engineering teams 

must also handle testing of not only the model once 

it is integrated into the application, but also of the 

rest of the application.

 6. Model services: This step is where the model is 

finally deployed and is interacting with the user 

base in real time. This is also where the operational 

team steps in to help maintain the functionality of 

the software. For example, if there are any issues 

with some aspect of the model functionality, the 

operational team must record the bug and forward it 

to the model development team.

 7. Data collection: The operational team can also 

collect raw data and performance metrics. This 

data is crucial for the company to operate since 

that is how it makes its decisions. For example, the 

company might want to know what service is most 

popular with the user base, or how well the machine 

learning models are performing so far. This job can 
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be performed by the application as well, storing all 

the relevant data in some specific data store related 

to the application.

 8. Data forwarded to data store: This step is where 

the operational team sends the data to the data 

store. Because there could be massive volumes of 

data collected, it’s fair to assume some degree of 

automation on behalf of the operational team on 

this end. Additionally, the application itself could 

also be in charge of forwarding data it collects to the 

relevant data store.

 Reflection on the Setup

Right away, you can notice some problems that may arise from such an 

implementation. The first thing to realize is that the entire experimental 

stage is manual, meaning data scientists and machine learning engineers 

must repeat those steps every time. When models are constantly exposed 

to new data that is more than likely not captured in the original training 

set, models must frequently be retrained so that they are always up to date 

with current trends in user data. Unfortunately, when the entire process of 

analyzing new trends, training, testing, and validating data is manual, this 

may require significant resources over time, which may become unfeasible 

for a company without the resources to spare. Additionally, trends in data 

can change over time. For example, perhaps the age group with the largest 

number of users logging into the site is comprised of people in their early 

twenties. A year later, perhaps the dominant age group is now teenagers. 

What was normal back then isn’t normal now, and this could lead to losses 

in ad revenues, for example, if that’s the service (targeted advertising) the 

model in this case provides.
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Another issue is that tools such as Jupyter notebook are very popular 

for prototyping and experimenting machine learning and deep learning 

models. Even if the experiments aren’t carried out on notebooks, it’s likely 

that work must be done in order to push the model to the source repo. 

For example, constructing a model class with some important functions 

such as load_weights, predict, and evaluate would be ideal for a model 

class. Some external code may call upon load_weights() to set the model 

weights from different training instances (so if the model has been further 

trained and updated, simply call this function to get the new model). The 

function predict() would then be called to make predictions based on 

some input data and provide the services the application requires, and 

the function evaluate() would be useful in keeping performance metrics. 

Live data will almost never have truth labels on it (unless the user provides 

instant feedback, like Google’s captchas where you select the correct 

images), so a score metric like a root-mean-squared error can be useful 

when keeping track of performance.

Once the model class is completed and pushed, software engineering 

teams must integrate the model class into the overall application/system. 

This could prove difficult the first time around, but once the integration 

has been completed, updates to the model can be as simple as loading new 

weights. Unfortunately, model architectures are likely to change, so the 

software teams must reintegrate new model classes into the application.

Furthermore, deep learning is a complicated and rapidly evolving 

field. Models that were cutting-edge several years ago can be far surpassed 

by the current state-of-the-art models, so it’s important to keep updating 

your model architectures and to make full use of the new developments in 

the field. This means teams must continuously repeat the model-building 

process in order to keep up with developments in the field.

Hopefully it is more clear that this implementation is quite flawed in 

how much work is required to not only create and deploy the model in the 

first place, but also to continuously maintain it and keep it up to par.
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Alright, so how would we go about improving it? Where does this 

MLOps come into play? To answer these questions, let’s look at the second 

setup of the three defined earlier.

 Continuous Model Delivery
This setup contains pipelines for automatic training of the deployed 

model as well as for speeding up the experimental process. Refer to 

Figure 3-3 for a graphical representation of this setup.

This is a lot to take in at once, so let’s break it down and follow it 

according to the numbers on the graph.

 1. Feature store: This is a data storage bin that 

takes the place of the data store in the previous 

example. The reason for this is that all data can now 

be standardized to a common definition that all 

Figure 3-3. Graph depicting a possible deployment setup of a 
machine learning model with automation via pipelines 
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processes can use in this instance. For example, the 

processes in the experimental stage will be using the 

same input data as the deployed training pipeline 

because all of the data is held to the same definition. 

What is meant by common definition is that raw 

data is cleansed and processed in a procedural 

way that applies to all relevant raw data. These 

processed features are then held in the feature store 

for pipelines to draw from, and it is ensured that 

every pipeline uses features processed according to 

this standard. This way, any perceived differences 

in trends between two different pipelines won’t be 

attributed to deviances in processing procedures.

Presume for an instance that you are trying to provide 

an object detection service that detects and identifies 

various animals in a national park. All video feed 

from the trail cameras (a video can be thought of as 

a sequence of frames) can be stored as raw data, but 

it can be possible that different trail cameras have 

different resolutions. Instead of repeating the same 

data processing procedure, you can simply apply the 

same procedure (normalizing, scaling, and batching 

the frames, for example) to the raw videos and store 

the features that you know all pipelines will use.

 2. Data analysis: In this step, data analysis is still 

performed to give data scientists and machine 

learning engineers an idea of what the data looks 

like, how it’s distributed, and so on, just like in the 

manual setup. Similarly, this step can determine 

whether or not to proceed with construction of a 

new model or just update the current model.
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 3. Automated model building and analysis: In this 

step, data scientists and machine learning engineers 

can select a model, set any specific hyperparameters, 

and let the pipeline automate the entire process. 

The pipeline will automatically process the data 

according to the specifications of this model (take 

the case where the features are 331x331x3 images 

but this particular model only accepts images that 

are 224x224x3), build the model, train it, evaluate 

it, and validate it. During validation, the pipeline 

may automatically tune the hyperparameters 

as well optimize performance. It is possible that 

manual intervention may be required in some 

cases (debugging, for example, when the model is 

particularly large and complex, or if the model has a 

novel architecture), but automation should otherwise 

take care of producing an optimal model. Once this 

occurs, modularized code is automatically created so 

that this pipeline can be easily deployed.

Everything in this stage is set up so that the 

experimental stage goes very smoothly, requiring 

only that the model is built. Depending on the level of 

automation implemented, perhaps all that is required 

is that the model architecture is selected with some 

hyperparameters specified, and the automation takes 

care of the rest. Either way, the development process 

in the experimental stage is sped up massively. With 

this stage going faster, more experiments can be 

performed too, leading to possible boosts in overall 

efficiency as productivity is increased and optimal 

solutions can be found quicker.
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 4. Modularized code: The experimental stage is set 

up so that the pipeline and its components are 

modularized. In this specific context, the data 

scientist/machine learning engineer defines and 

builds some model, and the data is standardized to 

some definition. Basically, the pipeline should be 

able to accept any constructed model and perform 

the corresponding steps given some data without 

hardcoding anything. (Meaning there isn’t any code 

that will only work for a specific model and specific 

data. The code works with generalized cases of 

models and data.)

This is modularization, when the whole system 

is divided into individual components that each 

have their own function, and these components 

can be switched out depending on variable inputs. 

Thanks to the modularized code, when the pipeline 

is deployed, it will be able to accept any new feature 

data as needed in order to update the deployed 

model. Furthermore, this structure also lets it 

swap out models as needed, so there’s no need to 

construct the entire pipeline for every new model 

architecture.

Think of it this way: the pipeline is a puzzle piece, 

and the models along with their feature data are 

various puzzle pieces that can all fit within the 

pipeline. They all have their own “image” on the 

piece and the other sides can have variable shapes, 

but what is important is that they fit with the 

pipeline and can easily be swapped out for others.
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 5. Deploy pipeline: In this step, the pipeline is 

manually deployed and is retrieved from the 

source code. Thanks to its modularization, the 

pipeline setup is able to operate independently 

and automatically train the deployed model on 

any new data if needed, and the application is 

built around the code structure of the pipeline 

so all components will work with each other 

correspondingly. The engineering team has to build 

parts of the application around the pipeline and its 

modularized components the first time around, but 

after that, the pipelines should work seamlessly with 

the applications so as long as the structure remains 

the same. Models are simply swapped, unlike before 

when the model had to be manually integrated into 

the application. This time, the pipeline must be 

integrated into the application, and the models are 

simply swapped out.

However, it is important to mention that pipeline 

structures can change depending on the model. The 

main takeaway here is that pipelines should be able 

to handle many more models before having to be 

restructured compared to the setup before where 

“swapping” models meant you only loaded updated 

weights. Now, if several architectures all have 

common training, testing, and validation code, they 

can all be used under the same pipeline.

 6. Automated training pipeline: This pipeline 

contains the model that provides its services and 

is set up to automatically fetch new features upon 

activation of the trigger. The conditions for trigger 
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activation will be discussed in item 10. When the 

pipeline finishes updating a trained model, the 

model is saved to a model registry, a type of storage 

unit that holds trained models for ease of access.

 7. Model registry: This is a storage unit that 

specifically holds model classes and/or weights. The 

purpose of this unit is to hold trained models for 

easy retrieval by an application, for example, and it 

is a good component to add to an automation setup. 

Without the model registry, the model classes and 

weights would just be saved to whatever source code 

repository is established, but this way, we make the 

process simpler by providing a centralized area of 

storage for these models. It also serves to bridge the 

gap between model development teams, software 

development teams, and operational teams since it 

is accessible by everyone, which is ultimately what 

we want in an ideal automation setup.

This registry along with the automated training 

pipeline assures continuous delivery of model 
services since models can frequently be updated, 

pushed to this registry, and deployed without having 

to go through the entire experimental stage.

 8. Model services: Here the application pulls the 

latest, best performing model from the model 

registry and makes use of its prediction services. 

This action then goes on to provide the desired 

functionality in the application.
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 9. Performance and user data collection: New 

data is collected as usual along with performance 

metrics related to the model. This data goes to 

the feature store, where the new data is processed 

and standardized so that it can be used in both the 

experimental stage and the deployment stage and 

there are no discrepancies between the data used by 

either stage. Performance data is stored so that data 

scientists can tell how the model is performing once 

deployed. Based on that data, important decisions 

such as whether or not to build a new model with a 

new architecture can be made.

 10. Training pipeline trigger: This trigger, upon 

activation, initiates the automated training pipeline 

for the deployed model and allows for feature 

retrieval by the pipeline from the feature store. The 

trigger can have any of the following conditions, 

although it is not limited to them:

• Manual trigger: Perhaps the model is to be trained 

only if the process is manually initiated. For 

example, data science teams can choose to start 

this process after reviewing performance and data 

and concluding that the deployed model needs to 

train on fresh batches of data.

• Scheduled training: Perhaps the model is set to 

train on a specific schedule. This can be a certain 

time on the weekend, every night during hours of 

lowest traffic, every month, and so on.
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• Performance issues: Perhaps performance data 

indicates that the model’s performance has dipped 

below a certain benchmark. This can automatically 

activate the training process to attempt to get the 

performance back up to par. If this is not possible 

or is taking too many resources, data scientists and 

machine learning engineers can choose to build 

and deploy a new model.

• Changes in data patterns: Perhaps changes in 

the trends of the data have been noticed while 

creating the features in the feature store. Of course, 

the feature store isn’t the only possible place that 

can analyze data and identify any new trends 

or changes in the data. There can be a separate 

process/program dedicated to this task, which can 

decide whether or not to activate the trigger.

This would also be a good condition to begin the 

training process, since the new trends in the data 

are likely to lead to performance degradation. 

Instead of waiting for the performance hit to 

activate the trigger, the model can begin training 

on new data immediately upon sufficient 

detection of such changes in the data, allowing 

for the company to minimize any potential losses 

from such a scenario.

 Reflection on the Setup

This implementation fixes many of the issues from the previous setup. 

Thanks to the integration of pipelines in the experimental stage, the 

previous problem of having the entire stage be composed of manual 
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processes is no longer a concern. The pipeline automates the whole 

process of training, evaluating, and validating a model. The model 

development team now only needs to build the model and reuse any 

common training, evaluation, and validation procedures that are still 

applicable to this model. At the end of the model development pipeline, 

relevant model metrics are collected and displayed to the operator. These 

metrics can help the model development team to prototype quickly and 

arrive at optimal solutions even faster than they would have without the 

automation since they can run multiple pipelines on different models and 

compare all of them at once.

Automated model creation pipelines in the experimental stage 

allow for teams to respond faster to any significant changes in the data 

or any issues with the deployed model that need to be resolved. Unlike 

before, where the only model swapping was the result of loading updated 

weights for the same model, these pipelines are structured to allow for 

various models with different architectures as long as they all use the 

same training, evaluation, and validation procedures. Thanks to the 

modularized code, the pipeline can simply swap out model classes and 

their respective weights once deployed. The modularization allows for 

easier deployment of the pipeline and lets models be swapped out easily to 

allow for further training of any model during deployment. Should a model 

require special attention from the model development team, it can simply 

be trained further by the team and swapped back in once it is ready. Now 

teams can respond much more quickly by being able to swap models in 

and out in such a manner.

The pipelines also make it much easier for software engineering 

teams and operational teams to deploy the pipelines and models. Because 

everything is modularized, teams do not have to work on integrating 

new model classes into the application every time. Everyone benefits, 

and model development teams do not have to be as hesitant about 

implementing new architectures so as long as the new model still uses the 

same training, evaluation, and validation code as in the existing pipeline.
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While this setup solves most of the issues that plagued the original 

setup, there are still some important problems that remain. Firstly, there 

are no mechanisms in place to test and debug the pipelines, so this must 

all be done manually before it is pushed to a source repository. This can 

become a problem when you’re trying to push many iterations of pipelines, 

such as when you’re building different models with architectures that 

differ in how they must be trained, tested, and validated. Perhaps the latest 

models are showing a vast improvement over the old state-of-the art, and 

your team wants to implement these new solutions as soon as possible. In 

situations like this, teams will frequently need to debug and test pipelines 

before pushing them to source code for deployment. In this case, there is 

still some automation left to be done to avoid manual work.

Pipelines are also manually deployed, so if the structure in the code 

changes, the engineering teams must rebuild parts of the application to 

work with the new pipeline and its modularized code. Modularization 

works smoothly when all components know what to expect from 

each other, but if the code of one of the components changes so that 

it isn’t compatible anymore, either the application must be rebuilt to 

accommodate the new changes or the component must be rewritten to 

work with the original pipeline. Unfortunately, new model architectures 

may require that part of the pipeline itself be rewritten, so it is likely 

that the application itself must be worked on to accommodate the new 

pipeline.

Hopefully you begin to see the vast improvements that automation 

has made in this setup, but also the issues that remain to be solved. The 

automation has solved the issue of building and creating new models, but 

the problem of building and creating new pipelines still remains.

To find an answer to that problem, let’s take a look at the last of the 

three setups defined earlier.
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 Continuous Integration/Continuous Delivery 
of Pipelines
In this setup, we will be introducing a system to thoroughly test pipeline 

components before they are packaged and ready to deploy. This will ensure 

continuous integration of pipeline code along with continuous delivery of 
pipelines, crucial elements of the automation process that the previous setup 

was missing. Refer to Figure 3-4 for a graphical representation of such a setup.

Though this is mostly the same setup, we will go through it again step 

by step with an emphasis on the newly introduced elements.

 1. Feature store: The feature store contains 

standardized data processed into features. Features 

can be pulled by data scientists for offline data 

analysis. Upon activation of the trigger, features can 

also be sent to the automated training pipeline to 

further train the deployed model.

Figure 3-4. Graph depicting added testing systems and a package 
store to the automation setup in Figure 3-2
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 2. Data analysis: This step is performed by data 

scientists on features pulled from the feature store. 

The results from the analysis can determine whether 

or not to build a new model or adjust the architecture 

of an existing model and retrain it from there.

 3. Automated model building and analysis: This 

step is performed by the model development team. 

Models can be built by the team and passed into the 

pipeline, assuming that they are compatible with the 

training, testing, and validation code, and the entire 

process is automatically conducted with a model 

analysis report generated at the end. In the case 

where the team wants to implement some of the 

latest machine learning architectures, models will 

have to be created from scratch with integration into 

pipelines in mind to maintain modularity. Parts of 

the pipeline code may have to change as well, which 

is acceptable because the new components of this 

setup can handle this automatically.

 4. Modularized code: Once the model reaches a 

minimum level of performance in the validation 

step, the pipeline, its components, and the model 

are all ready to be modularized and stored in a 

source repository.

 5. Source repository: The source repository holds 

all of the packaged pipeline and model code for 

different pipelines and different models. Teams can 

create multiples at once for different purposes and 

store them all here. In the old setup, pipelines and 

models would be pulled from here and manually 
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integrated and deployed by software engineering 

teams. In this setup, the modularized code must 

now be tested to make sure all of the components 

will work correctly.

 6. Testing: This step is crucial in achieving continuous 
integration, or a result of automation where 

new components and elements are continuously 

designed, built, and deployed in the new 

environment.

Pipelines and their components, including the 

model, must be thoroughly tested to ensure that 

all outputs are correct. Furthermore, the pipelines 

themselves must be tested so that they are 

guaranteed to work with the application and how it 

is designed. There shouldn’t be bugs in the pipeline, 

for example, that would break its compatibility with 

the application. The application is programmed to 

expect a specific behavior from the pipeline, and the 

pipeline must behave correspondingly.

If you are familiar with software development, the 

testing of pipeline components and the models is 

similar to the automated testing that developers 

write to check various parts of an application’s 

functionality. A simple example is automated testing 

to ensure data of various types are successfully 

received by the server and are added to the correct 

databases.
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With pipelines and machine learning models, some 

examples of testing include:

• Does the validation testing procedure lead to 

correct tuning of the hyperparameters?

• Does each pipeline component work correctly? 

Does it output the expected element? For example, 

after model evaluation, does it correctly begin the 

validation step? (Alternatively, if model evaluation 

goes after model validation, does the evaluation 

step correctly initiate?)

• Is the data processing performed correctly? Are 

there any issues with the data post-processing 

that would lead to poor model performance? 

Avoiding this outcome is for the best since it would 

waste resources having to fix the data processing 

component. If the business relies on rapid pipeline 

deployment, then avoiding this type of scenario is 

even more crucial.

• Does the data processing component correctly 

perform data scaling? Does it correctly perform 

feature engineering? Does it correctly transform 

images?

• Does the model analysis work correctly? You 

want to make sure that you’re basing decisions 

on accurate data. If the model truly performs well 

but faults in the model analysis component of the 

pipeline lead the data scientist/machine learning 

engineer to believe the model isn’t performing that 

well, then it could lead to issues where pipeline 

deployment is slowed down. Likewise, you don’t 
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want the model analysis to be displaying the wrong 

information, even if it mistakenly displays precision 

for accuracy.

The more thorough the automated testing, the 

better the guarantee that the pipeline will operate 

within the application without issues. (This doesn’t 

necessarily include model performance as that has 

to do more with the model architecture, how the 

model is developed, and what it is capable of.)

Once the pipeline passes all the tests, it is then 

automatically packaged and sent to a package store. 

Continuous integration of pipelines is now achieved 

since teams can build modularized and tested 

pipelines much more quickly and have them ready 

for deployment.

 7. Package store: The package store is a containment 

unit that holds various packaged pipelines. It is 

optional but included in this setup so that there 

is a centralized area where all teams can access 

packaged pipelines that are ready for deployment. 

Model development teams push to this package 

store, and software engineers and operational 

teams can retrieve a packaged pipeline and deploy 

it. In this way, it is similar to the model registry in 

that both help achieve continuous delivery. The 

package store helps achieve continuous delivery of 

pipelines just as the model registry helps achieve 

continuous delivery of models and model services.

Thanks to automated testing providing continuous 

integration of pipelines and continuous delivery of 
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pipelines via the package store, pipelines can also be 

deployed rapidly by operational teams and software 

engineers. With this, businesses can easily keep 

up with the latest trends and advances in machine 

learning architectures, allowing for better and better 

performance and more involved services.

 8. Deploy pipeline: Pipelines can be retrieved 

from the package store and deployed in this step. 

Software engineering and operational teams must 

ensure that the pipeline will integrate without 

incident into the application. Because of that, 

there can be more testing on the part of software 

engineering teams to ensure proper integration of 

the pipeline. For example, one test can be to ensure 

the dependencies of the pipeline are considered 

in the application (if, for example, TensorFlow has 

updated and contains new functionality the pipeline 

now uses, the application should update its version 

of TensorFlow as well).

Teams usually want to deploy the pipelines into 

a test environment where it will be subjected 

to further automated testing to ensure full 

compatibility with the application. This can be 

done automatically, where the pipelines go from 

the package store into the test environment, or 

manually, where teams decide to deploy the 

pipeline into the test environment. After the 

pipeline passes all the tests, teams can choose to 

manually deploy the pipeline into the production 

environment or have it automatically done.
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Either way, pipeline creation and deployment is a 

much faster process now especially since teams do 

not have to manually test the pipelines and they do 

not have to build or modify the application to work 

with the pipeline every time.

 9. Automated training pipeline: The automated 

training pipeline, once deployed, exists to further 

train models upon activation of the trigger. This 

helps keep models as up to date as possible on new 

trends in data and maintain high performance for 

longer. Upon validation of the model, models are 

sent to the model registry where they are held until 

they are needed for services.

 10. Model registry: The model registry holds trained 

models until they are needed for their services. 

Once again, continuous delivery of model services 

is achieved as the automated training pipeline 

continuously provides the model registry with high-

performance machine learning models to be used to 

perform various services.

 11. Model services: The best models are pulled from 

the model registry to perform various services for 

the application.

 12. Performance and user data collection: Model 

performance data and user data is collected to be 

sent to model development teams and the feature 

store, respectively. Teams can use the model 

performance metrics along with the results from 

the data analysis to help decide their next course of 

action.
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 13. Training pipeline trigger: This step involves some 

condition being met (refer to the previous setup, 

continuous model delivery) to initiate the training 

process of the deployed pipeline and feed it with 

new feature data pulled from the feature store.

 Reflection on the Setup

The main issue of the previous setup that this one fixes is that of pipeline 

deployment. Previously, pipelines had to be manually tested by machine 

learning teams and operational teams to ensure that the pipeline and 

its components worked, and that the pipeline and its components 

were compatible with the application. However, in this setup, testing is 

automated, allowing for teams to much more easily build and deploy 

pipelines than before. The biggest advantage to this is that businesses can 

now keep up with significant changes in the data requiring the creation 

of new models and new pipelines, and can also capitalize on the latest 

machine learning trends and architectures all thanks to rapid pipeline 

creation and deployment combined with continuous delivery of model 

services from the previous setup.

The important thing to understand from all these examples is that 

automation is the way to go. Machine learning technology has progressed 

incredibly far within the last decade alone, but finally, the infrastructure to 

allow you to capitalize on these advancements is catching up.

Hopefully, after seeing the three possible MLOps setups, you 

understand more about MLOps and how implementations of MLOps 

principles might look. You might have noticed that pipelines have been 

mentioned quite often throughout the descriptions of the setups, and you 

might be wondering, “What are pipelines, and why are they so crucial for 

automation?”

To answer that question, let’s take a look at what a “pipeline” really is.
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 Pipelines and Automation
Pipelines are an important part of automation setups employing DevOps 

principles. One way to think about a pipeline is that it is a specific, often 

sequential procedure that dictates the flow of information as it passes 

through the pipeline. To see an example of a testing pipeline in a software 

development setting, refer to Figure 3-5.

In the MLOps setups above, you’ve seen pipelines for automating the 

process of training a deployed model and for building, testing, and packing 

pipelines as well as for testing integration of packaged pipelines before 

deploying them to the production environment.

