

Introduction to Deep Learning

Introduction to Deep Learning

Eugene Charniak

The MIT Press
Cambridge, Massachusetts
London, England

c© 2018 The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

This book was set in LATEX by author. Printed and bound in the United States of
America.

Library of Congress Cataloging-in-Publication Data is available.
ISBN: 978-0-262-03951-2

10 9 8 7 6 5 4 3 2 1

To my family, once more

Contents

Preface xi

1 Feed-Forward Neural Nets 1

1.1 Perceptrons . 3

1.2 Cross-entropy Loss Functions for Neural Nets 9

1.3 Derivatives and Stochastic Gradient Descent 14

1.4 Writing Our Program . 18

1.5 Matrix Representation of Neural Nets 21

1.6 Data Independence . 24

1.7 References and Further Readings 25

1.8 Written Exercises . 26

2 Tensorflow 29

2.1 Tensorflow Preliminaries . 29

2.2 A TF Program . 33

2.3 Multilayered NNs . 38

2.4 Other Pieces . 42

2.4.1 Checkpointing . 42

2.4.2 tensordot . 43

2.4.3 Initialization of TF Variables 44

2.4.4 Simplifying TF Graph Creation 47

2.5 References and Further Readings 48

2.6 Written Exercises . 49

3 Convolutional Neural Networks 51

3.1 Filters, Strides, and Padding 52

3.2 A Simple TF Convolution Example 57

3.3 Multilevel Convolution . 61

3.4 Convolution Details . 64

vii

viii CONTENTS

3.4.1 Biases . 64

3.4.2 Layers with Convolution 65

3.4.3 Pooling . 66

3.5 References and Further Readings 67

3.6 Written Exercises . 68

4 Word Embeddings and Recurrent NNs 71

4.1 Word Embeddings for Language Models 71

4.2 Building Feed-Forward Language Models 76

4.3 Improving Feed-Forward Language Models 78

4.4 Overfitting . 79

4.5 Recurrent Networks . 82

4.6 Long Short-Term Memory . 88

4.7 References and Further Readings 92

4.8 Written Exercises . 92

5 Sequence-to-Sequence Learning 95

5.1 The Seq2Seq Paradigm . 96

5.2 Writing a Seq2Seq MT program 99

5.3 Attention in Seq2seq . 102

5.4 Multilength Seq2Seq . 107

5.5 Programming Exercise . 108

5.6 Written Exercises . 110

5.7 References and Further Readings 111

6 Deep Reinforcement Learning 113

6.1 Value Iteration . 114

6.2 Q-learning . 117

6.3 Basic Deep-Q Learning . 119

6.4 Policy Gradient Methods . 124

6.5 Actor-Critic Methods . 130

6.6 Experience Replay . 133

6.7 References and Further Readings 134

6.8 Written Exercises . 134

7 Unsupervised Neural-Network Models 137

7.1 Basic Autoencoding . 137

7.2 Convolutional Autoencoding 140

7.3 Variational Autoencoding . 144

7.4 Generative Adversarial Networks 152

CONTENTS ix

7.5 References and Further Readings 157
7.6 Written Exercises . 157

A Answers to Selected Exercises 159
A.1 Chapter 1 . 159
A.2 Chapter 2 . 160
A.3 Chapter 3 . 160
A.4 Chapter 4 . 161
A.5 Chapter 5 . 161
A.6 Chapter 6 . 162
A.7 Chapter 7 . 162

Bibliography 165

Index 169

Preface

Your author is a long-time artificial-intelligence researcher whose field of ex-
pertise, natural-language processing, has been revolutionized by deep learn-
ing. Unfortunately, it took him (me) a long time to catch on to this fact. I
can rationalize this since this is the third time neural networks have threat-
ened a revolution but only the first time they have delivered. Nevertheless, I
suddenly found myself way behind the times and struggling to catch up. So
I did what any self-respecting professor would do, scheduled myself to teach
the stuff, started a crash course by surfing the web, and got my students to
teach it to me. (This last is not a joke. In particular, the head undergradu-
ate teaching assistant for the course, Siddarth (Sidd) Karramcheti, deserves
special mention.)