So, what does all that really mean? To get a better idea of what exactly 

goes on in a pipeline, let’s follow the flow of data through a pipeline in the 

experimental stage. Even if you understand how pipelines work, it may 

be worth following the example anyway as we now look at this pipeline 

through the context of using MLOps APIs.

Figure 3-5. A testing pipeline in a software development setting. 
The pipeline for testing packaged model pipelines in the optimal 
setup above is similar in that individual components must be tested, 
components must be tested in groups, and in the case where pipelines 
are deployed to a test environment first where further tests are 
performed before they are deployed to the production environment
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 Journey Through a Pipeline
We will be looking at the model development pipeline in the experimental 

stage. Before we begin, it is important to mention that we will be 

referencing API calls in this pipeline. This is because some APIs can be 

called while executing scripts or even Jupyter cells at key points in the 

model’s development, giving MLOps monitoring software information on 

model training, model evaluation, and model validation. At the end of the 

pipeline, the MLOps software would also ready the model for deployment 

via functionality provided by the API.

You will read more about this API in the next chapter, Chapter 4, but 

for now, you may assume that the API will take care of automation as you 

follow along through the example.

 Model Selection

As seen in Figure 3-4, the experimental pipeline begins with the selection 

of a model. This is up to the operator, who must now choose and build a 

model. Some APIs allow you to call their functionality while building the 

model to connect with MLOps software as the rest of the process goes 

on. This software then keeps track of all relevant metrics related to the 

model’s development along with the model itself in order to initiate the 

deployment process.

In this case, the operator has chosen to use a logistic regression. Refer 

to Figure 3-6.
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 Data Preprocessing

With the model now selected and built, and with feature data supplied by 

the feature store, the process can now move forward to the next stage in 

the pipeline: data preprocessing. Refer to Figure 3-7.

Figure 3-6. A graphical representation of a pipeline where the 
operator has selected a logistic regression model. The rest of the steps 
have been hidden for now and will appear as we gradually move 
through the pipeline
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The data preprocessing can be done manually or automatically. In 

this case, the data preprocessing only involves normalization and resizing 

of image feature data, so the operator can implement this manually. 

Depending on the level of automation, the operator can also call some 

function that takes in data and automatically processes it depending on 

the type of data and any other parameters provided.

Either way, the end of the processing stage will result in the data being 

broken up into subsets. In this example, the operator chose to create a 

training set, a testing set, and a validation set. Now, the operator can begin 

the training process.

 Training Process

Depending on the framework being used, the operator can further split 

up the training data into a training set and a data validation set and use 

both in the training process. The data validation set exists totally separate 

Figure 3-7. The operator has chosen to normalize and resize the 
image data. The process creates a training set, a testing set, and a 
validation set
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from the training set (although it is derived from it) since the model never 

sees it during training. Its purpose is to periodically evaluate the model’s 

performance on a data set that it has never seen before. Refer to Figure 3-8.

In the context of deep learning, for example, the model can evaluate 

on the validation set at the end of each epoch, generating some metric 

data for the operator to see. Based on this, the operator can judge how 

the model is doing and whether or not it could be overfitting and adjust 

hyperparameters or model structure if needed.

The API can also be told what script to run in order to initiate this 

entire pipeline process. The script can contain the training, evaluation, 

and validation code all at once so the API can run this entire pipeline when 

needed.

Once the training process is done, the process moves to the evaluation 

stage.

Figure 3-8. The model training process begins
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 Model Evaluation

In the evaluation stage, the model’s performance is measured on a test 

data set that it has never seen. This performance will indicate to the 

operator whether or not the model is overfitting, especially if it performed 

extremely well in training but has trouble replicating those results in this 

stage. That is part of why the training data can be split to include some 

validation data, as it can be an early indicator of overfitting. This can be 

crucial especially if the model takes a significant amount of time to run. 

You would rather know earlier, partway through training, if the model 

is overfitting, rather than after it ran all night and is evaluated the next 

morning. Refer to Figure 3-9.

Figure 3-9. Training results are stored in a common area (for 
example, the API could be called to monitor these results) for the 
metrics of the current model. Model evaluation begins on the trained 
model using the testing set
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Another thing to note again is that the validation stage could come 

before the evaluation stage, but in this case, the trained model will be 

evaluated first on a test data set before the validation stage begins. This 

is just to get a sense of how the model does on the testing set before 

hyperparameter tuning begins. Of course, hyperparameter tuning via the 

validation step could be performed first before the final model evaluation, 

but in some frameworks, model evaluation would come first. An example 

of this is a validation process like scikit-learn’s cross-validation. Of course, 

you can evaluate the tuned model on the test set once again to get a final 

performance evaluation.

Once the evaluation finishes, metrics are stored by the API or by some 

other mechanism that the team has implemented, and the process moves 

on to the validation stage.

 Model Validation

In this stage, the model begins the validation process, which attempts 

to seek the best hyperparameters. You could combine the use of a script 

to iterate through various configurations of hyperparameter values 

and utilize k-fold cross-validation, for example, to help decide the best 

hyperparameters. Refer to Figure 3-10.
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In any case, the point of a validation set is to help tune the model’s 

hyperparameters. The team could even automate this process entirely 

if they tend to train a lot of models of the same few types, saving 

time and resources in the long run by automating the validation and 

hyperparameter tuning process for that set of models.

Finally, once the model achieves a good level of performance and 

finishes the validation stage, the validation results are stored, and all 

relevant data is displayed as a summary to the operator. Again, depending 

on the level of automation, perhaps the model is retrained and evaluated 

on the best hyperparameter setup discovered in the validation stage. The 

API simply needs to be told what metrics to track and it will automatically 

do so.

Figure 3-10. Evaluation metrics are stored along with the training 
metrics by the API, and the validation process begins
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 Model Summary

At this point, the operator can compare the outcome of this experiment 

with that of other models, using the metrics as baselines for comparison. 

The API can track the relevant metrics for different model runs and can 

compare them all at the same time. Should the operator decide to move 

forward with this particular model, the API and the MLOps software 

can allow for deployment on a simple click of a button. Usually, the 

deployment is to a staging environment first, where the functionality can 

be tested further before moving directly into the production environment. 

Everything is configurable, and the API can adapt to the needs of the 

business and its workflow. If the developers want to deploy straight to 

production, sure, though that could potentially be unwise considering the 

case of failure. Refer to Figure 3-11.

Figure 3-11. Validation is complete, and all metrics are displayed to 
the operator
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After the model passes the tests in the staging environment, it can 

then be deployed to the production environment, where it can be further 

monitored by the software.

Hopefully now you have a better understanding of what a pipeline 

really is. The pipelines for models and pipeline integration testing are 

similar, except they are assisted by MLOps software and APIs such as 

Databricks and MLFlow, for example. Let’s now look at how you can go 

about using those APIs and software to help you implement MLOps.

 How to Implement MLOps
MLOps sounds great. It helps you deploy machine learning models rapidly 

and helps maintain them once they’re deployed. However, the biggest 

problem now seems to be the question of how to get there. The level of 

automation described in the setups requires significant work from both the 

“ML” and “Ops” sides of the workflow to achieve it. It almost seems better 

in the short run to build and deploy the models manually rather than 

devote resources to setting up the entire infrastructure, but this is simply 

unsustainable in the long run.

Also, Jupyter is great for performing experiments, so is there a way to 

track them as well? This sort of functionality would be extremely useful 

especially when teams are implementing advanced machine learning 

architectures from scratch, as it would let them compare the new models 

across all of the relevant metrics with deployed models or current 

architectures. Tasks like these are more convenient to do in a notebook 

and having to convert everything to a proper model file is simply further 

work.

The takeaway here is that accounting for these factors and more would 

require significant resources to plan, develop, and test. For smaller-scale 

businesses, this is an undertaking that’s possibly beyond their reach. So, 

what now?
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The good news is that are a great assortment of tools available to use 

now that essentially implement all of the automation for you, such as 

the API we looked at in the pipeline example earlier. Several examples of 

such tools that we will explore in later chapters are MLFlow, Databricks, 

AWS SageMaker, Microsoft Azure, Google Cloud, and Datarobots. With 

these tools, implementing MLOps principles into your workflow will be 

significantly easier.

In the case of MLFlow, integrating it into code is extremely simple. 

You only have to write a couple lines of code to track all of the metrics 

you need. The functionality of the API we looked at earlier in the pipeline 

example is all provided by MLFlow. Furthermore, MLFlow also saves the 

model for you, allowing for model serving functionality where given some 

data, the model returns its predictions.

MLFlow also integrates into Databricks, AWS SageMaker, Microsoft 

Azure, and can be deployed to Google Cloud as well, all of which are 

tools that help manage your MLOps setup and serve as platforms to 

deploy your models on. While the cloud platforms do provide some 

MLOps functionality, with the extent of this varying for each platform, the 

advantage of using MLFlow is that it lets you have the freedom of choice 

when it comes to one platform to commit to. Furthermore, it gives you a 

greater degree of freedom, as you can perform all the experiments locally 

and offline, and you can support models from many different frameworks. 

MLFlow also provides functionality to help you modularize any custom- 

built models or models made from other frameworks not explicitly 

supported.

And so, to really answer the question of how to implement MLOps, 

you will get familiar with MLFlow and explore each of those tools. The goal 

is to take the model we built in Chapter 2 all the way to deployment and 

beyond.
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 Summary
MLOps is a set of principles and practices adopted from DevOps and 

applied to machine learning. You explored three different types of MLOps 

setups with varying degrees of automation: manual implementation, 

continuous model delivery, and continuous integration/continuous 
delivery of pipelines. You identified that the manual implementation was 

riddled with issues regarding scalability and efficiency and you explored 

a setup that ensured continuous model delivery. Although this setup 

fixed many of the issues found in the manual setup, there were still some 

problems with pipeline integration testing to be solved. The final setup 

solved this issue too and ensured continuous integration and delivery of 

pipelines, completing the total automation setup.

You also looked into what a pipeline really is so that you can 

understand why they are so crucial to the automation setup. Finally, you 

learned about some tools that can help you implement MLOps into your 

workspace, avoiding the trouble of implementing all the automation from 

scratch. In the next chapter, you will look at MLFlow, an excellent API that 

lets you implement your own MLOps setups and is compatible with many 

platforms and frameworks.
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CHAPTER 4

Introduction 
to MLFlow
In this chapter, we will cover what MLFlow is, what it does, and how 

you can implement MLOps setups into your existing projects. More 

specifically, we will cover how you can integrate MLFlow with scikit-learn, 

TensorFlow 2.0+/Keras, PyTorch, and PySpark. We will go over experiment 

creation; metric, parameter, and artifact logging; model logging; and how 

you can deploy models on a local server and query them for predictions.

 Introduction
In the previous chapter, we went over what an optimal MLOps setup 

looks like. However, the level of automation presented would require 

an immense amount of resources dedicated to the project. Fortunately, 

there are APIs that do this for you, such as MLFlow. MLFlow is an API that 

allows you to integrate MLOps principles into your projects with minimal 

changes made to existing code. With just a couple lines of code here and 

there, you can track all of the details relevant to the project that you want. 

Furthermore, you can even save the model for future use in deployment, 

for example, and you can compare all of the metrics between individual 

models to help you select the best model.

https://doi.org/10.1007/978-1-4842-6549-9_4#DOI
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The great thing about MLFlow is that it abstracts everything for you. 

It packages and modularizes the models for you so that when you deploy 

the model and want to make predictions, all you need to do is simply pass 

in the input data in a certain format. All of the modularization that we 

discussed in the previous chapter with the pipelines is taken care of by 

MLFlow. MLFlow also allows you to create a wrapper around your model 

if your model prediction code needs to be different. We will look at this 

functionality in detail in the next chapter, when you deploy your models to 

Amazon SageMaker. Even with custom code, MLFlow will modularize it so 

that it will still work the same way as any other model once it is deployed 

and ready to make predictions.

In detail, we will go over the following in this chapter:

• Creating experiments: Experiments in MLFlow 

essentially allow you to group your models and any 

relevant metrics. For example, you can compare 

models that you’ve built in TensorFlow and in PyTorch 

and name this experiment something like  

pytorch_tensorflow. In the context of anomaly 

detection, you can create an experiment called  

model_prototyping and group all of the models that 

you want to test by running the training pipelines after 

setting model_prototyping as the experiment name.

As you’ll see shortly, grouping model training 

sessions by experiment can really help organize 

your workspace because you’ll get a clear idea of the 

context behind trained models.

• Model and metric logging: MLFlow allows you to 

save a model in a modularized form and log all of the 

metrics related to the model run. A model run can be 

thought of as the model training, testing, and validation 
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pipeline from the previous chapter. In MLFlow, you 

can mark the start and the end of each run and decide 

which metrics you want to save. Additionally, you can 

save graphs, so you can also view plots like confusion 

matrices and ROC curves. A model run is basically the 

instance in which MLFlow executes the code that you 

tell it to, so if you want, you can only train the model 

and leave it at that.

It is possible for you to train, evaluate, and even 

validate your model, logging all of the metrics for 

each respective step in the whole process. MLFlow 

gives you a lot of flexibility in how you define 

a model run. You can end the run after simply 

training it, or you can end the run after training 

and evaluating it. If you wish, you can even set up 

an entire validation script to log the entire process 

for you, allowing you to much more easily compare 

different hyperparameter setups all at once in 

MLFlow. We will explore how to perform model 

validation with MLFlow shortly when we revisit the 

scikit-learn experiment from Chapter 2.

• Comparing model metrics: MLFlow also allows you 

to compare different models and their metrics all at 

once. And so, when performing validation to help 

tune a model’s hyperparameters, you can compare all 

of the selected metrics together in MLFlow using its 

user interface. In the previous chapter, you printed out 

everything, making the cell output possibly very large 

if the script is quite involved in its hyperparameter 

setups.
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• Model Registry: MLFlow also adds functionality to 

allow you to implement a model registry, allowing you 

to define what stage a particular model is in. Databricks 

integrates quite well with MLFlow, providing built- 

in model registry functionality. You will explore how 

to use the MLFlow Model Registry when you look at 

Databricks in Appendix.

• Local deployment: MLFlow also allows you to 

deploy on a local server, allowing you to test model 
inference. Model inference is basically the prediction 

process of a model. Data is sent to the model in one of 

several standardized formats, and MLFlow returns the 

predictions made by the model.

Such a setup can easily be converted to work on 

a hosted server as well. As you will see in the next 

several chapters, MLFlow also allows you to deploy 

your models on popular cloud services such as 

Amazon SageMaker, Microsoft Azure, Google Cloud, 

and Databricks. The process at its core remains 

similar to how you will perform local model serving. 

The only difference comes with where you host the 

model and the particular procedure for querying it.

With that being said, let’s get started by revisiting the scikit-learn 

logistic regression model and integrating MLFlow into it.
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 MLFlow with Scikit-Learn
Before we begin, here are the versions of Python and the packages that 

were used:

• Python: 3.6.5

• numpy: 1.18.5

• scikit-learn: 0.22.2.post1

• pandas: 1.1.0

• Matplotlib: 3.2.1

• Seaborn: 0.10.1

• MLFlow: 1.10.0

You don’t need the exact versions of the packages we used, but in case 

some functionality is removed, renamed, or just changed in the newer 

versions and the code runs into an error, you have the exact version of the 

module you can try running the code with.

MLFlow in particular is updated quite frequently, so you are more 

likely to run into issues running code with something like MLFlow 

compared to a package like numpy.

With that being said, let’s dive into the first example. In this case, let’s 

revisit the scikit-learn code from the previous chapter and add MLFlow 

integration to it.

 Data Processing
First, you begin with all of the imports:

import numpy as np

import pandas as pd

import matplotlib #
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import matplotlib.pyplot as plt

import seaborn as sns

import sklearn #

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import roc_auc_score, plot_roc_curve, 

confusion_matrix

from sklearn.model_selection import KFold

import mlflow

import mlflow.sklearn

print("Numpy: {}".format(np.__version__))

print("Pandas: {}".format(pd.__version__))

print("matplotlib: {}".format(matplotlib.__version__))

print("seaborn: {}".format(sns.__version__))

print("Scikit-Learn: {}".format(sklearn.__version__))

print("MLFlow: {}".format(mlflow.__version__))

The output should look something like Figure 4-1.

Figure 4-1. The output of importing the necessary modules and 
printing out their versions
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Now you can move on to loading the data:

data_path = "data/creditcard.csv"

df = pd.read_csv(data_path)

df = df.drop("Time", axis=1)

Refer to Figure 4-2 to see the code in a cell.

Note that you are once again dropping the column Time.

You can now check to see if the data loaded in correctly:

df.head()

Refer to Figure 4-3 to see the head()function.

Figure 4-2. Loading the data set and dropping the column named 
Time because it adds very large data values that ultimately don’t have 
much of a correlation with the column Class. Model performance is 
boosted slightly simply by dropping the extraneous information

Figure 4-3. Verifying that the data was loaded correctly by using 
the head() function. As you can see, the columns and the data have 
loaded in correctly
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Again, you are dropping the column Time from the data frame this 

time. This is because this column was found to add data that isn’t very 

helpful in finding an anomaly and only adds extra complexity to the data.

In the case of deep learning models, your model might eventually learn 

that the Time data does not correlate very well with the Class labels and 

may place less importance on nodes processing that data. Eventually, it 

might even ignore the Time data. However, you can speed up the learning 

process by cutting out these types of features from your training sets. This 

is because you’re sparing the models the time and resources needed to 

figure that out.

Moving on, you will split the normal points and the anomalies:

normal = df[df.Class == 0].sample(frac=0.5,  

random_state=2020).reset_index(drop=True)

anomaly = df[df.Class == 1]

Let’s print out their respective shapes:

print(f"Normal: {normal.shape}")

print(f"Anomaly: {anomaly.shape}")

Refer to Figure 4-4 to see the above two cells in Jupyter along with their 

outputs.

Figure 4-4. Randomly sampling 50% of all the normal data points 
in the data frame and picking out all of the anomalies from the data 
frame as separate data frames. Then, you print the shapes of both 
data sets. As you can see, the normal points massively outnumber the 
anomaly points
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You are going to split the normal and anomaly sets into train-test- 

validate subsets. Run the following two code blocks:

normal_train, normal_test = train_test_split(normal,  

test_size = 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split 

(anomaly, test_size = 0.2, random_state = 2020)

normal_train, normal_validate = train_test_split(normal_train, 

test_size = 0.25, random_state = 2020)

anomaly_train, anomaly_validate = train_test_split 

(anomaly_train, test_size = 0.25, random_state = 2020)

Refer to Figure 4-5 to see both code blocks in their respective cells.

Now, you can process these sets and create the x-y splits:

x_train = pd.concat((normal_train, anomaly_train))

x_test = pd.concat((normal_test, anomaly_test))

x_validate = pd.concat((normal_validate, anomaly_validate))

y_train = np.array(x_train["Class"])

y_test = np.array(x_test["Class"])

y_validate = np.array(x_validate["Class"])

Figure 4-5. Partitioning the normal and anomaly data frames 
separately into train, test, and validation splits. Initially, 20% of 
the normal and anomaly points are used as the test split. From 
the remaining 80% of data, 25% of that train split is used as the 
validation split, meaning the validation split is 20% of the original 
data. This leaves the final training split at 60% of the original data. In 
the end, the train-test-validate split has a 60-20-20 ratio, respectively
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x_train = x_train.drop("Class", axis=1)

x_test = x_test.drop("Class", axis=1)

x_validate = x_validate.drop("Class", axis=1)

Refer to Figure 4-6 to see the above code block in a cell.

You can print out the shapes of these sets:

print("Training sets:\nx_train: {} \ny_train:  

{}".format(x_train.shape, y_train.shape))

print("\nTesting sets:\nx_test: {} \ny_test:  

{}".format(x_test.shape, y_test.shape))

print("\nValidation sets:\nx_validate: {} \ny_validate: {}".

format(x_validate.shape, y_validate.shape))

Refer to Figure 4-7 to see the output shapes.

Figure 4-6. Creating the respective x and y splits of the training, 
testing, and validation sets by concatenating the respective normal 
and anomaly sets. You drop Class from the x-sets because it would be 
cheating otherwise to give it the label directly. You are trying to get the 
model to learn the labels by reading the x-data, not learn how to read 
the Class column in the x-data
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Finally, you scale your data using scikit-learn’s standard scaler:

scaler = StandardScaler()

scaler.fit(pd.concat((normal, anomaly)).drop("Class", axis=1))

x_train = scaler.transform(x_train)

x_test = scaler.transform(x_test)

x_validate = scaler.transform(x_validate)

Refer to Figure 4-8.

Figure 4-7. Printing out the shapes of the training, testing, and 
validation sets

Figure 4-8. Fitting the scaler on the superset of normal and anomaly 
points after dropping Class to scale the x-sets
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 Training and Evaluating with MLFlow
All that is left now is to train and evaluate your model. We will showcase 

validation with MLFlow functionality in a bit, but first let’s define the 

train and test functions to organize the code. This is also where you start 

integrating MLFlow into your code. Here is the train function:

def train(sk_model, x_train, y_train):

    sk_model = sk_model.fit(x_train, y_train)

    train_acc = sk_model.score(x_train, y_train)

    mlflow.log_metric("train_acc", train_acc)

    print(f"Train Accuracy: {train_acc:.3%}")

Refer to Figure 4-9 to see this code in a cell.

You may have noticed the first of the new code with this line:

mlflow.log_metric("train_acc", train_acc)

You create a new metric here specifically for the training accuracy so 

that you can keep track of this metric. Furthermore, you are telling MLFlow 

to log this metric, so that MLFlow will keep track of this value in each run. 

When you log multiple runs, you can compare this metric across each 

of those runs so that you can pick a model with the best AUC score for 

example.

Figure 4-9. Defining the train function to better organize the code. 
Additionally, you are defining a training accuracy metric that will be 
logged by MLFlow
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Let’s now move on to the evaluate function:

def evaluate(sk_model, x_test, y_test):

    eval_acc = sk_model.score(x_test, y_test)

    preds = sk_model.predict(x_test)

    auc_score = roc_auc_score(y_test, preds)

    mlflow.log_metric("eval_acc", eval_acc)

    mlflow.log_metric("auc_score", auc_score)

    print(f"Auc Score: {auc_score:.3%}")

    print(f"Eval Accuracy: {eval_acc:.3%}")

     roc_plot = plot_roc_curve(sk_model, x_test, y_test, 

name='Scikit-learn ROC Curve')

    plt.savefig("sklearn_roc_plot.png")

    plt.show()

    plt.clf()

    conf_matrix = confusion_matrix(y_test, preds)

    ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

    ax.invert_xaxis()

    ax.invert_yaxis()

    plt.ylabel('Actual')

    plt.xlabel('Predicted')

    plt.title("Confusion Matrix")

    plt.savefig("sklearn_conf_matrix.png")

    mlflow.log_artifact("sklearn_roc_plot.png")

    mlflow.log_artifact("sklearn_conf_matrix.png")

Refer to Figure 4-10 to see the above code in a cell.

Chapter 4  IntroduCtIon to MLFLow



138

Once again, you have told MLFlow to log two more metrics: the AUC 

score and the accuracy on the test set. You do so with these lines of code:

mlflow.log_metric("eval_acc", eval_acc)

mlflow.log_metric("auc_score", auc_score)

Furthermore, you can also tell MLFlow to save the plots generated by 

matplotlib and by seaborn. With this, you can look at each of the graphs for 

each training run and do so in a highly organized manner. You must first 

save these plots, which you do in the same directory. Then, you must tell 

MLFlow to grab the artifacts to log them like so:

mlflow.log_artifact("sklearn_roc_plot.png")

mlflow.log_artifact("sklearn_conf_matrix.png")

Make sure that they have the same names as the graphs you saved.

Figure 4-10. A function to calculate the evaluation metrics for the 
AUC score and accuracy. Plots for the confusion matrix and the ROC 
curve are generated, and both the metrics and the graphs are logged 
to MLFlow
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 Logging and Viewing MLFlow Runs
Finally, let’s run the code that actually sets the experiment name, starts the 

MLFlow run, and executes all this code:

sk_model = LogisticRegression(random_state=None,  

max_iter=400, solver='newton-cg')

mlflow.set_experiment("scikit_learn_experiment")

with mlflow.start_run():

    train(sk_model, x_train, y_train)

    evaluate(sk_model, x_test, y_test)

    mlflow.sklearn.log_model(sk_model, "log_reg_model")

     print("Model run: ", mlflow.active_run().info.run_uuid)

mlflow.end_run()

Notice the new lines of MLFlow code. We will go through them one by 

one.

First, let’s begin with what appears to set the experiment name:

mlflow.set_experiment("scikit_learn_experiment")

What this does is that it puts the run under whatever experiment name 

you pass in as a parameter. If that name does not exist, MLFlow will create 

a new one under that name and put the run there.

with mlflow.start_run():

     ...

     ...

This line of code allows you to chunk all of your code under the context 

of one MLFlow run. This ensures that there are no discrepancies between 

where your metrics are being logged, and that it doesn’t create two 

different runs when you mean it to log everything for the same run.

mlflow.sklearn.log_model(sk_model, "log_reg_model")
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This line of code is the general convention to use when you’re logging a 

model. The parameters, in order, are the model you’re saving and then the 

name you’re setting for the model when saving. In this case, you are saving 

your logistic regression model with the name log_reg_model in this run.

As you will see later, most other frameworks follow the same style 

when saving the model. There are a couple exceptions, but we will cover 

this when the time comes. In this case, you are calling mlflow.sklearn, 

but if you wanted to log a PySpark model, you would do mlflow.spark.

Basically, the framework the model was built in must match the 

framework module of MLFlow when logging the model. It is possible 

to create a custom “model” in MLFlow and log this as well, something 

that is covered in the documentation. You can use this custom model to 

then specify how you want the prediction function to work. If you’d like 

to process the data some more before making predictions, for example, 

MLFlow allows you to specify this extra functionality through the use of the 

MLFlow PyFunc module. Refer to the documentation, which you can find 

here: www.mlflow.org/docs/latest/models.html#model-customization.

print("Model run: ", mlflow.active_run().info.run_uuid)

This line of code essentially gets the current run that the model and 

metrics are being logged to and prints it out. This makes it handy if you 

want to retrieve the run directly from the notebook itself instead of going to 

the UI to do so.

mlflow.end_run()

Finally, this tells MLFlow to end the current run. In cases where there 

is an error in the MLFlow start run code block, and the run does not 

terminate, do this to forcibly end the current run. Basically, it is there to 

ensure that MLFlow stops the run after you executed all the code relevant 

to the current run.

Moving on, refer to Figure 4-11 to see the full output of the code.
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You can see that MLFlow automatically generates a new experiment 

if it does not already exist, so you can create a new experiment directly 

from the code. You can also see that the rest of the code basically outputs 

as usual, except it also prints the run ID of the current MLFlow run just as 

you specified. You will use this later when you select the specific model 

that you want to serve. What you will do next is open up the UI MLFlow 

provides where you can actually look at all the experiments and model 

runs. Finally, you also log the model itself as an artifact with MLFlow. 

MLFlow will modularize this code so that it will work with the code 

provided by MLFlow to support implementations of a variety of MLOps 

principles.

Figure 4-11. The output of running the MLFlow experiment. Under 
an MLFlow run context, you are training the model, outputting the 
graphs from the evaluation function, and logging all the metrics 
including the model to this run
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The following was done on Windows 10, but it should be the same 

on MacOS or Linux. First, open command prompt/powershell/terminal. 

Then, you must go into the directory that contains this notebook file. List 

the contents of the directory (or view this in file explorer/within Jupyter 

itself) and you will notice a new directory named mlruns.

If you installed all of your packages in Conda, make sure you’ve 

activated the Conda environment before running this.

What you want to do now is to make sure your command prompt, 

powershell, or terminal is in the same directory that contains mlruns, and 

type the following:

mlflow ui -p 1234

The command mlflow ui hosts the MLFlow UI locally on the default 

port of 5000. However, the options -p 1234 tell it that you want to host it 

specifically on the port 1234.

If it all goes well, and it can take several seconds, you should see 

something like Figure 4-12.

Figure 4-12. Making sure that the current directory contains the 
folder mlruns and calling the command to start the UI. If successful, 
it should state “Serving on http:// … :1234.” We have docker on our 
system, hence why yours might say localhost instead of kubernetes.
docker.internal
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Now, open a browser and type in http://localhost:1234 or 

http://127.0.0.1:1234. Both should take you to the same MLFlow UI. If 

you used a different port, it should generally look like this:

http://localhost:PORT_NUMBER or http://127.0.0.1:PORT_NUMBER, 

where you replace PORT_NUMBER with the one you used. If you did not 

specify a port parameter, then the default port used by MLFlow is 5000.

Regardless, if it works correctly, you should see something like 

Figure 4-13 once you visit that URL.

Notice that there is now an experiment titled scikit_learn_experiment. 

Click it, and you should see something like Figure 4-14.

Figure 4-13. Your MLFlow UI should look something like this. To 
the left are the experiments. Notice that there is an experiment titled 
Default and one titled scitkit_learn_experiment, which is the one you 
just created
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You should see something like Figure 4-15.

Figure 4-14. This is what your experiment, scikit_learn_experiment, 
should look like once you click it. Notice that there is one run here, 
which is what was just created

You can see the run that just completed, along with the metrics you 

logged. Click it so that you can explore it. The run that was just completed 

should have a green check mark beside the time stamp when it finished if 

everything went well, which you can see is the case in Figure 4-14.

Chapter 4  IntroduCtIon to MLFLow



145

Figure 4-16. The logged artifacts of this run. Notice that the graphs 
appear to be logged as well as the model itself, which was named 
log_reg_model when you were logging it in the code

Figure 4-15. This is the run that was just completed. Notice that the 
metrics you logged show up here

You should now see the details of this run much more clearly. Here, 

you can see all of the parameters and metrics that were logged. Keep 

scrolling down and you should be able to see all of the logged artifacts. 

Refer to Figure 4-16.
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Here, you can see the model that has been logged, along with the two 

graphs that you logged as artifacts. Click the graphs and you should see 

something like Figure 4-17.

Amazing, right? Everything is extremely organized, and you don’t 

have to worry about creating multiple folders for everything and staying 

organized. Simply tell MLFlow what to do and it will log all the information 

relevant to this run that you need. You can log your deep learning model’s 

hyperparameters for learning rate, number of epochs, specific optimizer 

parameters like beta1 and beta2 for the Adam optimizer, and so on.

You can even log graphs, as you can see in Figure 4-17, along with the 

models themselves. With MLFlow, you can stay highly organized with 

your experiments even if you don’t necessarily need the deployment 

capabilities to the cloud services.

Let’s now try logging a few more runs. Rerun the cell in Figure 4-11 

a couple times to completion and go back to the MLFlow UI. Make sure 

you have selected the experiment named scikit_learn_experiment. You 

should see something like Figure 4-18.

Figure 4-17. Inspecting the graph of the confusion matrix that you 
saved. Feel free to click the other graph as well, which is of the ROC 
plot
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Let’s compare the metrics you’ve logged for these runs. Select at least 

two runs, and ensure your UI looks somewhat like Figure 4-19. We selected 

three runs.

Figure 4-19. This is what your UI should look like after selecting 
several runs. Make sure to select at least two so that there is something 
to compare. Also notice that the button named Compare turns solid

Figure 4-18. Revisiting your experiment after logging some runs in. 
The runs are logged in ascending order by timestamp, so the latest 
runs are on top
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After clicking Compare, you should see something like Figure 4-20.

Here, you can directly compare the relevant parameters and metrics 

between the runs you have chosen. You have the option of viewing a scatter 

plot, a contour plot, or a parallel coordinates plot. Feel free to play around 

with the metrics and with the plots. You can even save these plots if you wish.

Note that since these runs have the exact same metrics, there will only 

appear to be one point plotted.

 Loading a Logged Model

Next, let’s briefly look at how you can load the models logged by MLFlow. 

Go back to the experiment and click a run. Note the run ID at the top and 

copy it. Then, go back to the notebook, and run the following. Note that 

there is a placeholder for the run ID:

loaded_model =  mlflow.sklearn.load_model 

("runs:/YOUR_RUNID_HERE/log_reg_model")

Figure 4-20. The UI after selecting three runs to compare. As you can 
see, you can look at all of the metrics at once. There is also a graphing 
tool that lets you compare these values graphically, though you won’t 
see proper graphs as every value is the same across the runs
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To better understand what this path is, let’s split it up into three 

sections: the format (runs:/), the run ID (YOUR_RUNID_HERE), and the 

model name that you used when you logged it (log_reg_model).

In our case, our run ID was 3862eb3bd89b43e8ace610c521d974e6, 

so our cell looks like Figure 4-21. Ensure your code looks somewhat like 

Figure 4-21, with the only difference being the run ID that you chose since 

it will be different from ours.

This is now the same model that you had when MLFlow logged it in the 

first place. With this, you can call something like .score() and see that it’s 

the same as during training:

loaded_model.score(x_test, y_test)

This outputs the accuracy as the model is evaluated on the test set. If 

this truly is the same model, then the accuracy should match what was 

output earlier during the evaluation portion of the model run.

Refer to Figure 4-22 to see the output.

As you can see, this value matches the evaluation accuracy from 

Figure 4-11.

Figure 4-22. This is the evaluation accuracy of the loaded model 
after evaluation on the test sets. If you compare this with Figure 4- 11,  
you can see that the numbers more or less match, disregarding 
rounding

Figure 4-21. The code to load a model that we logged using the 
specific run ID we logged it in along with the model’s name we used 
when we logged it
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Now you know how to load a model from a specific MLFlow run.

With that, you’ve seen some of the functionality that MLFlow provides 

and how it can help in keeping your prototyping experiments much 

more organized. As you will see shortly, this entire pipeline that you just 

explored is pretty much all you need to recreate the train, test, validate 

pipeline that you saw earlier. Before you move on to looking at how you 

can use MLFlow with other frameworks, let’s go over how you can use 

MLFlow functionality to vastly improve the model validation process.

 Model Validation (Parameter Tuning) 
with MLFlow
 Parameter Tuning – Broad Search

Just like in Chapter 2, you will use a script to help with model validation 

with respect to hyperparameter tuning. The tuning script will largely 

remain the same, except for a few modifications where MLFlow code has 

been added in.

Run the following code to set the range of anomaly weights and to set 

the number of folds:

anomaly_weights = [1, 5, 10, 15]

num_folds = 5

kfold = KFold(n_splits=num_folds, shuffle=True,  

random_state=2020)

The code should look like Figure 4-23.

Figure 4-23. The code to determine the list of anomaly weights to 
perform validation over, to determine the number of folds, and to 
initialize the KFolds generator based on the number of folds

Chapter 4  IntroduCtIon to MLFLow



151

Now, paste the following. This is the first half of the entire function:

mlflow.set_experiment("sklearn_creditcard_broad_search")
logs = []
for f in range(len(anomaly_weights)):
    fold = 1
    accuracies = []
    auc_scores= []
    for train, test in kfold.split(x_validate, y_validate):
        with mlflow.start_run():
            weight = anomaly_weights[f]
            mlflow.log_param("anomaly_weight", weight)

            class_weights= {
                0: 1,
                1: weight
            }
            sk_model = LogisticRegression(random_state=None,
                                    max_iter=400,
                                    solver='newton-cg',
                                     class_weight=class_

weights).fit 
(x_validate[train],  
y_validate[train])

            for h in range(40): print('-', end="")
            print(f"\nfold {fold}\nAnomaly Weight: {weight}")

             train_acc = sk_model.score(x_validate[train],  
y_validate[train])

            mlflow.log_metric("train_acc", train_acc)

             eval_acc = sk_model.score(x_validate[test],  
y_validate[test])

            preds = sk_model.predict(x_validate[test])

            mlflow.log_metric("eval_acc", eval_acc)
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Here is some more of the code. Make sure this all aligns with the code 

from above.

            try:

                auc_score = roc_auc_score(y_validate[test], preds)

            except:

                auc_score = -1

            mlflow.log_metric("auc_score", auc_score)

             print("AUC: {}\neval_acc: {}".format(auc_score, 

eval_acc))

            accuracies.append(eval_acc)

            auc_scores.append(auc_score)

             log = [sk_model, x_validate[test],  

y_validate[test], preds]

            logs.append(log)

             mlflow.sklearn.log_model(sk_model,   

f"anom_weight_{weight}_fold_{fold}")

            fold = fold + 1

            mlflow.end_run()

    print("\nAverages: ")

    print("Accuracy: ", np.mean(accuracies))

    print("AUC: ", np.mean(auc_scores))

    print("Best: ")

    print("Accuracy: ", np.max(accuracies))

    print("AUC: ", np.max(auc_scores))

First, let’s look at what that giant chunk of code looks like in a cell. 

Ensure your code and alignment matches Figure 4-24.
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Now, let’s run this script. It should log the parameter for the anomaly 

weight and all of the metrics that you specified for every fold generated. 

When the script finishes, go to your MLFlow UI and switch the experiment 

to sklearn_creditcard_broad_search to see all the runs you just logged. 

You should see something like in Figure 4-25.

Figure 4-24. The entire validation script from Chapter 2 with some 
MLFlow code additions to log everything during the validation 
process
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Let’s try sorting this by the AUC score to find the best parameters for 

the AUC. In the metrics column, click auc_score.

The action should result in something that looks like Figure 4-26.

Figure 4-25. The output you should see after the validation 
experiment has finished. Make sure you select the experiment titled 
sklearn_creditcard_broad_search
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You want to sort the columns in descending order, so click it again to 

see something that looks like Figure 4-27.

Figure 4-26. The values are all sorted by auc_score in descending 
order. We’ve highlighted this column so that you can more easily spot 
the difference between this figure and Figure 4-25. As you can see, 
the AUC scores are in ascending order. You want to see the best AUC 
scores, so you must sort in descending order
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Perhaps you don’t really care about anything but the absolute best 

scores. Say that you are targeting AUC scores that are at least 0.90. How 

would you go about filtering everything? Well, the UI provides a search bar 

that performs a search based on the SQL WHERE clause. So, to filter your 

output, type the following and click Search:

metrics."auc_score" >= 0.90

You should see something like Figure 4-28. If you have copied and 

pasted the line of code, be sure to delete it and put in the quotation marks 

again if you encounter any errors about the quotation marks.

Figure 4-27. The values are now sorted by AUC score in descending 
order. Now you can see the runs that produced the best AUC scores 
along with the specific anomaly weight it had in that run

Chapter 4  IntroduCtIon to MLFLow



157

Notice that we put "auc_score" in quotation marks. This is for cases 

where the metric name that you’ve logged contains characters like a dash 

where it might not recognize the name if you typed it out like so:

metrics.auc-score

The proper convention for a metric logged as "auc-score" would be to 

filter it like so:

metrics."auc-score" >= 0.90

Now let’s say that of these scores, you want to see the scores for 

anomaly weights of 5 only. It doesn’t appear that there are any results with 

the anomaly weight of 1, so we will start with 5. For that, let’s type and 

search the following:

metrics."auc_score" >= 0.90 AND parameters.anomaly_weight = "5"

You should see something like Figure 4-29.

Figure 4-28. The results of filtering all of the AUC scores to be above 
0.90. As you can see, only a handful of runs produced AUC scores that 
are at least 0.90

Chapter 4  IntroduCtIon to MLFLow



158

You put the 5 in quotation marks because the parameters seem to be 

logged as string values, whereas the metrics are logged as floats.

From this output, it seems that only two of the five folds with the 

anomaly weight set to 5 had an AUC score above 0.90. Let’s quickly search 

over the other parameters and check how many folds had an AUC score 

above 0.90 as well.

For filtering the anomaly weight by 10, refer to Figure 4-30.

So, three of the five folds with the anomaly weight set to 10 had an AUC 

score above 0.90.

Let’s check 15 now. Refer to Figure 4-31.

Figure 4-29. Filtering the runs to have only runs with the anomaly 
weight set to 5 and to have an AUC score above 0.90

Figure 4-30. Three runs for an anomaly weight of 10 also met your 
criteria for minimum AUC score

Chapter 4  IntroduCtIon to MLFLow



159

You see similar results with 15.

What if you tighten the AUC score requirement to be a minimum of 

0.95? Let’s check the runs for a minimum AUC of 0.95 and with an anomaly 

weight of 5. Refer to Figure 4-32.

So, it seems that only one fold reached an AUC score above 0.95 when 

the anomaly weight was 5.

What do the results look like for an anomaly weight of 10? Refer to 

Figure 4-33.

Figure 4-31. You can see that with an anomaly weight of 15, there 
seems to be two folds that had an AUC score above 0.95

Figure 4-32. This time, you see that only one of the folds for the runs 
with anomaly weight set to 5 has an AUC score above 0.95
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Let’s check the runs with an anomaly weight of 15. Refer to Figure 4-34.

It seems that for an anomaly weight of 15, only one run has achieved 

an AUC score above 0.95. It seems that you can’t look at how you can 

narrow the scope without looking at the rest of the AUC scores.

It appears to be the case that the best AUC scores seem to be between 5 

and 15.

Alright, so what if the higher anomaly weights were more consistent 

in their AUC scores, and the smaller anomaly weight runs achieving the 

highest AUC scores were just flukes? To see how each anomaly weight 

Figure 4-33. With an anomaly weight of 10, only one run has an 
AUC score above 0.95

Figure 4-34. With an anomaly weight of 15, only one run has 
achieved an AUC score above 0.95. From these results, you cannot 
really infer which weight setting is the best, so you have to narrow the 
scope of your hyperparameter search. As far as you know, you could 
have missed the best setting, and it could be somewhere in between 5 
and 10 or 10 and 15
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setting did, first remove the query statement, and click Search again. Next, 

make sure that the AUC scores are in descending order. Once you’re done, 

refer to Figure 4-35 and verify that your output looks similar.

Using the following code, let’s filter over all of the values for anomaly 

weights and check what the AUC scores look like, replacing 1 with 5, 10, 

and 15.

parameters.anomaly_weight = "1"

Refer to Figure 4-36 to see the results of filtering by an anomaly weight 

of 1.

Figure 4-35. Ordering the runs by descending AUC score
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None of the scores have gone above 0.9, so you can automatically rule 

out this anomaly weight setting. If you go back to your script, you can see 

that the average AUC was around 0.8437.

Let’s look at the runs with an anomaly weight of 5. Refer to Figure 4-37.

The scores have improved noticeably. If you go back to the original 

script’s output, you can see that the average AUC score is now 0.9116.

The rest of the anomaly weights all achieved the highest AUC score of 

around 0.975, so the average AUC is a better metric to help you narrow the 

range.

Figure 4-37. Looking at the AUC scores of the runs with anomaly 
weight of 5 in descending order. You can see a noticeable increase in 
the average AUC score when compared to an anomaly weight of 1

Figure 4-36. Looking at the AUC scores of the runs with an anomaly 
weight of 1 in descending order
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Let’s now look at the runs with an anomaly weight of 10. Refer to 

Figure 4-38.

These scores seem even better than the ones for an anomaly weight of 

5. This time, the average AUC score is around 0.9215.

Finally, let’s look at the scores for an anomaly weight of 15. Refer to 

Figure 4-39 to see the results of filtering by an anomaly weight of 15.

Figure 4-38. Looking at the AUC scores of the runs with an anomaly 
weight of 10 in descending order. These scores seem even better

Figure 4-39. Looking at the AUC scores of the runs with an anomaly 
weight of 15 in descending order. The scores are very similar, but 
the average is ever so slightly worse, so the true range seems to be 
somewhere in between 10 and 15
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The scores are very similar to each other, and indeed, the average AUC 

score is now 0.9212.

Based on these results, you can see that there seems to be an increase 

from 5 to 10, but a slight decrease from 10 to 15. From this data, the 

ideal range seems to be somewhere in between 10 and 15, but again, the 

decrease in average AUC from 10 to 15 is essentially negligible. And so, 

what if it’s potentially beyond 15, and you started out with the wrong range 

to search over?

From the results of this validation experiment, it seems that you 

haven’t found a definite range of values that you know for sure you can 

focus on. And so, you must expand your range even more just to see if you 

can get better results with higher anomaly weights.

Looking at the distribution of data and how heavily the normal points 

outnumber the anomalies, you can use your intuition to help guide your 

hyperparameter search and expand the range far more.

Now that you know this, let’s try expanding the range far more.

 Parameter Tuning – Guided Search

The best overall performances were achieved by anomaly weights 10 and 

15, but it seems to be on an upward trend the higher up you go with the 

anomaly weight.

Now that you know this, let’s try another validation run with a broader 

range of anomaly weights to try.

Go back to the cell (or copy-paste it into a new cell) in Figure 4-23 and 

change the anomaly weights so that they look like the following:

anomaly_weights = [10, 50, 100, 150, 200]

You should see something like Figure 4-40.
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The validation script itself should be the same, so if you simply 

replaced the anomaly weights in the original cell, don’t run the validation 
script yet! Let’s create a new experiment so that you don’t clutter the 

original tuning experiment with these new runs.

Modify the following line in the old validation script so that it goes 

from

mlflow.set_experiment("sklearn_creditcard_broad_search")

to

mlflow.set_experiment("sklearn_creditcard_guided_search")

You should see something like Figure 4-41.

Figure 4-40. Setting a narrow range of values to search over during 
the second validation run

Figure 4-41. Setting a new experiment called sklearn_creditcard_
guided_search so that the results of this second validation experiment 
are stored separately

Now you can run this code. Once it finishes, go back to the UI, refresh 

it, and select the new experiment named sklearn_creditcard_guided_

search. You should see something like Figure 4-42.
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The whole point of broadening the range of anomaly weights that 

you are performing the tuning experiment on is to help you understand 

where the best hyperparameter range may lie. You did not know this 

initially, so you picked a range that was too small to help you discover the 

best value. Now that you do know, you have expanded your search range 

considerably.

From the results of this experiment, you can hopefully narrow your 

range a lot more and repeat the experiment with a massively reduced 

range and arrive at the correct hyperparameter setting.

You will now filter out each of the values by each unique anomaly 

weight (10, 50, 100, 150, and 200) to get an idea of how the runs with that 

setting performed.

Make sure you’re sorting AUC scores in descending order, type the 

following query, and search:

parameters.anomaly_weight = "10"

You should see something like Figure 4-43.

Figure 4-42. The results of the second validation experiment
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The average AUC score as displayed by the validation script is around 

0.9215. Of course, this is the same result as from earlier.

Let’s see how the scores look for an anomaly weight of 50. Refer to 

Figure 4-44.

There appears to be a minute difference in the range of AUC scores 

already. Looking at the script, you can see that the average AUC is around 

0.9248, so there appears to be a small increase in the AUC score.

Let’s keep going and check the results for the anomaly weight of 100. 

Refer to Figure 4-45.

Figure 4-43. Filtering the runs by anomaly weight of 10 and setting 
the AUC score to display in descending order

Figure 4-44. Filtering the runs by an anomaly weight of 50 and 
setting the AUC score to display in descending order. It seems there’s a 
slight difference in values
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The average this time appears to be 0.9327. Despite the massive 

increase in weight, the average AUC score did not go up that high. 