This explains several prominent features of this book. First, it is short.
I am a slow learner. Second, it is very much project driven. Many texts,
particularly in computer science, have a constant tension between topic or-
ganization and organizing material around specific projects. Splitting the
difference is often a good idea, but I find I learn computer science material
best by sitting down and writing programs, so my book largely reflects my
learning habits. It was the most convenient way to put it down, and I am
hoping many in the expected audience will find it helpful as well.

Which brings up the question of the expected audience. While I hope
many CS practitioners will find this book useful for the same reason I wrote
it, as a teacher my first loyalty is to my students, so this book is primarily
intended as a textbook for a course on deep learning. The course I teach at
Brown is for both graduate and undergraduates and covers all the material
herein, plus some “culture” lectures (for graduate credit a student must add
a significant final project). Both linear algebra and multivariate calculus are
required. While the actual quantity of linear-algebra material is not that
great, students have told me that without it they would have found think-
ing about multilevel networks, and the tensors they require, quite difficult.
Multivariate calculus, however, was a much closer call. It appears explicitly

xi

xii PREFACE

only in Chapter 1, when we build up to back-propagation from scratch and
I would not be surprised if an extra lecture on partial derivatives would do.
Last, there is a probability and statistics prerequisite. This simplifies the
exposition and I certainly want to encourage students to take such a course.
I also assume a rudimentary knowledge of programming in Python. I do not
include this in the text, but my course has an extra “lab” on basic Python.

That your author was playing catch-up when writing this book also
explains the fact that in almost every chapter’s section on further reading
you will find, beyond the usual references to important research papers,
many reference to secondary sources — others’ educational writings. I would
never have learned this material without them.

Providence, Rhode Island
January 2018

Chapter 1

Feed-Forward Neural Nets

It is standard to start exploring deep learning (or neural nets — we use
the terms interchangeably) with their use in computer vision. This area of
artificial intelligence has been revolutionized by the technique and its basic
starting point — light intensity — is represented naturally by real numbers,
which are what neural nets manipulate.

To make this more concrete, consider the problem of identifying hand-
written digits — the numbers from zero to nine. If we were to start from
scratch, we would first need to build a camera to focus light rays in order
to build up an image of what we see. We would then need light sensors
to turn the light rays into electrical impulses that a computer can “sense.”
And finally, since we are dealing with digital computers, we would need to
discretize the image — that is, represent the colors and intensities of the light
as numbers in a two-dimensional array. Fortunately, we have a dataset on
line in which all this has been done for us — the Mnist dataset (pronounced
“em-nist”). (The “nist” here comes from the U.S. National Institute of
Standards (or nist), which was responsible for gathering the data.) In this
data each image is a 28 ∗ 28 array of integers as in Figure 1.1. (I have
removed the left and right border regions to make it fit better on the page.)

In Figure 1.1, 0 can be thought of as white, 255 as black, and numbers
in between as shades of gray. We call these numbers pixel values, where a
pixel is the smallest portion of an image that our computer can resolve. The
actual “size” of the area in the world represented by a pixel depends on our
camera, how far away it is from the object surface, etc. But for our simple
digit problem we need not worry about this. The black and white image is
show in Figure 1.2.