However, notice that the first result with an AUC score of 0.995 has 

appeared. The best AUC score up until the anomaly weight of 50 was 0.975, 

but this anomaly weight setting has broken past that.

Let’s keep going and see if it increases with an anomaly weight setting 

of 150. Refer to Figure 4-46A.

Figure 4-45. Filtering the runs by an anomaly weight of 100 and 
setting the AUC score to display in descending order

Figure 4-46A. Filtering the runs by an anomaly weight of 150 and 
setting the AUC score to display in descending order
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The AUC scores overall seem to be a bit higher. Indeed, the average 

AUC score is now 0.9365, so there was an increase. Finally, let’s check the 

AUC scores for an anomaly weight setting of 200. Refer to Figure 4-46B.

The new average AUC now is 0.9396, so this anomaly weight setting 

seems even better.

In fact, you still weren’t able to come to a conclusion about an optimal 

range, since the AUC scores keep increasing as you set higher anomaly 

weights.

So, from this, you know that the best hyperparameter setting is 

somewhere above 200. You simply shift the range of the scope to start at 

200 and search over a slightly different area, and once you have found a 

good range of values to search over (eventually the AUC scores will start 

trending down as you increase the anomaly weight), you can narrow the 

focus and start searching again.

After a certain amount of precision with the parameter value, you start 

to see diminishing returns where the added effort only produces negligible 

improvements in performance, but you will likely encounter this as you 

start getting deeper into the decimal values.

Figure 4-46B. Filtering the runs by an anomaly weight of 200 and 
setting the AUC score to display in descending order
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Hopefully now you understand more about how you can integrate 

MLFlow into the model training, testing, and validation pipeline using 

scikit-learn. You also looked at how to use the UI for basic comparisons, 

along with how you might perform hyperparameter tuning more easily 

using MLFlow.

A quick note to make is that if you’d like to perform more complicated 

searches over multiple metrics or parameters, MLFlow provides 

functionality through the API to let you do so via SQL searches within the 

code, letting you order by multiple columns, for example.

MLFlow also provides support for logging metrics, parameters, 

artifacts, and even models for other frameworks in their documentation. 

We will now take a look at how to integrate MLFlow with TensorFlow 2.0+/

Keras, PyTorch, and PySpark.

 MLFlow and Other Frameworks
 MLFlow with TensorFlow 2.0 (Keras)
MLFlow provides easy integration with TensorFlow 2.0+ (any version of 

TensorFlow 2.0 and above). To see how, let’s go over a very basic example 

of a handwritten digit classifier model on the MNIST dataset. We will be 

using the built-in Keras module to keep things simple for demonstration 

purposes. MLFlow supports TensorFlow 1.12 at a minimum, so this code 

should run as long as you have at least TensorFlow 1.12.

We will assume a basic level of familiarity with TensorFlow 2, so 

we won’t go into much depth about what the functions, model layers, 

optimizers, and loss functions mean.

Before we begin, here are the versions of TensorFlow, CUDA, and 

CuDNN that we used. Keep in mind that we ran this using the GPU version 
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of TensorFlow (the package is called tensorflow-gpu), although you should 
be able to run this without a GPU at the cost of it taking longer:

• TensorFlow (GPU version) – 2.3.0

• CUDA – 10.1

• CuDNN – v7.6.5.32 for CUDA 10.1

• Sklearn – 0.22.2.post1

• MLFlow – 1.10.0

 Data Processing
Here is the code to import the necessary modules and print out their 
versions:

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Flatten
from tensorflow.keras.datasets import mnist

import numpy as np

import matplotlib
import matplotlib.pyplot as plt

import sklearn
from sklearn.metrics import roc_auc_score

import mlflow
import mlflow.tensorflow

print("TensorFlow: {}".format(tf.__version__))
print("Scikit-Learn: {}".format(sklearn.__version__))
print("Numpy: {}".format(np.__version__))
print("MLFlow: {}".format(mlflow.__version__))

print("Matplotlib: {}".format(matplotlib.__version__))
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You should see something like Figure 4-47.

Let’s now load the data:

(x_train, y_train), (x_test, y_test) = mnist.load_data()

Keras, and by extension TensorFlow, provides the MNIST handwritten 

digit dataset for you, so all you need to do to load the data is call the 

function, like in Figure 4-48.

Refer to Figure 4-48 to see the code in a cell.

You can even see what one of these images looks like. Run the 

following:

plt.imshow(x_train[0], cmap='gray'), print("Class: ", y_train[0])

You should see something like Figure 4-49.

Figure 4-47. Importing the necessary modules and printing their 
versions

Figure 4-48. Defining x_train, y_train, x_test, and y_test
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Also notice that you printed out the class label associated with this 

specific image. The labels are all integers between 0 and 9, each associated 

with an image that shows a handwritten digit from 0 to 9.

Since 2D convolutional layers in TensorFlow/Keras expect four 

dimensions in the format of (m, h, w, c) where m stands for the number of 

samples in the dataset, h and w stand for the height and width, respectively, 

and c stands for the number of channels (three if it’s an RGB color image 

for example), you need to reshape your data so that it conforms to these 

specifications. Your images are all black and white, so they technically have 

a channel of one. And so, you must reshape them like so:

x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], 

x_train.shape[2], 1)

x_test = x_test.reshape(x_test.shape[0], x_test.shape[1],  

x_test.shape[2], 1)

y_train = tf.keras.utils.to_categorical(y_train)

y_test = tf.keras.utils.to_categorical(y_test)

Refer to Figure 4-50 to see that code in a cell.

Figure 4-49. Looking at what one of the data samples looks like 
using matplotlib. You also printed out the class label associated with 
this sample, which was 5
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You converted the y sets by calling a function called  

to_categorical(). This converts each sample from an integer value of 

say 2 or 4 corresponding to the digit represented by the x samples into a 

one-hot encoded vector.

Samples in this format are now 0 vectors with a num_classes number 

of digits. In other words, these vectors all have a length matching the total 

number of classes. Whatever value the label was is now the index of the 

value 1. And so, if the label is 1, the value at the index of 1 in this vector will 

be one, and everything else is a 0.

This may be a little confusing, so refer to Figure 4-51 to see what the 

one-hot encoded label looks like for a digit representing 5.

Figure 4-50. Reshaping the data to include one channel, conforming 
with the specifications of the convolutional layers. Additionally, the y 
sets are being converted to one-hot encoded formats

Figure 4-51. The new output of the one-hot encoded label 
representing a value of 5. Notice that the value at index 5 is now 1

As you can see, the index of the 1 is 5, corresponding to the first  

x_train example you looked at earlier, which was the digit 5.

Now, let’s print out the shapes:

print("Shapes")

print("x_train: {}\ny_train: {}".format(x_train.shape,  

y_train.shape))

print("x_test: {}\ny_test: {}".format(x_test.shape,  

y_test.shape))

You should now see something like Figure 4-52.
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 MLFlow Run – Training and Evaluating

Let’s move on to the creation of your model. You will be using the 

Sequential method of model creation. The model will be quite simple, 

consisting of a couple 2D convolutional layers that feed into three dense 

layers. Run the following:

model = Sequential()

model.add(Conv2D(filters=16, kernel_size=3, strides=2, 

padding='same', input_shape=(28, 28, 1), activation="relu"))

model.add(Conv2D(filters=8, kernel_size=3, strides=2, 

padding='same', input_shape=(28, 28, 1), activation="relu"))

model.add(Flatten())

model.add(Dense(30, activation="relu"))

model.add(Dense(20, activation="relu"))

model.add(Dense(10, activation="softmax"))

model.summary()

You should see something like Figure 4-53.

Figure 4-52. Printing the output shapes of the processed data
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Let’s now compile your model using the Adam optimizer and 

categorical cross-entropy for your loss. For your metric, you will only be 

using accuracy. Run the following:

model.compile(optimizer="Adam",  

loss="categorical_crossentropy", metrics=["accuracy"])

You should see something like Figure 4-54.

Figure 4-53. Creating the model and outputting a summary of the 
model’s architecture

Figure 4-54. Compiling your model, setting the optimizer to Adam 
optimizer, setting the loss to categorical cross-entropy, and setting the 
metric to be accuracy

Now you get to the part where you tell MLFlow to log this run. You 

want all of the metrics to be logged to the same run, so you must tell 

MLFlow specifically to run a block of code in the context of the same run. 

To do so, you once again block your code using the following line:

with mlflow.start_run():
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With that, run the following to set the experiment name, train the 

model, get the evaluation metrics you need, and log them all to MLFlow:

mlflow.set_experiment("TF_Keras_MNIST")

with mlflow.start_run():

    mlflow.tensorflow.autolog()

    model.fit(x=x_train, y=y_train, batch_size=256, epochs=10)

    preds = model.predict(x_test)

    preds = np.round(preds)

    eval_acc = model.evaluate(x_test, y_test)[1]

    auc_score = roc_auc_score(y_test, preds)

    print("eval_acc: ", eval_acc)

    print("auc_score: ", auc_score)

    mlflow.tensorflow.mlflow.log_metric("eval_acc", eval_acc)

    mlflow.tensorflow.mlflow.log_metric("auc_score", auc_score)

mlflow.end_run()

Refer to Figure 4-55 to see the output. Ignore the warning messages. 

They don’t hinder the training process or the performance of the model.
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Another new line of code is the following:

mlflow.keras.autolog()

This basically tells MLFlow to log all the parameters and metrics 

associated with the particular TensorFlow/Keras model. As you will see 

shortly, MLFlow will log the hyperparameters, model metrics listed in 

the compile() function, and even the model itself once the training has 

finished.

Figure 4-55. Output of the MLFlow run and the training process. You 
can also see that the metrics you calculated have been updated
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 MLFlow UI – Checking Your Run

With that, let’s now open the MLFlow UI and check your run in MLFlow. 

Make sure your terminal or command prompt is in the same directory 

where the mlruns are stored. Usually, MLFlow saves all these runs in the 

same directory of the Jupyter notebook.

Now that you’ve opened the UI, you should see something like 

Figure 4-56.

Click the tab called TF_Keras_MNIST to see the results of the 

experiment you just logged. You should see something like Figure 4-57.

Figure 4-56. The MLFlow UI after running the TensorFlow 
experiment. Notice that there is a new experiment titled TF_Keras_
MNIST
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As you can see, your run was just successfully logged. Next, click it to 

explore all of the parameters, metrics, and artifacts that MLFlow logged.

You should see something like Figure 4-58.

Figure 4-57. Opening the experiment titled TF_Keras_MNIST. You 
can see that it successfully logged a run

Figure 4-58. Looking at the specific run logged in the experiment. 
As you can see, all the parameters and metrics were logged, even the 
one you specified. It also shows you the duration and the status of the 
run, so now you know how long it took to train the model as well as 
whether or not it completed
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MLFlow saved all of the hyperparameters used when creating the 

model. This could be very useful for hyperparameter tuning on a validation 

set, for example, where you are trying to tune many hyperparameters 

at once. For example, you can definitely tune batch_size, epochs, or 

something related to the Adam optimizer like opt_learning_rate,  

opt_beta_1, or opt_beta_2.

As you can see in Figure 4-58, MLFlow saved the model metrics for 

accuracy and loss as calculated during the training process. In addition, 

MLFlow also saved the metrics that you defined.

Scroll down to artifacts and click model and then data. You should see 

something like Figure 4-59.

Here, you can see that MLFlow also saved the model after the training 

process finished. In fact, let’s briefly look at how you can load this model. 

Make sure you go to the top and copy the run ID before doing this.

 Loading an MLFlow Model

With the run ID copied, head on over to the notebook and create a new 

cell. Run the following code, but replace the run ID with yours:

loaded_model =  

mlflow.keras.load_model("runs:/YOUR_RUN_ID/model")

Figure 4-59. Upon closer inspection of the artifacts, it seems MLFlow 
has also logged the model itself
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Your code should look similar to Figure 4-60. Our run was 

ba423a8f28d24b67b8f703ca6be43fc2, so that’s what we replaced  

YOUR_RUN_ID with.

You’ll notice that we did mlflow.keras instead of mlflow.tensorflow. 

This is because this model is technically a Keras model, and so it conforms 

to the specific load_model() code in the mlflow.keras module.

Run the following code to quickly calculate the same evaluation 

metrics that you logged earlier:

eval_loss, eval_acc = loaded_model.evaluate(x_test, y_test)

preds = loaded_model.predict(x_test)

preds = np.round(preds)

eval_auc = roc_auc_score(y_test, preds)

print("Eval Loss:", eval_loss)

print("Eval Acc:", eval_acc)

print("Eval AUC:", eval_auc)

This just ensures that the model is the same and demonstrates that 

you can use the model to make predictions. Refer to Figure 4-61 to see the 

output.

Figure 4-60. Loading a logged model using a specific run. Notice that 
we are doing mlflow.keras. This is because the model is technically a 
Keras model
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As you can see, this output matches the values from the output of 

the run earlier. Additionally, this model is also functional and can make 

predictions.

And with that, you now know how to integrate MLFlow into your 

TensorFlow 2.0+ experiments. Again, MLFlow supports TensorFlow 1.12+, 

which also contains the Keras submodule. This means that you should be 

able to follow the same convention to log tf.keras module code as long as 

you have TensorFlow 1.12+.

In practice, you are likely to have functions to build and compile the 

model, functions to train the model, and functions to evaluate and perhaps 

even validate the model. Just be sure to call all of them in the block with 

mlflow.start_run(): so that MLFlow knows all of this is happening 

within the same run.

Next, let’s look at how to integrate MLFlow with PyTorch.

 MLFlow with PyTorch
MLFlow also provides integration with PyTorch. While the process isn’t as 

easy as with Keras or TensorFlow, integrating MLFlow into your existing 

PyTorch code is quite simple. To see how to do so, we will be exploring a 

simple convolutional neural network applied to the MNIST dataset once 

again.

Figure 4-61. The output of the code block printing out the loss, 
accuracy, and AUC score when the model was evaluated on the test 
set. These three values match the corresponding values from the 
output of the run earlier
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Before we begin, here are the versions of the modules we are using, 

including CUDA and CuDNN:

• Torch - 1.6.0

• Torchvision – 0.7.0

• CUDA – 10.1

• CuDNN – v7.6.5.32 for CUDA 10.1

• Sklearn – 0.22.2.post1

• MLFlow – 1.10.0

• numpy – 1.18.5

 Data Processing

Let’s get started. Here’s the code to import the necessary modules, print 

out their versions, and set the device that PyTorch will use:

import torch

import torch.nn as nn

from torch.utils import data

import torchvision

import torchvision.datasets

import sklearn

from sklearn.metrics import roc_auc_score, accuracy_score

import numpy as np

import mlflow

import mlflow.pytorch

device = torch.device("cuda:0" if torch.cuda.is_available() 

else "cpu")
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print("PyTorch: {}".format(torch.__version__))

print("torchvision: {}".format(torchvision.__version__))

print("sklearn: {}".format(sklearn.__version__))

print("MLFlow: {}".format(mlflow.__version__))

print("Numpy: {}".format(np.__version__))

print("Device: ", device)

Refer to Figure 4-62 to see the output.

The line of code

device = torch.device("cuda:0" if torch.cuda.is_available() 

else "cpu")

tells PyTorch which device to run the code on. If there is a GPU that CUDA 

can connect to, it will use that instead. Otherwise, it will run everything 

on the CPU. In our case, we have CUDA set up with our GPU, so Torch 

displays “cuda:0” as seen in Figure 4-62.

Figure 4-62. Importing the necessary modules and printing the 
versions of the modules
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Next, you will define some basic hyperparameters:

batch_size = 256

num_classes = 10

learning_rate = 0.001

Refer to Figure 4-63 to see them in a cell.

Next, you will load in the MNIST dataset. Like Keras and TensorFlow, 

PyTorch also provides example datasets. In this case, you are loading 

MNIST:

train_set = torchvision.datasets.MNIST(root='./data', 

train=True, download=True, transform=None)

test_set = torchvision.datasets.MNIST(root='./data', 

train=False, download=True, transform=None)

Refer to Figure 4-64 to see this code in a cell.

You will now define your x_train, y_train, x_test, and y_test 

datasets:

x_train, y_train = train_set.data, train_set.targets

x_test, y_test = test_set.data, test_set.targets

Refer to Figure 4-65.

Figure 4-63. Setting the hyperparameters relevant to the training of 
the model

Figure 4-64. Defining the training and testing sets by loading the 
data from PyTorch
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In PyTorch, you want the data to be channels first. In other words, 

the format of the data should be (m, c, h, w), where m stands for the 

number of samples, c stands for the number of channels, h stands for the 

height of the samples, and w stands for the width of the samples.

Notice that this is the “opposite” format of how Keras and TensorFlow 

do it by default, which is channels last. In Keras and TensorFlow, you can 

also do channels first, but you must specify that you are doing it this way.

Let’s reshape your x-sets:

x_train, y_train = train_set.data, train_set.targets

x_test, y_test = test_set.data, test_set.targets

Refer to Figure 4-66 to see this code in a cell.

Figure 4-65. Creating your x_train, y_train, x_test, and y_test data 
sets from the training and testing sets

Figure 4-66. Reshaping the x-sets so the data is encoded in a 
channels-first format

Figure 4-67. The output of the first sample in the y_train set. Note 
that the numbers are not in a one-hot encoded format

Before you print out all the shapes, note that your y-sets are not in a 

one-hot encoded format. Run the following:

y_train[0]

Refer to Figure 4-67.
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Notice that this outputs a number, not a vector. You must convert 

your y-sets into a one-hot encoded format. However, there isn’t a handy 

function like keras.utils.to_categorical() you can just call, so you will 

define one:

def to_one_hot(num_classes, labels):

    one_hot = torch.zeros(([labels.shape[0], num_classes]))

    for f in range(len(labels)):

        one_hot[f][labels[f]] = 1

    return one_hot

That being said, you can always call keras.utils.to_categorical(): 

and type-cast the resulting output to a PyTorch tensor.

Refer to Figure 4-68 to see this in a cell.

Now let’s convert your y-sets to be in a one-hot encoded format:

y_train = to_one_hot(num_classes, y_train)

y_test = to_one_hot(num_classes, y_test)

Refer to Figure 4-69 to see this code in a cell.

Figure 4-68. A custom function that converts the input called 
“labels,” given the number of classes, into a one-hot encoded format 
and returns it

Figure 4-69. Converting your y-sets into a one-hot encoded format 
using your custom function
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Let’s check what y_train looks like now:

y_train[0]

Refer to Figure 4-70.

As you can see, it is now in a one-hot encoded format. Now you can 

proceed to checking the shapes of your data sets:

print("Shapes")

print("x_train: {}\ny_train: {}".format(x_train.shape,  

y_train.shape))

print("x_test: {}\ny_test: {}".format(x_test.shape,  

y_test.shape))

You should see something like Figure 4-71.

Figure 4-70. Checking the output of the first sample in y_train, you 
now see that the tensor has been converted into a one-hot encoded 
format

Figure 4-71. Printing the shapes of your training and testing sets. As 
you can see, the x-sets are in a channels-first format, and the y-sets are 
in a one-hot encoded format
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 MLFlow Run – Training and Evaluating

Now, let’s define your model. A popular convention in PyTorch is to define 

the model as a class since it allows you to much more easily use the GPU 

while training. Instead of passing in every layer to the GPU, you can just 

send in the model object directly.

Run the following code to define your model:

class model(nn.Module):

    def __init__(self):

        super(model, self).__init__()

        # IN 1x28x28 OUT 16x14x14

         self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, 

kernel_size=3, stride=2, padding=1, dilation=1)

        # IN 16x14x14 OUT 32x6x6

         self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, 

kernel_size=3, stride=2, padding=0, dilation=1)

        # IN 32x6x6 OUT 64x2x2

         self.conv3 = nn.Conv2d(in_channels=32, out_channels=64, 

kernel_size=3, stride=2, padding=0, dilation=1)

        # IN 64x2x2 OUT 256

        self.flat1 = nn.Flatten()

         self.dense1 = nn.Linear(in_features=256,  

out_features=128)

         self.dense2 = nn.Linear(in_features=128,  

out_features=64)

         self.dense3 = nn.Linear(in_features=64,  

out_features=10)

    def forward(self, x):

        x = self.conv1(x)

        x = nn.ReLU()(x)
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        x = self.conv2(x)

        x = nn.ReLU()(x)

        x = self.conv3(x)

        x = nn.ReLU()(x)

        x = self.flat1(x)

        x = self.dense1(x)

        x = nn.ReLU()(x)

        x = self.dense2(x)

        x = nn.ReLU()(x)

        x = self.dense3(x)

        x = nn.Softmax()(x)

        return x

Refer to Figure 4-72.

Figure 4-72. Defining the model’s architecture as a class
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Next, let’s send your model to the device, define and initialize an 

instance of Adam optimizer with the learning rate you set earlier, and set 

your loss function:

model = model().to(device)

optimizer = torch.optim.Adam(model.parameters(),  

lr=learning_rate)

criterion = nn.BCELoss()

Refer to Figure 4-73.

Next, you will define a data loader using functionality provided by 

PyTorch to take care of batching your data set:

dataset = data.TensorDataset(x_train,y_train)

train_loader = data.DataLoader(dataset, batch_size=batch_size)

Refer to Figure 4-74.

Figure 4-73. Sending the model object to the device, defining your 
optimizer, and initializing the loss function

Figure 4-74. Creating a data loader object out of your data set. With 
this functionality, PyTorch will batch your data set for you, allowing 
you to pass in a minibatch at a time in your training loop. This 
essentially is what the TensorFlow 2/Keras .fit() function does, but 
it’s all abstracted for you
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As you can see, this is much simpler than having to make an intricate 

loop to batch and pass in data yourself.

Finally, let’s define the training loop:

num_epochs = 5

for f in range(num_epochs):

    for batch_num, minibatch in enumerate(train_loader):

        minibatch_x, minibatch_y = minibatch[0], minibatch[1]

         output = model.forward(torch.Tensor 

(minibatch_x.float()).cuda())

         loss = criterion(output, torch.Tensor 

(minibatch_y.float()).cuda())

        optimizer.zero_grad()

        loss.backward()

        optimizer.step()

        print(f"Epoch {f} Batch_Num {batch_num} Loss {loss}")

This can take at least a couple minutes depending on your GPU, and 

even longer if you’re using a CPU. Feel free to lower the number of epochs 

if you’d like to decrease total training time.

You should see an output like Figure 4-75.
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Now, let’s start an MLFlow run, calculate the metrics you want, and log 

everything:

mlflow.set_experiment("PyTorch_MNIST")

with mlflow.start_run():

    preds = model.forward(torch.Tensor(x_test.float()).cuda())

    preds = np.round(preds.detach().cpu().numpy())

    eval_acc = accuracy_score(y_test, preds)

    auc_score = roc_auc_score(y_test, preds)

    mlflow.log_param("batch_size", batch_size)

    mlflow.log_param("num_epochs", num_epochs)

    mlflow.log_param("learning_rate", learning_rate)

Figure 4-75. Output of your training loop. Feel free to reduce the 
number of epochs to save on training time, but this could potentially 
hinder the model’s performance
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    mlflow.log_metric("eval_acc", eval_acc)

    mlflow.log_metric("auc_score", auc_score)

    print("eval_acc: ", eval_acc)

    print("auc_score: ", auc_score)

     mlflow.pytorch.log_model(model, "PyTorch_MNIST")

mlflow.end_run()

As you can see, MLFlow integration is still quite easy with PyTorch. 

Refer to Figure 4-76 to see the output.

Figure 4-76. Setting the experiment, and logging the parameters, 
metrics, and the model to the MLFlow run
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 MLFlow UI – Checking Your Run

Let’s open up the UI. Refer to Figure 4-77.

As you can see, there is a new experiment titled PyTorch_MNIST. Click 

it. You should now see the run you just completed. Refer to Figure 4-78.

Now that your run has shown up, click it. You should see all the 

parameters and metrics logged in that run. Refer to Figure 4-79.

Figure 4-77. Looking at the MLFlow UI now. Notice that your 
experiment, PyTorch_MNIST, is created

Figure 4-78. The MLFlow UI showing your completed run
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Also notice the model that’s been saved by MLFlow under artifacts. 

Refer to Figure 4-80.

Figure 4-79. All the parameters, metrics, and artifacts (the model) 
you specified have been logged

Figure 4-80. MLFlow has successfully logged the model as well
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 Loading an MLFlow Model

Let’s now go over how to load this model using MLFlow. Copy the run 

ID, and head back to the notebook. Run the following, but replace the 

placeholders with your run ID:

loaded_model = mlflow.pytorch.load_model("runs:/YOUR_RUN_ID/

PyTorch_MNIST")

In our case, our run ID was 094a9f92cd714711926114b4c96f6d73, so 

our code looks like Figure 4-81.

Now that’s done, so let’s make predictions and calculate the metrics 

again:

preds = loaded_model.forward(torch.Tensor(x_test.float()).

cuda())

preds = np.round(preds.detach().cpu().numpy())

eval_acc = accuracy_score(y_test, preds)

auc_score = roc_auc_score(y_test, preds)

print("eval_acc: ", eval_acc)

print("auc_score: ", auc_score)

Refer to Figure 4-82 to see the output.

Figure 4-81. Loading the logged MLFlow model
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As you can see, these metrics are the same as from the training run. 

You now know how to load a PyTorch model using MLFlow and how you 

can use it to make predictions.

With that, you now know how to integrate MLFlow into your PyTorch 

experiments. Next, we will look at how you can integrate MLFlow into 

PySpark.

 MLFlow with PySpark
In our final example, we will look at how MLFlow integrates with PySpark. 

Like in the scikit-learn example, we will be looking at the application of a 

logistic regression model to the credit card dataset. In fact, this code is very 

similar to the PySpark example from Chapter 2.

Before we begin, here are the versions of the modules we are using, 

including CUDA and CuDNN:

• PySpark – 2.4.5

• Matplotlib – 3.2.1

• Sklearn – 0.22.2.post1

• MLFlow – 1.10.0

• mumpy – 1.18.5

Figure 4-82. The output of calculating the evaluation metrics from 
earlier but with the logged model. As you can see, the scores match 
exactly
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 Data Processing

With that, let’s get started. First, you must import all the necessary modules 

and set up some variables for Spark:

import pyspark #

from pyspark.sql import SparkSession

from pyspark import SparkConf, SparkContext

from pyspark.sql.types import *

from pyspark.ml.feature import VectorAssembler

from pyspark.ml import Pipeline

from pyspark.ml.classification import LogisticRegression

import pyspark.sql.functions as F

import os

import seaborn as sns

import sklearn #

from sklearn.metrics import confusion_matrix

from sklearn.metrics import roc_auc_score, accuracy_score

import matplotlib #

import matplotlib.pyplot as plt

import mlflow

import mlflow.spark

os.environ["SPARK_LOCAL_IP"]='127.0.0.1'

spark = SparkSession.builder.master("local[*]").getOrCreate()

spark.sparkContext._conf.getAll()

print("pyspark: {}".format(pyspark.__version__))

print("matplotlib: {}".format(matplotlib.__version__))

print("seaborn: {}".format(sns.__version__))

print("sklearn: {}".format(sklearn.__version__))

print("mlflow: {}".format(mlflow.__version__))
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Refer to Figure 4-83.

Next, let’s load your data set and specify what columns you want to 

take:

data_path = 'data/creditcard.csv'

df = spark.read.csv(data_path, header = True,  

inferSchema = True)

labelColumn = "Class"

columns = df.columns

numericCols = columns

numericCols.remove("Time")

numericCols.remove(labelColumn)

print(numericCols)

Figure 4-83. Importing the necessary modules and printing their 
versions
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Refer to Figure 4-84 to see the output.

Notice that you dropped the column Time here, like with the scikit- 

learn example. This column just adds a lot of extraneous information that 

doesn’t actually correlate very much with the label column and could even 

possibly make the learning task harder than it needs to be.

Let’s see what the data frame looks like:

df.toPandas().head()

Refer to Figure 4-85 to see the output.

Figure 4-84. Loading the data and specifying the columns that you 
want as a list

Figure 4-85. Converting the Spark data frame to Pandas and 
checking the output. As you can see, the columns have loaded in 
correctly, along with the data. The column Time has not been 
dropped because you did not filter the data frame yet
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You’ll notice that the columns you “dropped” are still showing up, like 

Time. You haven’t filtered the columns you want yet, which you are going 

to do now. Run the following to select the features you want from the data 

frame and create your normal and anomaly splits:

stages = []

assemblerInputs =  numericCols

assembler = VectorAssembler(inputCols=assemblerInputs, 

outputCol="features")

stages += [assembler]

dfFeatures = df.select(F.col(labelColumn).alias('label'), 

*numericCols )

normal = dfFeatures.filter("Class == 0").

sample(withReplacement=False, fraction=0.5, seed=2020)

anomaly = dfFeatures.filter("Class == 1")

normal_train, normal_test = normal.randomSplit([0.8, 0.2],  

seed = 2020)

anomaly_train, anomaly_test = anomaly.randomSplit([0.8, 0.2], 

seed = 2020)

Refer to Figure 4-86 to see the code in a cell.

Figure 4-86. Selecting the columns that you want and defining your 
normal and anomaly train and test sets
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Let’s look at the new data frame now:

dfFeatures.toPandas().head()

Refer to Figure 4-87.

Notice that the columns you dropped are gone. Now you know that 

normal and anomaly don’t have the features you dropped either and that 

everything is proceeding as planned. Let’s create the train and test sets:

train_set = normal_train.union(anomaly_train)

test_set = normal_test.union(anomaly_test)

Refer to Figure 4-88.

Let’s now move on to creating the feature vector that the logistic 

regression model is going to use. Run the following to define the pipeline 

and create your final train and test sets:

pipeline = Pipeline(stages = stages)

pipelineModel = pipeline.fit(dfFeatures)

train_set = pipelineModel.transform(train_set)

Figure 4-87. As you can see, Time has been dropped. This is the data 
frame that your training and testing sets are derived from

Figure 4-88. Concatenating the normal and anomaly sets to create 
the train and test sets

Chapter 4  IntroduCtIon to MLFLow



205

test_set = pipelineModel.transform(test_set)

selectedCols = ['label', 'features'] + numericCols

train_set = train_set.select(selectedCols)

test_set = test_set.select(selectedCols)

print("Training Dataset Count: ", train_set.count())

print("Test Dataset Count: ", test_set.count())

Refer to Figure 4-89.

Now that you’ve finished processing the data, let’s define a function to 

train the model and calculate some relevant metrics:

def train(spark_model, train_set):

    trained_model = spark_model.fit(train_set)

    trainingSummary = trained_model.summary

    pyspark_auc_score = trainingSummary.areaUnderROC

    mlflow.log_metric("train_acc", trainingSummary.accuracy)

    mlflow.log_metric("train_AUC", pyspark_auc_score)

    print("Training Accuracy: ", trainingSummary.accuracy)

    print("Training AUC:", pyspark_auc_score)

    return trained_model

Figure 4-89. Defining the pipeline used to create the feature vector 
that will be used to train the model. From the feature vector and the 
label vector, you define your final train and test sets
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Refer to Figure 4-90 to see the function in a cell.

Let’s now define a function to evaluate the model and calculate those 

metrics, too:

def evaluate(spark_model, test_set):

    evaluation_summary = spark_model.evaluate(test_set)

    eval_acc = evaluation_summary.accuracy

    eval_AUC = evaluation_summary.areaUnderROC

    mlflow.log_metric("eval_acc", eval_acc)

    mlflow.log_metric("eval_AUC", eval_AUC)

    print("Evaluation Accuracy: ", eval_acc)

    print("Evaluation AUC: ", eval_AUC)

Refer to Figure 4-91.

Figure 4-90. The code to train the PySpark logistic regression model 
and log the training accuracy and AUC score metrics
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 MLFlow Run – Training, UI, and Loading an MLFlow 
Model

Now that you have finished defining the training and evaluation functions 

along with the metrics you want to log, it’s time to start an MLFlow run and 

build a model:

lr = LogisticRegression(featuresCol = 'features', labelCol = 

'label', maxIter=10)

mlflow.set_experiment("PySpark_CreditCard")

with mlflow.start_run():

    trainedLR = train(lr, train_set)

    evaluate(trainedLR, test_set)

     mlflow.spark.log_model(trainedLR,  

"creditcard_model_pyspark")

mlflow.end_run()

Figure 4-91. The code to evaluate the trained PySpark logistic 
regression model and log the evaluation accuracy and AUC score 
metrics
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Refer to Figure 4-92.

Alright, now that MLFlow has finished logging everything and the 

run has ended, open up the MLFlow UI. You should see something like 

Figure 4-93.

Notice that a new experiment called PySpark_CreditCard has been 

created. Click it, and you should see something like Figure 4-94. If MLFlow 

didn’t log the run here, try rerunning the cell. It should log it correctly.

Figure 4-92. The output of the MLFlow run. The experiment has 
been created and the metrics and model successfully logged

Figure 4-93. The MLFlow UI showing that your experiment, 
PySpark_CreditCard, has been created
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If everything went well, you should see a run logged in this experiment. 

Click it, and you should see something like Figure 4-95.

Finally, in the artifacts section, click the folder that says  

creditcard_model_pyspark to expand it. You should see a folder called 

sparkml that contains the PySpark logistic regression model. Refer to 

Figure 4-96.

Figure 4-94. MLFlow UI showing that your run has successfully 
finished

Figure 4-95. Looking at the run, it appears that all of your metrics 
have successfully been logged
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Now that you’ve verified MLFlow has logged everything you specified, 

copy the run number at the top. Now go back to the notebook and run the 

following, replacing the placeholder with your run:

model = mlflow.spark.load_model("runs:/YOUR_RUN_ID/ 

creditcard_model_pyspark")

In our case, our run was 58e6aac5d43948c6948bee29c0c04cca, so our 

cell looks like Figure 4-97.

Now that the model has been loaded, let’s make some predictions with 

it. Run the following:

predictions = model.transform(test_set)

y_true = predictions.select(['label']).collect()

y_pred = predictions.select(['prediction']).collect()

Refer to Figure 4-98 to see the code in a cell.

Figure 4-96. MLFlow has also logged the PySpark model. There is 
no concrete model file like with the TensorFlow or PyTorch examples 
because of the way PySpark stores its models

Figure 4-97. Loading the logged MLFlow model
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Let’s print out the evaluation accuracy and the AUC score:

print(f"AUC Score: {roc_auc_score(y_true, y_pred):.3%}")

print(f"Accuracy Score: {accuracy_score(y_true, y_pred):.3%}")

Refer to Figure 4-99.

You will notice that the AUC score differs compared to what was 

calculated in the evaluation function. This is likely because PySpark 

calculates the ROC curve slightly differently because it has direct access 

to the model itself. On the other hand, with scikit-learn, you only have the 

true labels and the predictions to work with, so the ROC curve is calculated 

slightly differently.

Finally, let’s construct the confusion matrix:

conf_matrix = confusion_matrix(y_true, y_pred)

ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

ax.invert_xaxis()

ax.invert_yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted')

Figure 4-98. Making predictions with your loaded model

Figure 4-99. Printing out the evaluation metrics. The AUC score 
noticeably differs, but the accuracy score matches what was displayed 
during the MLFlow run
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Refer to Figure 4-100.

From the confusion matrix, you can see that the AUC score as 

calculated by PySpark must be reflecting its performance on how well 

it classifies normal data. Looking at the anomalies, a fair chunk of the 

fraudulent data has been misclassified. Roughly speaking, the model only 

got two-thirds of the anomalies when evaluated on the test data. Perhaps 

this explains the disparity between what scikit-Learn says is the AUC score 

and what PySpark says is the AUC score. Both must have calculated the 

ROC curves slightly differently with PySpark’s graph somehow favoring the 

excellent true positive rate of the normal data’s classification.

With that, you now know how to integrate MLFlow into your PySpark 

experiments.

Next, we will take a look at how you can deploy your models locally 

and how you can query the models with samples of data and receive 

predictions.

Figure 4-100. Displaying the confusion matrix using the true values 
and the predictions made by the model you loaded
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 Local Model Serving
 Deploying the Model
Serving and querying models locally is very easy and can be done in the 

command line. You only need the experiment ID and the run ID to serve 

the model. This is where the print statement from earlier can apply, as it 

prints the run ID of that specific run. If you just want to serve the latest 

model, you may do so using that ID.

Otherwise, you can look in the MLFlow UI, select a model run that 

suits your needs, and paste the run this way.

Before you begin, go to the MLFlow UI once again, and click the 

experiment scikit_learn_experiment. Pick a run and copy the run 

ID. Don’t forget the model name that you logged the model with either, 

which should be log_reg_model.

You may create a new notebook at this point to keep the code more 

organized, but be sure to import the following:

import pandas as pd

import mlflow

import mlflow.sklearn

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_auc_score, accuracy_score, 

confusion_matrix
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import numpy as np

import subprocess

import json

You’ll notice that you are now importing subprocess. If you’re using the 

same notebook, make sure to import this module as well.

Refer to Figure 4-101 to see this code in a cell.

Now, open up your command prompt/terminal so that you can begin 

to serve your local model. First, you need to change your directory to one 

that contains the mlruns folder with all your experiments. Next, you need 

two things: your model run and your model name.

Again, your model run can be anything you pick from the MLFlow UI 

or it can simply be the latest run. The model name is whatever you set it to 

when logging the model. In this case, it will be log_reg_model.

Once you have that, run the following command in your command 

prompt/terminal. We have generalized the command, so be sure to replace 

the fields with your model run and model name, respectively:

mlflow models serve --model-uri runs:/YOUR_MODEL_RUN/ 

YOUR_MODEL_NAME -p 1235

Figure 4-101. Importing the necessary modules

Chapter 4  IntroduCtIon to MLFLow



215

In our case, our model run was 3862eb3bd89b43e8ace610c521d974e6, 

and our model name was once again log_reg_model. And so, the 

command we ran looks like Figure 4-102.

In text, the command looks like this:

mlflow models serve --model-uri runs:/3862eb3bd89b43e8ace610c52

1d974e6/log_reg_model -p 1235

MLFlow should start constructing a new conda environment right 

away that it will use to serve locally. In this environment, it installs basic 

packages and specific packages that the model needs to be able to run.

After some time, you should see something like in Figure 4-103.

Figure 4-102. The command that we ran to serve our model locally

Figure 4-103. The result of running the command to deploy 
the model locally. You might see something different, such as 
localhost:1235, but this is because we have docker installed
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MLFlow should create a new conda environment before hosting the 

model on your local server. The port option -p lets you set a specific port to 

host the model on. We selected a specific port so that we can have MLFlow 

UI running at the same time, as both of them default to port 5000. In our 

case, our MLFlow UI is running on port 1234, so we are serving the model 

on port 1235.

 Querying the Model
You are now ready to query the model with data and receive predictions. 

This is where the subprocess module comes in, and you’ll see why shortly. 

First, let’s load up your data frame again. Run the following code:

df = pd.read_csv("data/creditcard.csv")

You should see something like Figure 4-104.

Next, select 80 values from your data frame to query your model with. 

Run the following code:

input_json = df.iloc[:80].drop(["Time", "Class"],  

axis=1).to_json(orient="split")

You should see something like Figure 4-105.

Figure 4-105. Converting a selection of 80 rows, dropping the Time 
and Class columns since they were dropped in the original x_train 
used to train the model, to a JSON with a split orient

Figure 4-104. Loading the credit card dataset
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The next step is important because of how you preprocessed the data 

before training your model originally. To show why it’s so important, we 

will quickly demonstrate the difference in evaluation metrics from passing 

in non-scaled data and scaled data. First of all, here is the code to send 

data to the model and receive predictions back:

proc = subprocess.run(["curl",  "-X", "POST", "-H",  

"Content- Type:application/json; format=pandas-split",  

"--data", input_json, "http://127.0.0.1:1235/invocations"], 

stdout=subprocess.PIPE, encoding='utf-8')

output = proc.stdout

df2 = pd.DataFrame([json.loads(output)])

df2

Essentially, what this does is run the following command within 

Python itself:

curl -X POST -H "Content-Type:application/json;  

format=pandas- split" –data "CONTENT_OF_INPUT_JSON"   

"http://127.0.0.1:1235/invocations"

The core of the problem is that if you are running this in command 

line, pasting the JSON format data of the data frame can get very messy 

because there’s so many columns. That is why we chose to use subprocess 

as it is easier to directly pass in the JSON itself using a variable name, 

input_json in this case, to hold the contents of the JSON.

You should see something like Figure 4-106.

Now, you will query the model with input data that is not scaled.

Figure 4-106. Sending data to the locally hosted model and receiving 
predictions from the model
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 Querying Without Scaling

You will keep the selection of 80 values from earlier and query the model. 

The model accepts data in the JSON format, so you will have to convert 

the format of your data before sending it to the model. Run the cell in 

Figure 4- 106.

You should see something like Figure 4-107.

The resulting data frame is what you get by converting the predictions 

that you got back from the model into a data frame. Since you have the true 

predictions, let’s calculate an AUC score and an accuracy score to see how 

the model did. Run the following code:

y_true = df.iloc[:80].Class

df2 = df2.T

eval_acc = accuracy_score(y_true, df2)

y_true.iloc[-1] = 1

eval_auc = roc_auc_score(y_true, df2)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Figure 4-107. The list of predictions that you get after querying the 
model with input_json. Notice that it’s predicting a lot of anomalies. 
This is the first red flag that indicates something’s wrong
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First of all, you had to transpose df2 using .T so that you can get the 

predictions to be in a Pandas Series format. Next, the AUC score cannot 

be calculated if one of the arrays y_true or y_preds only have one class. 

In this case, y_true is only comprised of normal values, so you had to 

manipulate the last value and make it 1 when it really isn’t just to get an 

AUC score. Of course, the resulting AUC score will be nonsense.

You should see something like Figure 4-108.

As you can see, the accuracy score is horrible. This basically means 

that the model doesn’t know the difference between the anomalies and the 

normal points but seems to have some idea about normal points.

The reason the model did so poorly despite doing so well during the 

training process is that the input data has not been scaled. You will see 

the difference in model performance when you now scale the data before 

passing it in.

Figure 4-108. Evaluating the accuracy and the AUC score from the 
predictions. The AUC score is nonsense, but the accuracy score reveals 
that the model has performed very poorly
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 Querying with Scaling

You will take the same split of data except you will now scale it before 

passing it in. Run the following code to recreate the data that you used to fit 

the scaler when training the model originally:

normal = df[df.Class == 0].sample(frac=0.5, random_state=2020).

reset_index(drop=True)

anomaly = df[df.Class == 1]

normal_train, normal_test = train_test_split(normal,  

test_size = 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split 

(anomaly, test_size = 0.2, random_state = 2020)

scaler = StandardScaler()

scaler.fit(pd.concat((normal, anomaly)).drop(["Time", "Class"], 

axis=1))

You should see something like Figure 4-109.

Now that you have fit the scaler, let’s transform your data selection:

scaled_selection = scaler.transform(df.iloc[:80].drop 

(["Time", "Class"], axis=1))

input_json = pd.DataFrame 

(scaled_selection).to_json(orient="split")

Figure 4-109. Recreating the original dataset that you used to fit the 
standard scaler when processing the data originally. Using this, you 
will transform your new sample of data and pass it into the model
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Refer to Figure 4-110.

Now run the following:

proc =  subprocess.run(["curl",  "-X", "POST", "-H",  

"Content- Type:application/json; format=pandas-split",

        "--data", input_json, "http://127.0.0.1:1235/invocations"],

       stdout=subprocess.PIPE, encoding='utf-8')

output = proc.stdout

preds = pd.DataFrame([json.loads(output)])

preds

You should see something like Figure 4-111.

One thing to note is that you are scaling it on the combination of all 

normal data and all anomaly data, as you did when you were creating 

the train, test, and validation splits. Since the model was trained on data 

that was scaled on the partition of data you used in the training process 

Figure 4-110. Scaling the selection of 80 values from the original 
data frame and converting it into a JSON format to be sent to the 
model

Figure 4-111. Querying the model with the scaled values. From a 
first glance, the predictions appear to be correct this time around
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(the training, testing, and validation data together), passing in data scaled 

differently won’t result in the correct predictions. When you scale the new 

data, it must be scaled after fitting it on the training set.

One problem that may eventually arise is that new data might have 

a different distribution than the original training data. This could lead to 

performance issues with the model, but really that’s a sign that you need to 

train your model to update it on the new data.

Let’s check how your model did now:

y_true = df.iloc[:80].Class

preds = preds.T

eval_acc = accuracy_score(y_true, preds)

y_true.iloc[-1] = 1

eval_auc = roc_auc_score(y_true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Refer to Figure 4-112.

As you can see, the accuracy score is noticeably higher, and the 

model’s performance is reminiscent of when it was trained and evaluated. 

Unfortunately, the AUC score isn’t a very accurate reflection of the model’s 

Figure 4-112. Checking the accuracy and the AUC scores of the 
predictions. The accuracy score is far better, but you will need more 
prediction data with both normal and anomaly values to be able to 
get AUC scores
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performance since the samples you are querying the model with only have 

normal data.

Let’s see how the model performs when you query it with a larger 

sample of data.

 Batch Querying

Unfortunately, there is a limit to how many data samples you can ask 

the model to make predictions on. The number 80 is really close to the 

maximum number of samples you can send at one time. So how do you get 

around this issue and make predictions on more than just 80 samples? For 

one, you can try batching the samples and making predictions one batch at 

a time.

Run the following code:

test = df.iloc[:8000]

true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))

preds = []

batch_size = 80

for f in range(100):

     sample = pd.DataFrame(test[f*batch_size:(f+1)*batch_size]).

to_json(orient="split")

    proc = subprocess.run(["curl",  "-X", "POST", "-H",

                           "Content-Type:application/json; 

format=pandas-split", "--data",

                           sample, "http://127.0.0.1:1235/

invocations"],

                           stdout=subprocess.PIPE, 

encoding='utf-8')
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    output = proc.stdout

    resp = pd.DataFrame([json.loads(output)])

    preds = np.concatenate((preds, resp.values[0]))

eval_acc = accuracy_score(true, preds)

eval_auc = roc_auc_score(true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Here, you are selecting the first 8,000 samples from the data frame. 

Since the batch size is 80, you have 100 batches that you are passing to the 

model. Of course, you must scale this data as well before passing it in. You 

will scale it in a manner similar to how you did it earlier: you will fit the 

scaler on the same normal and anomaly data that you used in the model 

training pipeline samples to transform the values you want to send to the 

model. Once finished, you should see something like Figure 4-113. This 

might take several seconds to finish, so sit tight!

Figure 4-113. The results of querying the model with the first 8,000 
samples in the data frame. Notice that the AUC score is far better 
samples
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This time, you don’t have to worry about only having one class in 

the entire data. This is because there are examples of anomalies in this 

selection of 8,000 data points, so the true labels and predictions should 

contain samples of both classes.

You can see that the model performs quite well on this data, which 

includes data that the model has never seen before. Although you did 

end up using all of the anomalies when training the data, the model still 

performs well on the normal data, as evidenced by the relatively high AUC 

score.

In fact, let’s plot a confusion matrix to see how the model did and 

what’s bringing down the AUC score. Run the following code:

conf_matrix = confusion_matrix(true, preds)

ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

ax.invert_xaxis()

ax.invert_yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted')

plt.title("Confusion Matrix")

Refer to Figure 4-114 to see the output.
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Figure 4-114. The confusion matrix for the predictions and true 
values. The model performed excellently and was able to classify every 
normal point correctly and a majority of the anomaly points correctly 
samples

As you can see, the confusion matrix shows that the model has 

performed very well on this data. Not only did it classify the normal points 

perfectly, but it even classified most of the anomaly points correctly as 

well.

With that, you hopefully know more about the process of deploying 

and querying a model. When you deploy to a cloud platform, the querying 

process follows a similar path where you must deploy a model on the cloud 

platform and query it by sending in the data in a JSON format.

 Summary
MLFlow is an API that can help you integrate MLOps principles into your 

existing code base, supporting a wide variety of popular frameworks. 

In this chapter, we covered how you can use MLFlow to log metrics, 

parameters, graphs, and the models themselves. Additionally, you learned 

how to load the logged model and make use of its functionality. As for 

frameworks, we covered how you can apply MLFlow to your experiments 
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in scikit-learn, TensorFlow 2.0/Keras, PyTorch, and PySpark, and we also 

looked at how you can take one of these models, deploy it locally, and 

make predictions with your model.

In the next chapter, we will look at how you can take your MLFlow 

models and use MLFlow functionality to help deploy them to Amazon 

SageMaker. Furthermore, we will also look at how you can make 

predictions using your deployed model.
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CHAPTER 5

Deploying in AWS
In this chapter, we will cover how you can operationalize your MLFlow 

models using AWS SageMaker. We will cover how you can upload your 

runs to S3 storage, how you can build and push an MLFlow Docker 

container image to AWS, and how you can deploy your model, query it, 

update the model once it is deployed, and remove a deployed model.

 Introduction
In the previous chapter, you learned what MLFlow is and how you can 

utilize the functionality it provides to integrate MLOps principles into 

your code. You also looked at how to deploy a model to a local server and 

perform model inference. However, now it’s time to move to the next stage 

and explore how you can deploy your machine learning models to a cloud 

platform so that multiple entities can use its prediction services.

Before you begin, here are some important prerequisites:

• You must have the AWS command line interface (CLI) 

installed and have your credentials configured.

 – Once your credentials are verified, the AWS CLI lets 

you connect to your AWS workspace. From here, 

you can create new buckets, check your SageMaker 

endpoints, and so on all through the command 

line.

https://doi.org/10.1007/978-1-4842-6549-9_5#DOI
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• You must have an Identity and Access Management 

(IAM) execution role defined that grants SageMaker 

access to your S3 buckets. Refer to Figure 5-8 to see 

more on this.

• You must have Docker installed and working properly. 

Verify that you can build Docker images.

 – It is essential to have Docker working on your 

system because without it, MLFlow cannot build 

the Docker container image to push to the AWS 

ECR.

We also recommend that you learn about AWS in general and how it 

works. Having background knowledge of AWS and how it works can help 

you understand this chapter and allow you to fix any issues much more 

easily.

In detail, we will go over the following in this chapter:

• Configuring AWS: Here, you set up a bucket and push 

your mlruns folders here to be stored on the cloud. 

These folders contain information about all of the runs 

associated with the experiments along with the logged 

models themselves. Next, you build a special Docker 

container as defined by MLFlow and push that to AWS 

ECR. SageMaker uses this container image to serve the 

MLFlow model.

• Deploying a model to AWS SageMaker: Here, you 

use the built-in MLFlow SageMaker module code to 

push a model to SageMaker. After SageMaker creates 

an endpoint, the model is hosted on here utilizing the 

docker image that you pushed earlier to the ECR.
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• Making predictions: Once the model has finished 

deployment and is ready to serve, you use Boto3 to 

query the model and receive predictions.

• Switching models: MLFlow provides functionality that 

enables you to switch out a deployed model with a new 

one. SageMaker essentially updates the endpoint with 

the new model you are trying to deploy.

• Removing the deployed model: Finally, MLFlow lets 

you remove your deployed model altogether and delete 

the endpoint. This is important to do so that you don’t 

incur the charges of leaving an endpoint running.

Also, it is important to note that AWS is actively being worked on, and 

functionality and operating procedures can change! What that means is 

that something that works now may not work later on.

However, MLFlow specifically provides support for SageMaker, so if 

something fundamental to how SageMaker runs changes in the future, 

MLFlow is likely to account for it in the next build.

In the absolute worst-case scenario where that doesn’t happen, 

you can still run an MLFlow server and host it on AWS. You will still be 

able to deploy models and make inferences with them, and the overall 

functionality is still preserved. Instead of SageMaker directly hosting the 

model using an MLFlow container image, you would do something similar 

to the local model deployment experiment we did in Chapter 4, except 

you would connect to the server IP and port that the MLFlow server is 

hosted on.

We will explore how to do this with Google Cloud, as MLFlow does not 

support Google Cloud like it does SageMaker and Azure.

With that, let’s get started!
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 Configuring AWS
Before you can actually push any model to SageMaker, you need to set up 

your Amazon workspace. You can push models from your local mlruns 

directory, similar to how you did local model deployment, but it is much 

more convenient and centralized to have all your runs be pushed to AWS 

and stored in a bucket. This way, all teams can access models that are 

stored here. In a sense, this can act as your “model registry,” although it 

doesn’t offer the same functionality as the model registry provided by 

MLFlow.

What MLFlow allows you to do is take specific runs and determine 

whether to stage that model to the development branch or to production. 

In this case, you can have buckets for each team, separated into 

development or production branches. It’s a couple extra steps on top of 

MLFlow’s model registry, but it would still allow you to enjoy the benefits 

of having a model registry.

In this case, you will simply be creating one bucket to host all of your 

MLFlow runs. From here, you will be picking a specific run and deploying 

to SageMaker. To keep it simple, you will once again use the scikit-learn 

logistic regression model that you trained as the model you are deploying.

So with that, create a simple bucket and name it something like 

mlflow-sagemaker. You can either create it through the AWS CLI or do so 

through the AWS console in your browser.

We will do the latter so that you can visually see what Amazon is really 

doing when a bucket is created.

Keep in mind that AWS is always working on its UI, so your screen may 

not look exactly like what is portrayed. That being said, you are still likely 

able to access S3 bucket storage services, so the core functionality should 

still be the same, despite the UI changes.

When you log into your portal, you should see something like Figure 5- 1.
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As you can see, you can look up services with the search bar. Here, 

type S3 and click the result that states “S3” with the description “Scalable 

Storage in the Cloud.”

You should go to a page that looks like Figure 5-2.

Figure 5-1. The home screen of the AWS console. Keep in mind that 
yours is likely to look different to the one shown here

Figure 5-2. What your screen might look like when you open the S3 
bucket services module. We have greyed out the names of the buckets, 
but you can see string names here

Chapter 5  Deploying in aWS



234

You should see a button that says Create Bucket. Click it and you will 

see something like Figure 5-3.

We named our bucket mlops-sagemaker-runs. You don’t have to worry 

about the rest of the options, so scroll down to the bottom and click Create 

Bucket. Once done, you should be able to see your bucket in the list of 

buckets.

From here, let’s use a subprocess to sync the local mlruns directory to 

this bucket. What this does is upload the entire mlruns directory to your 

bucket, so that all of your runs are stored on the cloud.

Figure 5-3. This is how your bucket creation screen may look. In 
this case, you are just naming the bucket and aren’t concerned with 
anything else
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First, collect the following attributes:

• s3_bucket_name: What is the name of the S3 bucket you 

are trying to push to?

• mlruns_directory: What is the location of the mlruns 

directory you’re pushing to the bucket?

Based on that, run the following. We included the bucket name and 

mlruns directory in our case, so just replace them with your respective 

values.

import subprocess

s3_bucket_name = "mlops-sagemaker-runs"

mlruns_direc = "./mlruns/"

output = subprocess.run(["aws",  "s3", "sync", "{}".

format(mlruns_direc), "s3://{}".format(s3_bucket_name)], 

stdout=subprocess.PIPE, encoding='utf-8')

print(output.stdout)

print("\nSaved to bucket: ", s3_bucket_name)

After running that code, you should see something similar to Figure 5- 4, 

letting you know that it has synchronized your local mlruns directory with 

the bucket. If you see no output, that means there’s nothing new to push 

(if you are rerunning it). Ensure that the mlruns directory is in the same 

directory as this notebook; otherwise it won’t be able to find it.
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Once this is done, you can proceed to building the container that 

SageMaker will use to host the model once you get to deployment. To do 

that, run the following command in your terminal:

mlflow sagemaker build-and-push-container

Again, this requires you to have your Amazon credentials configured.

You do not need to create a new docker image each time you use a new 

framework. This one image will be able to handle all your MLFlow models 

thanks to modularization. This is similar to the deployment pipeline we 

discussed in Chapter 3 from which you simply need to swap models in and 

out.

This step can take some time, so sit back, relax, and let it do its thing. 

You should see something like Figure 5-5.

Figure 5-4. This is what your output may look like when you are first 
syncing your mlruns directory with the bucket. Make sure that your 
mlruns directory is in the same directory as this notebook file
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Once this is finished, the console should output something like 

Figure 5-6.

Now, you should be able to see a new container in the portal when you 

navigate to Amazon ECR.

Figure 5-5. Something similar to what you should see when you run 
the command to build the container

Figure 5-6. What you should see when the docker container image 
has successfully been built and pushed to Amazon ECR
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From your home console, navigate to Amazon ECR, and verify you see 

something called mlflow-pyfunc. You should see something like Figure 5- 7, 

confirming that the docker image has successfully been pushed to AWS ECR.

With that, you have set up everything related to MLFlow functionality 
that you need in your AWS console in order to deploy your models to 
SageMaker.

Let’s now look at deploying one of the models.

 Deploying a Model to AWS SageMaker
To deploy a model to SageMaker, you need to gather the following 
information:

• app_name

• model_uri

• execution_role

• region

• image_ecr_url

The execution role refers to the Identity and Access Management 
(IAM) role, which you can find by searching for “IAM” in the console. Once 
you have created or selected an execution role (make sure it can access S3 
and can perform get, put, delete, and list operations on it), copy the entire 

value that exists there.

Figure 5-7. After running the command, you should be able to see 
your container in the ECR repository list
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As for the specific policy that this role should follow, refer to Figure 5-8 

to see how our IAM execution role is set up.

As for the execution role ARN number, you should see something like 

Figure 5-8.

Figure 5-8. In the IAM tab, under policies, select (or create) the role 
you are going to use to execute the deployment process. There, you 
should be able to see the specific Policy ARN value, which you must 
copy and keep track of

Make sure you have the Policy ARN value copied down. AWS lets you 

copy it to the clipboard if you click the little clipboard symbol next to the 

policy.

To find the image_ecr_url value, go back to the ECR and look for 

something like Figure 5-7. Now click it to see something like Figure 5-9.
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Copy the value where it says Image URI, except for the version you 

want. We are running MLFlow version 1.10.0, so copy the value for that one.

Next, find the specific run that you want to deploy. Go to your list of S3 

buckets and click the one you created, which should be titled  

mlops- sagemaker- runs.

In here, navigate until you see the folder with several runs displayed. 

We picked the top run. Refer to Figure 5-10.

Figure 5-10. Look at your bucket to find the run you want to deploy. 
(These runs all have the same performance metrics, so it does not 
matter which one we pick. If it did, we could look at it through the 
MLFlow UI (ensuring the terminal is in the same directory as the 
same mlruns directory we pushed) and select the best run.) Also, 
remember to take note of the experiment ID and the name of the 
model you logged. You should be able to find it if you click the run ID 
and then artifacts. For our case, it is log_reg_model

Figure 5-9. The Image URI is the value you want to copy
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With all that information gathered, let’s proceed to the deployment. 

Run the following:

import boto3

import mlflow.sagemaker as mfs

import json

app_name = "mlops-sagemaker"

execution_role_arn = "arn:aws:iam::180072566886:role/ 

service- role/AmazonSageMaker-ExecutionRole-20181112T142060"

image_ecr_url = "180072566886.dkr.ecr.us-east-2.amazonaws.com/

mlflow-pyfunc:1.10.0"

region = "us-east-2"

s3_bucket_name = "mlops-sagemaker-runs"

experiment_id = "8"

run_id = "1eb809b446d949d5a70a1e22e4b4f428"

model_name = "log_reg_model"

model_uri = "s3://{}/{}/{}/artifacts/{}/".format 

(s3_bucket_name, experiment_id, run_id, model_name)

This will set up all of the parameters that you will use to run the 

deployment code.

Finally, let’s get on to the actual deployment code:

mfs.deploy(app_name=app_name,

           model_uri=model_uri,

           execution_role_arn=execution_role_arn,

           region_name=region,

           image_url=image_ecr_url,

           mode=mfs.DEPLOYMENT_MODE_CREATE)

You should see something like Figure 5-11.
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This step can take a while. If you want to check on the status of your 

SageMaker endpoint, open up the portal and search for and navigate to 

SageMaker. There should be a section for Endpoints where you can see 

all of the SageMaker endpoints that exist. You should see your current 

endpoint with the status of “creating,” as in Figure 5-12.

Figure 5-11. You should see something like this when you are 
attempting to deploy the model. Don’t worry if it takes its time
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Once this endpoint is successfully created, which you will know when 
you see the status update to “InService,” you can now move on to making 
predictions.

 Making Predictions
Making predictions is simple. All you need is the name of the endpoint and 
the functionality that boto3 provides in order for the model to be queried. 
Let’s define a function to query the model:

def query(input_json):

         client = boto3.session.Session().client 
("sagemaker- runtime", region)

        response = client.invoke_endpoint(
            EndpointName=app_name,
            Body=input_json,
            ContentType='application/json; format=pandas- split',

        )

Figure 5-12. What you should see in the Endpoints section of 
Amazon SageMaker. Once it has finished creating the endpoint, you 
should see it update the status to “InService.”
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        preds = response['Body'].read().decode("ascii")

        preds = json.loads(preds)

        return preds

Now, let’s load your data, process it, and scale it just like you did for the 

local model deployment example. Make sure that the folder data exists, 

ensuring that creditcard.csv exists within it. Run the following:

import pandas as pd

import mlflow

import mlflow.sklearn

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_auc_score, accuracy_score, 

confusion_matrix

import numpy as np

df = pd.read_csv("data/creditcard.csv")

Once the import statements and the data frame has been loaded, run 

the following:

normal = df[df.Class == 0].sample(frac=0.5,  random_state=2020).

reset_index(drop=True)

anomaly = df[df.Class == 1]

normal_train, normal_test = train_test_split(normal,  

test_size = 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split(anomaly,  

test_size = 0.2, random_state = 2020)
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scaler = StandardScaler()

scaler.fit(pd.concat((normal, anomaly)).drop(["Time",  

"Class"], axis=1))

Once this is all finished, run the following to ensure that the model is 

actually making predictions:

scaled_selection = scaler.transform(df.iloc[:80].drop 

(["Time", "Class"], axis=1))

input_json = pd.DataFrame 

(scaled_selection).to_json(orient="split")

pd.DataFrame(query(input_json)).T

You should see an output like Figure 5-13.

Figure 5-13 shows a successful query of the model while it is hosted on 

a SageMaker endpoint and the predictions received as a response.

Let’s run the batch query script with some modifications:

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))

true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))

preds = []

Figure 5-13. Querying the deployed model with the scaled data 
representing the first 80 rows of the data frame and getting a response 
back
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batch_size = 80

for f in range(25):

    print(f"Batch {f}", end=" - ")

     sample =  pd.DataFrame(test[f*batch_size:(f+1)*batch_size]).

to_json(orient="split")

    output = query(sample)

    resp = pd.DataFrame([output])

    preds = np.concatenate((preds, resp.values[0]))

    print("Completed")

eval_acc = accuracy_score(true, preds)

eval_auc = roc_auc_score(true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Once finished, you should see something like Figure 5-14.
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All this is great, but what do you do when you want to switch the model 

that is deployed? Well, SageMaker allows you to update the endpoint and 

switch to a new model. Let’s look at how to do this.

 Switching Models
Perhaps you want to update your model, or you have no more use for the 

current model and its prediction services so you want to replace it without 

having to delete and create a new endpoint. In this case, you can simply 

update the endpoint and swap out the model that is currently hosted on 

there. To do so, you only need to collect the new model_uri.

Figure 5-14. Output of the batch querying script. You included a mix 
of 100 anomalies with 1900 normal points so that you can get a better 
idea of how the model performs against anomalies as well. Otherwise, 
you would have gotten a handful of anomalies
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This time, the model_uri refers to the URI of the new model that you 

want to deploy. In your case, you are selecting the second run of the three 

runs you uploaded to your bucket. Everything else remains the same, so 

you only have to get a new model_uri.

Now, run the following, replacing the run_id value with your chosen 

run_id:

new_run_id = "3862eb3bd89b43e8ace610c521d974e6"

new_model_uri = "s3://{}/{}/{}/artifacts/{}/".format 

(s3_bucket_name, experiment_id, new_run_id, model_name)

Now that you have run this, run the following code to update the 

model:

mfs.deploy(app_name=app_name,

           model_uri=new_model_uri,

           execution_role_arn=execution_role_arn,

           region_name=region,

           image_url=image_ecr_url,

           mode=mfs.DEPLOYMENT_MODE_REPLACE)

You will find that this function looks quite similar to the one you 

used to deploy the model. The only parameter that differs is the mode, 

as you are now doing mfs.DEPLOYMENT_MODE_REPLACE instead of mfs.

DEPLOYMENT_MODE_CREATE.

Refer to Figure 5-15 to see what the output should look like.  

Note that this also can take some time to finish.
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While this is running, you can check on the endpoint in your portal to 

see that it is now updating. Refer to Figure 5-16 to see this.

Figure 5-15. This is what your output should look like after running 
the update code

Figure 5-16. The endpoint is now updating. Once finished, it should 
show “InService” just like when the endpoint was being created
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Once it finishes running, you can query this model again using the 

same function. You don’t have to modify the batch script either.

Now that you know how to update the endpoint with a new model, we 

will look at how you can remove the endpoint and the deployed model.

 Removing Deployed Model
Perhaps you have multiple endpoints each with a different model hosted, 

and you no longer want to keep an endpoint running because of the cost. 

To delete an endpoint, you only need the following information:

• app_name

• region

With that information defined, which it already should be, you can 

simply run the following:

mfs.delete(app_name=app_name,region_name=region)

You should see it output something like Figure 5-17. This process 

finishes quite quickly.

You can go check the endpoint in the portal as well, and it should show 

something like Figure 5-18.

Figure 5-17. The output of the deletion command
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As you can see, the endpoint is now completely gone.

One thing to note is that you should make sure you don’t accidentally 

leave any resources running because the costs can certainly stack up over 

time and put a dent in your wallet. For services like SageMaker endpoints, 

you are charged by the hour, so be sure to delete them once you’re done 

with them.

As for the S3 bucket and the ECR container, those are a one-time 

charge that only bill for data transfer.

With that, you now know how to operationalize your MLFlow model 

with AWS SageMaker.

 Summary
MLFlow provides explicit AWS SageMaker support in its operationalization 

code. And so we covered how to upload your runs to an S3 bucket and 

how to create and push an MLFlow Docker container image for AWS 

SageMaker to use when operationalizing your models. We also covered 

Figure 5-18. SageMaker endpoint resources after the deletion. There 
should be nothing here if the deletion process went successfully
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how to deploy your model on an endpoint, query it, update the endpoint 

with a new model, and delete the endpoint. Hopefully now you now know 

how to operationalize your machine learning models with MLFlow and 

AWS SageMaker.

In the next chapter, we will look at how you can operationalize your 

MLFlow models with Microsoft Azure.
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CHAPTER 6

Deploying in Azure
In this chapter, we will cover how you can use Microsoft Azure to 

operationalize your MLFlow models. In particular, we will look at how 

you can also utilize Azure’s built-in functionality to deploy a model to a 

development branch and to a production branch, along with how you can 

query the models once deployed.

 Introduction
In the previous chapter, we went over how to deploy your models to 

Amazon SageMaker, manage them through update or delete events, 

and query them. Now, we will shift our focus to show how you can 

operationalize your MLFlow models using Microsoft Azure.

Before you begin, here is an important prerequisites:

• Install azureml-sdk in your Python environment.

Just like with AWS, Microsoft Azure is constantly being worked on and 

updated. Since MLFlow supports Microsoft Azure, you should be able 

to utilize MLFlow to operationalize your models. Any new functionality 

is sure to be documented by MLFlow, and in the absolute worst-case 

scenario, you should still be able to host a server on Azure and maintain 

your MLOps functionality that way.

Again, we will explore how to do this in the next chapter when we look 

at how to operationalize your MLFlow models with the Google Cloud API.
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In detail, we will go over the following in this chapter:

• Configuring Azure: Here, you basically use MLFlow’s 

functionality to build a container image for the model 

to be hosted in. Then, you push it to Azure’s Azure 

Container Instances (ACI), similar to how you pushed 

an image to the Amazon AWS Elastic Container 

Registry (ECR).

• Deploying a model to Azure (dev stage): Here, you 

use built-in azureml-sdk module code to push a 

model to Azure. However, this is a development stage 

deployment, so this model is not production-ready 

since its computational resources are limited.

• Making predictions: Once the model has finished 

deployment, it is ready to be queried. This is done 

through an HTTP request. This is how you can verify 

that your model works once hosted on the cloud since 

it’s in the development stage.

• Deploying to production: Here, you utilize MLFlow 

Azure module code to deploy the model to production 

by creating a container instance (or any other 

deployment configuration provided, like Azure 

Kubernetes Service).

• Making predictions: Similar to how you query the 

model in the dev stage, you query the model once it 

has been deployed to the production stage and run the 

batch query script from the previous chapter.

• Switching models: MLFlow does not provide explicit 

functionality to switch your models, so you must delete 

the service and recreate it with another model run.
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• Removing the deployed model: Finally, you undo 

every deployment that you did and remove all 

resources. That is, you delete both the development 

and production branch services as well as the container 

registries and any additional services created once you 

are done.

With that, let’s get started!

 Configuring Azure
Before you can start using Azure’s functionality to operationalize your 

models, you must first create or connect to an existing Azure workspace. 

You can do this either through code or the UI in a browser.

In your case, you will open up the portal in the browser and learn how 

to create a workspace. Refer to Figure 6-1.

Figure 6-1. An example of the Microsoft Azure portal home screen
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Next, click the Create a resource option and search for “Machine 

Learning.” You should see something like Figure 6-2.

Click the Create button. You should see something like Figure 6-3. (We 

filled the fields with our own parameters.)

Your subscription might differ from ours. For the resource group, we 

created a new one titled azure-mlops.

The fields you completed in Figure 6-3 are enough to create your 

workspace. Next, click the Review + create option and click Create once 

Azure states that the validation procedure has been passed and allows you 

to click Create.

Figure 6-2. An example of the service “Machine Learning” provided 
by Azure. You want to create a workspace within this service, so click 
the Create button
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This will take some time to deploy. Once the workspace has been 

created, go back to the home portal and click the All resources option. You 

should see something like Figure 6-4.

Click your workspace, which should have an image of a chemical 

beaker next to it.

In this overview, you will see several parameters associated with 

this workspace. Make sure to keep track of the following attributes of the 

workspace so that you can connect to it in the code:

Figure 6-3. Workspace creation UI (we filled in the fields with our 
own parameters)
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• workspace_name (azure-mlops-workspace )

• subscription (The value where it says Subscription- ID)

• resource_group (azure-mlops)

• location (East-US)

Refer to Figure 6-5.

Figure 6-5. You should see something like this for your own 
workspace. Here we’ve censored potentially sensitive fields, but you 
should be able to see your own unique subscription ID on your screen. 
This is the value you want to use

Figure 6-4. You might see something like this when you look at the 
All resources option

Chapter 6  Deploying in azure



259

Now that you have that, run the following to create/connect to your 

own workspace:

import azureml

from azureml.core import Workspace

workspace_name = "MLOps-Azure"

workspace_location="East US"

resource_group = "mlflow_azure"

subscription_id = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"

workspace = Workspace.create(name = workspace_name,

                             location = workspace_location,

                             resource_group = resource_group,

                             subscription_id = subscription_id,

                             exist_ok=True)

If you have successfully connected to your workspace, the cell should 

run without any issues.

Next, you must build the MLFlow container image to be used by Azure. 

Here, you also specify the run of the model you are trying to deploy.

In the case of Amazon SageMaker, you were able to reference runs 

from your local machine or runs from an S3 bucket. You can do the same 

thing for Azure, except using Azure’s storage entities called blobs.

Either way, you need the run ID of the model you are deploying and 

the artifact scheme that the model is logged in. For the models you stored 

in Amazon S3 buckets, you used the scheme s3:/, but this time you will 

just use a run locally. If you’d like, you can still use your Amazon S3 bucket 

or Google Cloud buckets. Where you store your run does not matter.

Run the following, replacing the values with your specific run and 

storage scheme:

run_id = "1eb809b446d949d5a70a1e22e4b4f428"

model_name = "log_reg_model"

model_uri = f"runs:/{run_id}/{model_name}"
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The model name should be the same in your case unless you changed 

it. Since we are using local runs, we have a URI starting with runs:/. Again, 

change this to whatever is appropriate in your case.

Finally, with all that information set, let’s create the container image:

import mlflow.azureml

model_image, azure_model =  mlflow.azureml.build_image 

(model_uri=model_uri, 

workspace=workspace,

                           model_name="sklearn_logreg_dev", 

                           image_name="model",

                            description="SkLearn LogReg Model 

for Anomaly Detection",

                           synchronous=False)

You should see something like Figure 6-6. You may or may not see the 

warning messages depending on your version of MLFlow.

Figure 6-6. Building and pushing the container to Azure’s container 
registry. Ignore the warning messages for now. You might not see these 
messages in the future. Since this is code created and maintained by 
MLFlow, it is likely that they will provide support for whatever new 
functionality Azure pushes

Chapter 6  Deploying in azure



261

Next, run the following to check the status of the container:

model_image.wait_for_creation(show_output=True)

You should see something like Figure 6-7.

Once the image has been created, you can now deploy your model.

 Deploying to Azure (Dev Stage)
One interesting bit of functionality that Azure provides is the ACI 

webservice. This webservice is specifically used for the purposes of 

debugging or testing some model under development, hence why it is 

suitable for use in the development stage.

You are going to deploy an ACI webservice instance based on the 

model image you just created.

Run the following:

from azureml.core.webservice import AciWebservice, Webservice

aci_service_name = "sklearn-model-dev"

aci_service_config = AciWebservice.deploy_configuration()

aci_service =  Webservice.deploy_from_image 

(name=aci_service_name,

              image=model_image,

               deployment_config=aci_service_config,

              workspace=workspace)

Figure 6-7. Checking the output of the progress in the image creation 
operation
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You should see something like Figure 6-8.

This exact way of starting the service may be deprecated in the near 

future in favor of Environments. For the time being, you should still be able 

to start an ACI service in this manner, but the important thing to know 

is that there is a web service specifically tailored for development stage 

testing.

Now run the following to check the progress:

aci_service.wait_for_deployment(show_output=True)

You should see something like Figure 6-9.

Before making your predictions, let’s first verify that you can reach your 

service:

aci_service.scoring_uri

Figure 6-9. The output you should see from checking if the 
deployment has succeeded

Figure 6-8. The output of creating the ACI service. It seems that this 
function may be removed in the future, but for now this is one way to 
access the ACI service and deploy the model
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You should see something like Figure 6-10. If not, try going into your 

resources in the portal to verify that a new container exists with the name 

sklearn-model-dev. If not, try rerunning the cells in the same order. It 

should display some URI this time.

You should see something like Figure 6-10.

You can now make predictions with this model.

 Making Predictions
Now you need to acquire some data to predict with.

Just like before, you will be loading the credit card dataset, 

preprocessing it, and setting aside a small batch that you will query the 

model with. Run the following blocks of code, and make sure you have the 

folder named data in this directory with creditcard.csv in it:

import pandas as pd

import mlflow

import mlflow.sklearn

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_auc_score, accuracy_score, 

confusion_matrix

Figure 6-10. The scoring URI is displayed, indicating that you can 
connect to it and make predictions

Chapter 6  Deploying in azure



264

import numpy as np

import subprocess

import json

df = pd.read_csv("data/creditcard.csv")

Once you have loaded all the modules and have loaded the data, run 

the following:

normal = df[df.Class == 0].sample(frac=0.5, random_state=2020).

reset_index(drop=True)

anomaly = df[df.Class == 1]

normal_train, normal_test = train_test_split(normal, test_size 

= 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split(anomaly,  

test_size = 0.2, random_state = 2020)

scaler = StandardScaler()

scaler.fit(pd.concat((normal, anomaly)).drop(["Time", "Class"], 

axis=1))

In cells, the above two blocks of code should look like Figure 6-11.

Chapter 6  Deploying in azure



265

Once you are all done with preparing the data, let’s define a function to 

help you query the deployed model:

import requests

import json

def query(scoring_uri, inputs):

    headers = {

    "Content-Type": "application/json",

    }

     response = requests.post(scoring_uri, data=inputs, 

headers=headers)

    preds = json.loads(response.text)

    return preds

Figure 6-11. The import statements and data processing code. You 
also define the scaler here and fit it to the data, just as you did when 
originally training these models
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Now you can select a few points and make a prediction:

data_selection = df.iloc[:80].drop(["Time", "Class"], axis=1)

input_json =  pd.DataFrame(scaler.transform(data_selection)).

to_json(orient="split")

preds = query(scoring_uri=aci_service.scoring_uri, 

inputs=input_json)

pd.DataFrame(preds).T

Together, you should see something like Figure 6-12.

As you can see, the model has returned predictions that look correct 

(thanks to the scaling).

Now that you know how to deploy to a development branch, let’s look 

at how you can deploy the model to production using built-in MLFlow 

functionality.

Figure 6-12. Querying the model deployed on an ACI webservice 
with some sample data and receiving a response
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 Deploying to Production
MLFlow provides Azure support and helps us deploy our models directly, 

using a container instance by default.

Let’s get straight into it. Run the following, replacing the names with 

anything else preferred:

azure_service, azure_model = mlflow.azureml.deploy(model_uri,

                      workspace,

                      service_name="sklearn-logreg",

                      model_name="log-reg-model",

                      synchronous=True)

It’s worth mentioning that you can deploy to a specific web service. By 

default, MLFlow will host the model on a container instance, but you can 

specify a computer cluster. To learn more, refer to the documentation here: 

www.mlflow.org/docs/latest/python_api/mlflow.azureml.html.

Once the code finishes running, which can take some time, you can 

also check to see if the URI can be printed:

azure_service.scoring_uri

Together, you should see something like Figure 6-13.

Figure 6-13. Successfully creating the endpoint and verifying that the 
service has a URI
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Now that you have successfully deployed your model, let’s move on to 

making predictions.

 Making Predictions
Now that you have your model deployed, let’s run your code to make 

predictions.

First of all, let’s run the following to make sure that you are receiving 

predictions. You should already have defined input_json:

preds = query(scoring_uri=azure_service.scoring_uri, 

inputs=input_json)

pd.DataFrame(preds).T

You should now see something like Figure 6-14.

Now, let’s run your batch querying script:

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))

true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))

preds = []

Figure 6-14. Querying the deployed model with your batch of scaled 
data to ensure it works
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batch_size = 80

for f in range(25):

    print(f"Batch {f}", end=" - ")

     sample = pd.DataFrame(test[f*batch_size:(f+1)*batch_size]).

to_json(orient="split")

     output = query(scoring_uri=azure_service.scoring_uri, 

inputs=sample)

    resp = pd.DataFrame([output])

    preds = np.concatenate((preds, resp.values[0]))

    print("Completed")

eval_acc = accuracy_score(true, preds)

eval_auc = roc_auc_score(true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Once finished, you should see something like Figure 6-15.
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With that, you now know how to query your deployed model and make 

predictions with it. This should be the same procedure if you’ve opted to 

deploy to a specific compute cluster with, for example, Azure Kubernetes 

Service.

 Cleaning Up
Unfortunately, there does not seem to be any specific functionality to 

update the service with a new model. The procedure seems to be to delete 

the service and create a new service with another model URI.

So, with that, let’s now look at how you can remove all the services you 

just created.

Figure 6-15. The results of running the batch querying script. This 
effectively made predictions on 2,000 data points
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Run the following:

aci_service.delete()

azure_service.delete()

Refer to Figure 6-16.

Now, navigate to the All resources section again from the home portal. 

Check every item with the resource group type named Container Instance. 

You should see that there are none. Figure 6-17 shows what this might 

look like. (We have a container instance here, but it is unrelated.) Since 

you deleted the services just now, you should not see sklearn-logreg or 

sklearn-model-dev.

Figure 6-17. You should not see any resources titled sklearn-logreg or 
sklearn-model-dev of type container instance. (There is one here, but 
it is not related to the experiments from above, and only exists to show 
what a resource with this resource type looks like.)

Figure 6-16. Deleting the web services you launched earlier
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If you want to remove services from here, you can simply delete the 

container instances or other services, as in Figure 6-18.

You can now delete everything else (or just the new resources created 

for this chapter) in your UI following this same procedure to clean up your 

Azure workspace.

With that, you now know how to use MLFlow to deploy a model on 

Microsoft Azure.

It’s worth mentioning that Azure has a lot of additional functionality 

relating to monitoring your machine learning experiments and more, 

but that might also come with additional costs depending on the 

depth of functionality you are going after. Be sure to refer to their 

excellent documentation if you’d like to learn more about Azure and its 

functionality.

 Summary
Like Amazon AWS, Microsoft Azure is a cloud platform that performs many 

advanced services for a wide range of users. In particular, Azure has a lot 

of support for operationalizing machine learning models using built-in 

functionality separate from MLFlow.

Figure 6-18. Deleting services manually through the All resources UI
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In this chapter, you learned how to build a container image for a 

specific MLFlow model run, deploy it in a development setting/production 

setting, and query the model on Microsoft Azure.

In the next chapter, we will look at how you can use Google Cloud as 

a platform to operationalize your MLFlow models. There is no explicit 

MLFlow support for Google Cloud, so you will be adopting a different 

approach where you serve the models on a server hosted on Google Cloud 

and make predictions that way.
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CHAPTER 7

Deploying in Google
In this chapter, we will cover how you can use MLFlow and Google Cloud 

to operationalize your models even without MLFlow providing explicit 

deployment support for Google Cloud.

More specifically, we will cover how to set up your Google Cloud 

bucket and virtual machine (used to run the server) and how you can 

operationalize and query your models.

 Introduction
In the previous chapter, we went over how you can deploy your models to 

Microsoft Azure, manage them through update or delete events, and query 

them. This time, we will explore how you can operationalize your models 

using Google Cloud.

MLFlow does not provide explicit support for deploying in Google 

Cloud like it does with AWS SageMaker and Microsoft Azure, and so you 

will approach this a bit differently from how you operationalized models in 

the previous two chapters.

This time, you will use the same model serving functionality that you 

used in Chapter 4 except you will host it on a Google Cloud machine that 

is accessible by the Internet. However, deployment is far quicker this way 

since you don’t have to wait for the creation of an endpoint. Furthermore, 

once you set up the machine, swapping models is very simple, and you can 

serve multiple models by using different ports.
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It’s worth noting that Google Cloud has an assortment of advanced 

tools and functionality dedicated to machine learning, such as Kubeflow. 

Kubeflow is a tool that allows you to essentially integrate your machine 

learning lifecycles into Kubernetes. And so all your machine learning 

pipelines are managed through Kubernetes. Kubeflow also integrates into 

the Google Cloud platform, seeing as how Kubernetes was built by Google. 

In this chapter, we will just go over how you can deploy MLFlow logged 

models. We won’t get into any of the platform-specific tools that help 

manage your machine learning lifecycles.

Before you begin, here is an important prerequisite:

• Download and install the Google Cloud SDK so you can 

use the CLI to connect to your server.

In detail, we will go over the following in this chapter:

• Configuring Google: This is perhaps the hardest step 

in this deployment process. First, you set up a bucket 

and push the contents of your mlruns folder to be 

stored on the cloud.

Next, you set up the virtual machine that will host 

your server when you deploy the model. This 

involves installing Conda and MLFlow.

Finally, you set up a firewall to allow your server 

to have inbound access through the default port 

of 5000 that MLFlow uses so that you can actually 

connect to this server through your Jupyter 

notebook.

• Deploying and querying the model: Here, you check 

the IP address, pick a run, and launch the code to serve 

the model. Then, you query the model and run the 

batch query script as well.
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• Updating and removing a deployment: Here, you stop 

deployment and simply rerun the model serving script 

with a different model run to fulfill model switching 

functionality. After you have updated the model, 

removing the deployment is as easy as stopping the 

model serving.

• Cleaning up: Here, you go through all of the new 

services you used and delete them all so as not to incur 

any charges.

With that, let’s get started!

 Configuring Google
Most of the work that is involved in deploying your models using Google 

Cloud is actually taken up by the configuration process. Once you set up 

the storage and the machine to host your model, model serving becomes 

an extremely easy task. To switch up models, you only need to change up 

the model run and let MLFlow take care of the rest.

As for where you are storing the models, you will be using Google 

Cloud Storage to do so. Once again, this fulfills a functionality similar to 

storing your runs in Amazon S3 buckets or Azure blobs. The purpose of 

pushing all of your runs to the cloud is so that there is a centralized storage 

container that holds the models. Now anyone can access them anywhere 

around the world, and there are no issues with version mismatch where 

your copy of the run happens to differ with someone else’s. In a sense, this 

is serving the role of a model registry, just without the added functionality 

of the MLFlow Model Registry.
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 Bucket Storage
And so, let’s begin. First, open up the Google Cloud portal. You should 

see something like Figure 7-1. Be aware, though, that Google Cloud is also 

constantly being updated, so your portal screen may look different.

Notice the scroll bar on the left side of the screen. This is where you can 

look at the services Google Cloud provides. Scroll to the section that says 

Storage, and click the service named Storage. You should see something 

similar to Figure 7-2.

Figure 7-1. What our Google Cloud portal screen looks like

Figure 7-2. Something similar to what you might see. In your case, 
you might not have any buckets here
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Click the button that says CREATE BUCKET. Type in mlops-storage.

Next, where it asks for a location type, select the Region option to have 

the lowest costs. Refer to Figure 7-3.

Keep the rest of the options as is and click the Create button. You 

should now see something that looks like Figure 7-4.

Figure 7-3. Specifying the storage option for your bucket. Select 
Region to keep the costs the lowest, although with the amount of data 
you are pushing, the actual costs are very little

Figure 7-4. What your bucket might look like after creation
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From here, you want to upload your MLFlow experiments (the 

content of your mlruns directory) as folders, so click Upload Folder, and 

upload all of the folders inside the mlruns directory. You can leave out 

the folder named .trash. In our case, we only uploaded the experiment 
using scikit-learn and left the rest out since we won’t be using the other 

experiments.

You should see something like Figure 7-5 when finished.

With that, you have finished configuring your storage. The next thing to 

configure is the virtual machine that will be hosting your model.

Figure 7-5. Our bucket after uploading the contents of our mlruns 
directory. We only uploaded the experiment using scikit-learn to save 
on costs
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Figure 7-6. What your VM Instances screen may look like. In our 
case, we already have another machine running, but that is irrelevant 
since we are creating a new machine

 Configuring the Virtual Machine
After going back to the portal, scroll to the Compute section and click the 

Compute Engine option. You should see something like Figure 7-6. You 

want to make sure you’re in the portal for the service titled VM Instances.
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Now, click Create Instance and you should see something like Figure 7- 7.

In our case, we filled in or selected the options that we want our VM 

machine to use. We named our machine mlops-server, selected our region 

(it autoselects a zone for you), and specified that we want to use Ubuntu 

18.04 LTS. Finally, at the end, we want to allow HTTPS traffic from the 

internet.

Finally, when finished, you should be able to see your VM machine on 

the list of machines. What you want to do now is to open your VM machine 

instance by clicking the name mlops-server. This should take you to a 

screen that looks like Figure 7-8.

Figure 7-7. The options you can fill in when creating your VM 
machine instance. You should match the selections shown in the 
figure to ensure consistency with our results
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Now look at the box that says SSH. There should be a little down arrow 

indicating that it is a drop-down list of something. Click that arrow and 

select the View gcloud command option. Refer to Figure 7-9.

Figure 7-8. What you should see when you click mlops-server. Notice 
the box that says SSH. You will use that shortly

Figure 7-9. The drop-down options for connecting to this VM instance
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This should take you to a popup window that looks like Figure 7-10. 

You have two options: running that command in a new instance of the 

Google Cloud SDK CLI (in our case, we had to search “Google Cloud SDK 

Shell” and it opened a configured Google Cloud terminal instance), or 

running it through a shell directly on the portal page itself. You can do 

either option, as both connect to the VM anyway.

Copy and paste that command in your terminal to connect to the 

VM. When finished running, you should see something like Figure 7-11, 

where it opens up a PuTTY instance of the actual shell inside the VM.

Figure 7-10. The command that lets you connect to the VM via 
SSH. You can also run it within the portal page itself if you’d like
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This is where you must configure your VM so that it can host your 

MLFlow models.

First, run the following commands:

sudo apt update

sudo apt upgrade

Answer “y” to any prompts.

Once finished, you can now install Conda. Without Conda, MLFlow 

won’t be able to reconstruct the environment that the MLFlow model 

was logged in. This is part of MLFlow’s modularization. In the case of 

SageMaker and Azure, you built containers that, as their name suggests, 

“contain” these Conda environments already. This way, SageMaker does 

not have to reinstall any Conda packages once the container is in the 

cloud. It simply has to run an instance of the container and it already has 

everything configured.

First, find out how to install Anaconda on Linux by going to its 

webpage. An install link should be provided. Copy the link and paste it 

somewhere. You will retrieve that link using a command.

Figure 7-11. The result of running the gcloud command that the 
portal provided. On the right, you can see a PuTTY terminal where 
you have the shell open inside the VM
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Run the following one at a time:

cd /tmp

curl -O https://repo.anaconda.com/archive/ 

Anaconda3-2020.07- Linux- x86_64.sh

You should see something like Figure 7-12.

Next, let’s install Anaconda by running the following. You can type in 

bash Anaconda and press Tab to autofill the rest of the script name.

bash https://repo.anaconda.com/archive/ 

Anaconda3-2020.07- Linux- x86_64.sh

It should ask you to look through the license agreement. At the end, 

answer yes, and press Enter to confirm the default installation location. 

Conda should then proceed with the installation. Answer yes to any 

further prompts. Once it’s done, restart the shell (close the PuTTY client 

and rerun the command or cloud shell), and you should now have Conda 

fully configured.

As you will now see, Conda has already started the base environment. 

Let’s create a new environment by running the following code:

conda create -n mlflow python=3.7

Answer “y” to any following prompts, and you should see something 

like Figure 7-13.

Figure 7-12. The output of fetching the Anaconda installation script
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Next, you will install the following packages: mlflow and  

google- cloud- storage. The former is self-explanatory: you will need MLFlow 

to do anything with MLFlow. You need google-cloud-storage because you are 

going to access your runs from the Google storage bucket from earlier.

Run the following:

conda activate mlflow

pip install mlflow google-cloud-storage

Running this code should also install all of the dependencies. In the 

future, should you need to install any more dependencies, it’s as simple as 

activating the mlflow environment and using pip install to get any more 

packages or update existing packages.

Once it has finished installing everything, you should see something 

like Figure 7-14.

Figure 7-13. If you see this, then your Conda environment has 
successfully installed
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With that, you have fully configured your VM. All that is left is to 

configure the firewall.

 Configuring the Firewall
First, you need to look at the internal IP that your VM instance is using. To 

do that, run the following:

ifconfig

You should see something like Figure 7-15.

Figure 7-14. The final output after finishing installing the necessary 
packages in the Conda environment
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Make a note of the internal IP, which we have highlighted in red. In 

your case, it will be different.

Now, you must add a firewall to allow access to your server once it is 

started. Go back to the portal, scroll to the section that says Networking, 

and click the VPC Networks option. You should see something like 

Figure 7-16.

Figure 7-15. Something similar to what you should see when you 
run the command. We have highlighted in red where you can find the 
internal IP of your machine. In our case, it is 10.142.0.4. Yours will be 
different
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Now, click Firewall and then click Create Firewall Rule. Namely, you 

want to enter the following values:

• Name: mlflow-server

• Target tags: mlops-server, http-server, https-server

• Source IP ranges: 0.0.0.0/0

• Protocols and Ports: Check TCP and type 5000

If you made a mistake, you can edit the firewall rules. You should see 

something like Figure 7-17.

Figure 7-16. The VPC Networks module in the portal. Click the 
Firewall option to look at the firewall options
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Figure 7-17. What your firewall configuration should look like. We 
have autofilled the values with our own
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Now click Create. You are done configuring the firewall and 

configuring everything else in Google Cloud. Now you can move on to 

deploying your model.

 Deploying and Querying the Model
With your virtual machine fully configured, it’s time to deploy your model.

Make sure you still have that internal IP logged in. Go back to the 

PuTTY client and now enter the following command:

mlflow models serve -m  gs://mlops-storage/EXPERIMENT_ID/RUN_ID/

artifacts/MODEL_NAME -h 10.142.0.4

Our command looks like the following. We simply took the first run in 

the Google Storage bucket.

mlflow models serve -m gs://mlops-storage/8/1eb809b446d949d5a70

a1e22e4b4f428/artifacts/log_reg_model -h 10.142.0.4

You should see something like Figure 7-18.

Chapter 7  Deploying in google



293

Figure 7-18. This is what your output should look like if it 
successfully built the Conda environment and is now serving the 
model

There’s only one more step that remains before you can successfully 

make predictions with this model. You must now see what your external 

IP is. To do so, go back to the VM Instances page to find your VM machine. 

You should see something like Figure 7-19.
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Once you have the external IP address, copy it down somewhere.

Now you can start up your Jupyter notebook and query this model.

In a Jupyter notebook cell, run the following. Make sure you have the 

data folder in the same directory as this notebook, and that the data folder 

contains the creditcard.csv file:

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_auc_score, accuracy_score, 

confusion_matrix

Figure 7-19. The VM Instances section in the portal should display 
the external IP of your server. We have highlighted ours in red, but 
yours is most likely something different
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import numpy as np

import subprocess

import json

df = pd.read_csv("data/creditcard.csv")

Next, you define your query() function that you will use to get model 

predictions:

def query(input_json):

    proc = subprocess.run(["curl",  "-X", "POST", "-H", 

"Content-Type:application/json; format=pandas-split",

                       "--data", input_json, 

"http://34.75.74.9:5000/invocations"],

                      stdout=subprocess.PIPE, encoding='utf-8')

    output = proc.stdout

    preds = json.loads(output)

    return preds

Notice that the IP is now http://34.75.74.9:5000/invocations. 

Basically, your IP should take the form of http://YOUR_EXTERNAL_

IP:5000/invocations, replacing the placeholder with the external IP 

address of your VM.

Let’s now query your model:

input_json = df.iloc[:80].drop(["Time", "Class"],  

axis=1).to_json(orient="split")

pd.DataFrame(query(input_json)).T

Altogether, you should see something like Figure 7-20.
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As expected, the predictions aren’t correct because you did not scale 

the data before querying the model with it. However, you have verified that 

you have queried the correct address and that the model is able to return 

predictions.

Now run the following cells:

normal = df[df.Class == 0].sample(frac=0.5, random_state=2020).

reset_index(drop=True)

anomaly = df[df.Class == 1]

normal_train, normal_test = train_test_split(normal, test_size 

= 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split(anomaly,  

test_size = 0.2, random_state = 2020)

Figure 7-20. The output of querying the model with the first 80 rows 
of your data frame
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scaler = StandardScaler()

scaler.fit(pd.concat((normal, anomaly)).drop(["Time", "Class"], 

axis=1))

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))

true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))

preds = []

batch_size = 80

for f in range(25):

    print(f"Batch {f}", end=" - ")

     sample = pd.DataFrame(test[f*batch_size:(f+1)*batch_size]).

to_json(orient="split")

    output = query(sample)

    resp = pd.DataFrame([output])

    preds = np.concatenate((preds, resp.values[0]))

    print("Completed")

eval_acc = accuracy_score(true, preds)

eval_auc = roc_auc_score(true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Once finished, you should see something like Figure 7-21.
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 Updating and Removing a Deployment
Updating the model deployment is extremely easy. With how you set it 

up, it’s only a matter of quitting the model serving command (Ctrl-C), and 

rerunning the command with a different run ID.

Let’s try deploying a different run. In your case, check your Google 

Storage bucket and pick the second run.

In our case, we ran the following:

mlflow models serve -m gs://mlops-storage/8/3862eb3bd89b43e8ace

610c521d974e6/artifacts/log_reg_model -h 10.142.0.4

As you can see in Figure 7-22, it successfully deployed, and we can 

simply query it using the same script.

Figure 7-21. The results of running your batch query script
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As for removing a deployment, all you have to do is just cancel the 

command with Ctrl-C and your deployment is now cancelled.

With that, you now know how to serve models, switch a model and 

deploy a different one, and remove a deployment by simply canceling the 

model serving command.

 Cleaning Up
It’s time to delete every instance of a service that you created so that you 

won’t incur any charges. Here’s a list of all of the services you used:

• Google Cloud Storage Bucket

• Compute Engine VM Instance

• Networking Firewall Rule

Figure 7-22. Deploying a different model run using the same 
command convention

Chapter 7  Deploying in google



300

Beginning with your VM Instance, you want to click STOP to first 

stop the VM from running. You should see something like Figure 7-23 

depending on where you access this VM.

After that, you can simply click DELETE to remove the VM. Stopping 

the VM only ensures that you won’t be billed for CPU/GPU utilization, but 

it won’t stop any charges that result from services linked to the VM.

Next, let’s go to the Storage bucket. Simply check your bucket and click 

DELETE to remove this storage. Refer to Figure 7-24.

Lastly, you may remove the firewall rule as well, but be sure to not 

remove any other rules that you might have in there.

Figure 7-23. The VM instance after stopping it

Figure 7-24. Removing your storage bucket
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With that, your workspace should be cleaned up, and there shouldn’t 

be any more services that may incur charges.

 Summary
Google Cloud is a cloud platform that provides many advanced services for 

a wide range of users. While MLFlow does not explicitly provide support 

for deployment for Google Cloud, you are still able to operationalize your 

models using MLFlow’s model serving functionality and Google Cloud’s 

compute engine to serve the models on the cloud.

In this chapter, you learned how to set up Google Cloud so that it can 

deploy your models on a virtual machine. In particular, you looked at 

how you can push your MLFlow runs to a bucket, how you can set up the 

Conda environment on a virtual machine, how you can set up a firewall 

to allow your model to be accessed in order to be queried, and how you 

can manage your deployments by simply switching out run IDs (and 

experiment IDs where appropriate).

In the Appendix, you can look at how Databricks helps you 

operationalize your models and manage them through the use of a model 

registry.
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APPENDIX

 Databricks
In this appendix, we will cover what Databricks is as well as how you 

can utilize its built-in MLFlow functionality to log MLFlow runs within 

Databricks itself, how to deploy models from Databricks to Azure, and how 

the MLFlow model registry works in Databricks.

 Introduction
Databricks is an open platform and cloud service that provides 

interoperability with other popular AI and data services like AWS and 

Microsoft Azure. Databricks also created Apache Spark, Delta Lake, and 

MLFlow (see Chapter 4 to learn what MLFlow is).

Before we begin, you will need a Databricks account. You have the 

option of creating a “community edition” account, which is free to users 

but is limited in its functionality. You will be able to use basic MLFlow 

functionality on top of whatever Python functionality you have (PySpark is 

supported, for example), but you will not be able to use the model registry 

functionality.

To sign up for one, head on over to this website:  

https://community.cloud.databricks.com/.

Otherwise, you will have to pay to be able to use Databricks by 

choosing a subscription plan for your account.

https://doi.org/10.1007/978-1-4842-6549-9#DOI
https://community.cloud.databricks.com/


304

With Databricks, you can integrate with Amazon AWS or Microsoft 

Azure. If you choose to subscribe to a plan from Databricks, you will be 

integrating with AWS. However, you can also deploy Databricks in Azure, 

which you can find more information about here:  

 https://azure.microsoft.com/en-us/services/databricks/.

Be warned, although Microsoft Azure does offer a free, 14-day trial of 

Databricks, you cannot create clusters without upgrading to the premium 

version of Azure Databricks (with a paid Azure subscription).

In this appendix, we will be using the community edition of 

Databricks, which is free to sign up for an use. The only exception here is 

the section in which we cover the model registry, which seems to only be 

available to premium Databricks users.

In detail, we will go over the following:

• Logging MLFlow runs within Databricks: You can run 

your Jupyter notebooks within Databricks itself, which 

provides functionality to import your old notebooks. 

For this part, you will import your notebook from 

Chapter 4 where you conduct experiments using scikit- 

learn. All runs will be logged within Databricks.

• MLFlow UI: Databricks has a built-in MLFlow UI that 

allows you to see all of your runs per experiment just as 

you would in the browser. You will look at your experiment 

using this UI and inspect a run that you will log.

• Deploying to AWS/Azure: Depending on what you integrate 

with, you can deploy your models to one of these services. In 

this chapter, we will be deploying to Microsoft Azure.

• MLFlow Model Registry: With premium Databricks 

(non-community edition), you have the added 

capability of having a model registry. Here, we will go 

over what the model registry is and how it works.

With that, let’s get started!
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 Running Experiments in Databricks
Once you have Databricks set up, whether in community edition or 

otherwise, you should be greeted with a home screen that looks somewhat 

like Figure A-1.

Where it says Common Tasks, go down until you see the option titled 

New MLFlow Experiment. Click this option.

You can type in any other name you like, but you should see something 

like Figure A-2.

Figure A-1. The Databricks home screen. If you have the community 
edition, you won’t have the Models tab on the navigation bar to the 
left, but otherwise it should look about the same
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Figure A-2. The screen you should see when creating an MLFlow 
experiment

Figure A-3. The screen displayed after experiment creation. Note that 
the experiment name is now /Users/sadari@bluewhale.one/sklearn. 
Be sure to make note of this as this is the full experiment name you 
will use when setting the experiment in the code

Go ahead and click Create. You should now see the MLFlow UI 

displaying the details of this experiment. Of course, there are no runs since 

you just created it. You should see something like Figure A-3.
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Something important to mention is that the experiment name in this 

case is not sklearn, but rather it is /Users/sadari@bluewhale.one/sklearn 

in its entirety. Whatever you see is what you will be using when setting the 

experiment in the notebook code.

With that, simply click Databricks to return to the home screen.

You now have two choices:

 1. Create a new notebook and fill in the cells from scratch.

 2. Import your MLFlow scikit-learn notebook from 

Chapter 4.

In this chapter, you will be importing the MLFlow scikit-learn 

notebook, but you will be making a few changes in order to ensure that it is 

adapted to work with Databricks.

Before you even begin with the notebook, however, you need to create 

the cluster that will run your notebook code. To do this, click the New 

Cluster option, and you should see something like Figure A-4.

Figure A-4. Cluster creation UI in the community edition of 
Databricks. Here, the name and the 7.2 ML runtime are autofilled

Appendix  dAtAbricks



308

Make sure that you have the same runtime as in Figure A-4, or at least 

something that has “ML” in the runtime name. Once finished, click the 

Create Cluster option.

After that, you’ll be taken to a UI that shows all the clusters you have. 

Refresh if the cluster does not immediately show up. This can take a bit, so 

in the meantime, let’s head back to the home screen.

At this point, you can proceed with your notebook. On the left 

navigation pane, click Home > Users (if it’s not selected for you), and 

then click your username to open a dropdown window. You should see 

something like Figure A-5.

Figure A-5. Home menu that allows you to import a notebook. Don’t 
worry about the other files you see here; you are likely to only have the 
experiment named sklearn and perhaps the Quickstart Notebook file
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Click Import and navigate to your MLFlow notebook from Chapter 4 (if 

you have one just for scikit-learn, that is preferable).

You will now be taken to a notebook with all the contents of the 

notebook you just imported, except for the outputs.

Before you get to run this, you must import your data. To do this, refer 

to Figure A-6. You must click File ➤ Upload Data in the dropdown menu.

Leaving everything else as is, click Browse and locate and upload your 

credit card dataset (creditcard.csv).

This will take some time to upload due to the size of the file, but once 

it is all done, click Next, which will give you code samples that tell you how 

to import this file. Make sure you have selected pandas. You can now paste 

this code and try to run it. In our case, we had an error stating that the file 

Figure A-6. Uploading the data so that it can be accessed by this 
notebook
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did not exist, so we instead loaded it with Spark and converted it into a 

pandas data frame, which does work for some reason given the same file 

path.

Before you can execute anything, make sure that the cluster has 

finished building. Above the first cell in the notebook, you’ll notice a bar 

that says “detached.” Click it and you should see your cluster available 

here. If the cluster is ready to use, there should be a green dot beside 

it. Otherwise, it will have the loading circle indicating that it’s still 

configuring.

Go ahead and click the cluster. Once it is finished, you should see 

something like Figure A-7.

Now you can begin with the modifications to the code. Let’s start with 

the import statements. Change the first cell to look like the following:

import numpy as np

import pandas as pd

import matplotlib #

import matplotlib.pyplot as plt

import seaborn as sns

import sklearn #

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

Figure A-7. An indication that the cluster is ready to use. If you see 
the green dot, you can now execute the cells in the notebook
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from sklearn.metrics import roc_auc_score, plot_roc_curve, 

confusion_matrix, accuracy_score

from sklearn.model_selection import KFold

import pyspark

from pyspark.sql import SparkSession

from pyspark import SparkConf, SparkContext

import os

import mlflow

import mlflow.sklearn

print("Numpy: {}".format(np.__version__))

print("Pandas: {}".format(pd.__version__))

print("matplotlib: {}".format(matplotlib.__version__))

print("seaborn: {}".format(sns.__version__))

print("Scikit-Learn: {}".format(sklearn.__version__))

print("MLFlow: {}".format(mlflow.__version__))

print("PySpark: {}".format(pyspark.__version__))

Here, you have added extra import statements so that you import 

PySpark.

Create a new cell beneath your first cell, adding the following:

os.environ["SPARK_LOCAL_IP"]='127.0.0.1'

spark = SparkSession.builder.master("local[*]").getOrCreate()

spark.sparkContext._conf.getAll()
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You should see something like Figure A-8 when executed.

The next cell should be where you were loading the pandas data frame. 

Change it to be just the following:

df = spark.read.csv("/FileStore/tables/creditcard.csv",  

header = True, inferSchema = True).toPandas()

df = df.drop("Time", axis=1)

If you run this cell and the next, which should be df.head(), you 

should see something like Figure A-9.

Figure A-8. Running the first two cells and ensuring you have a 
Spark context
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Figure A-9. Ensuring that you have successfully loaded the data 
frame in PySpark and have converted it to pandas

At this point, simply run the rest of the code up until the cell where you 

actually start the MLFlow run.

You must split up this cell to ensure everything logs to the same run. 

And so, you can create a new cell if you wish, with the following content:

sk_model = LogisticRegression(random_state=None, max_iter=400, 

solver='newton-cg')

mlflow.set_experiment("/Users/sadari@bluewhale.one/sklearn")

train(sk_model, x_train, y_train)

Here are the next three cells. Each text box is supposed to be its own 

cell:

evaluate(sk_model, x_test, y_test)

mlflow.sklearn.log_model(sk_model, "log_reg_model")

mlflow.end_run()
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Together, they should look like Figure A-10.

Now, run these cells. You should now see all of this logged in the 

experiment.

To view your runs, click Workspace in the navigation pane, and then 

click sklearn and the experiment name. You should see a run logged there. 

Click it, and you should see something like Figure A-11, with all the metrics 

and artifacts logged successfully.

Figure A-10. Splitting up the code to log the relevant metrics and 
artifacts to ensure everything ends up in the same run. It seems 
counterintuitive, but lumping it all under the same run with mlflow.
start_run() seems to cause the runs to fail

Appendix  dAtAbricks



315

With that, you are now ready to deploy. Logging MLFlow runs is as 

simple as in Databricks. One of the added benefits of Databricks is that 

it integrates Spark within its functionality, so if you primarily want to log 

PySpark models, Databricks might be ideal for you.

 Deploying to Azure
Since we have already looked at how to deploy to Azure, we will get straight 

to the point. If you would like to explore this process in more detail, refer to 

Chapter 6.

Figure A-11. Viewing the metrics and artifacts of the run and 
ensuring they were logged successfully
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 Connecting to the Workspace
In this step, you are simply connecting to an existing workspace through 

Databricks. It’s important to note that Databricks does not have azureml- 

sdk installed, so you must do so yourself. Luckily, Jupyter allows you to do 

this in a cell, so simply run the following:

!pip install azureml-sdk

Next, run the following, replacing all the placeholders with your own 

corresponding values:

import azureml

from azureml.core import Workspace

workspace_name = "databricks-deploy" # Your workspace name

workspace_location="East US" # Your region

resource_group = "azure-mlops" #Your resource group

subscription_id = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"

# Your subscription ID above

workspace = Workspace.create(name = workspace_name,

                             location = workspace_location,

                             resource_group = resource_group,

                             subscription_id = subscription_id,

                             exist_ok=True)

When you run this, you should see something like Figure A-12 asking 

you for authentication. Simply follow the instructions and you should be 

good to go.
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Figure A-12. The cell asking for authentication as you attempt to 
connect to an existing workspace. Follow the instructions, and the cell 
should finish with the statement, “Deployed Workspace with name 
databricks-deploy. Took __ seconds”

Once this finishes, you can proceed with building and pushing a 

container image using MLFlow functionality. Before you do that, make sure 

to keep track of your run ID (you should be able to see this in Figure A-11), 

and copy that information in the cell below:

run_id = "dabea5a03050455aa5ad4a61fa548093"

model_name = "log_reg_model"

model_uri = f"runs:/{run_id}/{model_name}"

Next up are the two cells with MLFlow code to build and push the 

container image:

import mlflow.azureml

model_image, azure_model =  mlflow.azureml.build_image 

(model_uri=model_uri, workspace=workspace,

                                   model_name="sklearn_logreg",

                                   image_name="model",

                                    description="SkLearn LogReg  

Model for Anomaly Detection",

                                   synchronous=False)

model_image.wait_for_creation(show_output=True)
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Figure A-13. The three cells from above and their outputs. Here, you 
specify a model run and then build and push a container to Azure 
based on that model

Together, the cells should look like Figure A-13.

With this step finished, you are ready to deploy the model using 

MLFlow Azure.

To do so, simply run the following:

azure_service, azure_model = mlflow.azureml.deploy(model_uri,

                             workspace,

                             service_name="sklearn-logreg",

                             model_name="log-reg-model",

                             synchronous=True)

With that, let’s now check the URI that you will use to query, just to 

ensure that it has successfully deployed:

azure_service.scoring_uri
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Upon success, you should see something that looks like Figure A-14 for 

both output cells.

Since there is a URI, you know that your model’s been deployed 

successfully. You can move on to the querying process now.

 Querying the Model
Before you make any predictions with your model, you need to define a 

query function:

import requests

import json

def query(scoring_uri, inputs):

    headers = {

    "Content-Type": "application/json",

    }

Figure A-14. The output of deploying the model as well as checking 
the scoring URI of the service
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     response = requests.post(scoring_uri, data=inputs, 

headers=headers)

    preds = json.loads(response.text)

    return preds

Let’s use your batch query code to query your deployed model and 

get some relevant metrics. Fortunately, you should already have your 

scaler object from earlier when you processed the data in the MLFlow 

experiment.

Simply run the following:

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))

true = test.Class

test = scaler.transform(test.drop(["Class"], axis=1))

preds = []

batch_size = 80

for f in range(25):

    print(f"Batch {f}", end=" - ")

     sample = pd.DataFrame(test[f*batch_size:(f+1)*batch_size]).

to_json(orient="split")

     output = query(scoring_uri=azure_service.scoring_uri, 

inputs=sample)

    resp = pd.DataFrame([output])

    preds = np.concatenate((preds, resp.values[0]))

    print("Completed")

eval_acc = accuracy_score(true, preds)

eval_auc = roc_auc_score(true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)
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Your output should look somewhat like Figure A-15.

With that, you now know how to log MLFlow runs in Databricks and 

deploy models to a cloud platform.

To delete the deployment, simply run the following:

azure_service.delete()

Be sure to delete all the resources that you created for this deployment 

as well.

The procedure for AWS is very similar to what you did in Chapter 5, but 

you just need to set up AWS to allow Databricks to access it.

Databricks has tutorials on how you can accomplish all of that as well. 

One of the perks of Databricks is that they have extensive documentation 

about almost everything, especially MLFlow.

Figure A-15. The output of the batch query script. If you cannot see 
an output past batch 20, resize the output by holding the little arrow 
on the bottom right
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 MLFlow Model Registry
In this section, we will briefly discuss the model registry. To use the model 

registry, you do need a premium subscription to Databricks and whatever 

cloud platform service you choose to deploy Databricks on (either AWS or 

Azure).

With MLFlow, Databricks provides built-in model registry functionality 

so that users can define what stage a particular model is in. The MLFlow 

Model Registry allows for greater collaboration between various teams, 

letting them all develop and maintain models at various stages in the 

model life cycle and manage them all in a centralized, organized region.

The user is in control of the lifecycle stage changes (experimentation, 

testing, production) of the models with options between automatic and 

manual control. The MLFlow Model Registry tracks the history of the 

model and allows for governance in managing who is able to approve 

changes.

Some concepts to know:

• Registered model: Once registered in the MLFlow 

Model Registry, it has a unique name, version, stage, 

and more.

• Stage: Some preset stages are None, Staging, 

Production, and Archived. The user can also create 

custom stages for each model version to represent its 

lifecycle. Model stage transitions are either requested 

or approved, depending on the user’s level of 

management.

• Description: The user can annotate the model for the 

team.

• Activities: MLFlow records a registered model’s 

activities, providing a history of the model’s stages.
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Some features include

• Central repository: Register MLFlow models to a 

centralized location.

• Model versioning: Keep track of the version history of 

models. Now, a model built for a specific task can have 

several versions.

• Model stage: Model versions have stages to represent 

the cycle as a whole. Together with model versioning, 

older model versions can gradually become phased out 

while the newest versions are sent to staging first, for 

example.

• Model stage transitions: Respond to new changes 

and events with automation. Training scripts can be 

automated to train new models automatically and 

assign them to staging, for example.

• CI/CD workflow integration: Monitor changes to the 

CI/CD pipelines as new versions are registered and 

have their deployment stages changed. This allows for 

better governance over the deployment process.

• Model serving: MLFlow models can be served on 

Databricks through REST APIs, on top of deploying 

them on a cloud service like AWS or Azure.

With that, let’s look at how you can register your model in Databricks.

First, head over to your MLFlow experiment and pick a run. Scroll 

down to artifacts and click the folder that contains your model. If you 
don’t have premium Databricks, you won’t be able to see this Register 
Model button. If you click the button and click Create New Model in the 

dropdown menu, you will see something like Figure A-16.
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Once finished, the Register Model button should be replaced by a 

green checkmark and a link to the model version page of this specific 

model.

On this page, you can set the model’s stage, which is one of None, 

Staging, Production, or Archived if you’re only using preset stages. 

Furthermore, you can add a description to this specific model.

On top of that, you can also request to change the model’s stage (and 

add an optional comment to add some context), which can be approved, 

rejected, or canceled.

This allows you to now keep better track of your models by knowing 

their present stages. There is also support for model versioning, so there 

can be multiple versions of the model, with the possibility of setting a 

model stage for each, which you can view at once.

To view all the models that you registered, you can simply click the 

Models tab in Databricks, as shown in Figure A-17.

Figure A-16. Registering a MLFlow model
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With the model registry that you looked at in prior chapters, where it’s 

just putting the models in a centralized area, you don’t have this type of 

functionality. If you were to implement this, it would have to be through an 

external program, although it’s actually a relatively simple task considering 

how everything is modularized for you.

With regular MLFlow, this requires you to have a MLFlow server that 

saves the runs in a mysql, myssl, sqlite, or postgresql dialect. Then, when 

you open the UI that pertains to this specific server’s storage, you can 

register models and have all of the MLFLow Model Registry functionality.

All of that can get pretty complicated, so Databricks takes care of it all 

for you, if you have the premium version of Databricks and a subscription 

to either AWS or Azure, whichever platform you deployed Databricks to.

And that’s all there is to the MLFlow Model Registry in Databricks.

With that, you now know how to run Jupyter notebooks in Databricks, 

how to log MLFlow runs and conduct experiments, and how to deploy 

your models to a cloud platform.

Figure A-17. The navigation pane on the left side of premium 
Databricks, deployed in Azure in this instance, with the Models tab 
that will take you to the model registry
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 Summary
Databricks is a cloud platform that integrates with Amazon AWS or 

Microsoft Azure. As the creator of MLFlow, Databricks integrates MLFlow 

functionality into its services, allowing you to run all the MLFlow 

experiments you’d like to on the cloud. Furthermore, it also takes care of 

the mechanisms behind running a model registry for you, allowing you to 

take full advantage of MLFlow on the cloud.

In this appendix, you learned how to import your existing notebook, 

create a MLFlow experiment, and log your own MLFlow runs. On top of 

that, you also looked at deploying this model to Azure within Databricks 

itself, and you looked at the model registry and how it works in Databricks.

With this, you now know how to take your existing machine 

learning experiments and operationalize them very easily with MLFlow. 

Furthermore, you also know how to deploy your models to three different 

cloud platforms: Amazon AWS, Microsoft Azure, and Google Cloud. 

With this chapter, you’ve also added Databricks to that list, although it’s 

mostly for running your MLFlow experiments on. That being said, you can 

definitely run MLFlow experiments and log your runs on the other cloud 

platforms; it’s just far easier to do so within Databricks.
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