Looking at this image closely can suggest some simpleminded ways we

1

2 CHAPTER 1. FEED-FORWARD NEURAL NETS

7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 185 159 151 60 36 0 0 0 0 0 0 0 0 0
8 254 254 254 254 241 198 198 198 198 198 198 198 198 170
9 114 72 114 163 227 254 225 254 254 254 250 229 254 254
10 0 0 0 0 17 66 14 67 67 67 59 21 236 254
11 0 0 0 0 0 0 0 0 0 0 0 83 253 209
12 0 0 0 0 0 0 0 0 0 0 22 233 255 83
13 0 0 0 0 0 0 0 0 0 0 129 254 238 44
14 0 0 0 0 0 0 0 0 0 59 249 254 62 0
15 0 0 0 0 0 0 0 0 0 133 254 187 5 0
16 0 0 0 0 0 0 0 0 9 205 248 58 0 0
17 0 0 0 0 0 0 0 0 126 254 182 0 0 0
18 0 0 0 0 0 0 0 75 251 240 57 0 0 0
19 0 0 0 0 0 0 19 221 254 166 0 0 0 0
20 0 0 0 0 0 3 203 254 219 35 0 0 0 0
21 0 0 0 0 0 38 254 254 77 0 0 0 0 0
22 0 0 0 0 31 224 254 115 1 0 0 0 0 0
23 0 0 0 0 133 254 254 52 0 0 0 0 0 0
24 0 0 0 61 242 254 254 52 0 0 0 0 0 0
25 0 0 0 121 254 254 219 40 0 0 0 0 0 0
26 0 0 0 121 254 207 18 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1.1: An Mnist discretized version of an image

Figure 1.2: A black on white image from the pixels of Figure 1.1

1.1. PERCEPTRONS 3

might go about our task. For example, notice that the pixel in position
[8, 8] is dark. Given that this is an image of a ‘7’ this is quite reasonable.
Similarly, 7s often have a light patch in the middle — i.e., pixel [13, 13] has
a zero as its intensity value. Contrast this with the number ‘1’, which often
has the opposite values for these two positions since a standard drawing
of the number does not occupy the upper left-hand corner but does fill the
exact middle. With a little thought we could come up with a lot of heuristics
(rules that often work, but may not always) such as those, and then write a
classification program using them.

However, this is not what we are going to do, since in this book we con-
centrate on machine learning. That is, we approach tasks by asking how we
can enable a computer to learn by giving it examples along with the correct
answer. In this case we want our program to learn how to identify 28*28 im-
ages of digits by giving examples of them along with the answers (also called
labels). In machine learning we would say that this is a supervised learning
problem or, to be more emphatic, a fully supervised learning problem, in that
for every learning example we also give the computer the correct answer. In
later chapters, e.g., Chapter 6, we do not have this luxury. There we have a
semi-supervised problem, or even, in Chapter 7, unsupervised learning. We
see in those chapters how this can work.

Once we have abstracted away the details of dealing with the world of
light rays and surfaces, we are left with a classification problem — given a
set of inputs (often called features), identify (or classify) the entity which
gave rise to those inputs (or has those features) as one of a finite number
of alternatives. In our case the inputs are pixels, and the classification
is into ten possibilities. We denote the vector of l inputs (pixels) as x =
[x1, x2 . . . xl] and the answer is a. In general the inputs are real numbers and
may be both positive and negative, though in our case they are all positive
integers.

1.1 Perceptrons

We start, however, with a simpler problem. We create a program to decide
if an image is a zero or not a zero. This is a binary classification problem.
One of the earliest machine learning schemes for binary classification is the
perceptron, shown in Figure 1.3.

Perceptrons were invented as simple computational models of neurons.
A single neuron (see Figure 1.4) typically has many inputs (dendrites), a
cell body, and a single output (the axon). Echoing this, the perceptron takes

4 CHAPTER 1. FEED-FORWARD NEURAL NETS

Σ

Figure 1.3: Schematic diagram of a perceptron

Figure 1.4: A typical neuron

1.1. PERCEPTRONS 5

many inputs and has one output. A simple perceptron for deciding if our
28 ∗ 28 image is of a zero would have 784 inputs, one for each pixel, and one
output. For ease in drawing, the perceptron in Figure 1.3 has five inputs.

A perceptron consists of a vector of weights w = [w1 . . . wm], one for
each input, plus a distinguished weight b, called the bias. We call w and
b the parameters of the perceptron. More generally, we use Φ to denote
parameters, with φi ∈ Φ the ith parameter. For a perceptron Φ = {w ∪ b}.

With these parameters the perceptron computes the following function:

fΦ(x) =

{
1 if b+

∑l
i=1 xiwi > 0

0 otherwise
(1.1)

Or in words, we multiply each perceptron input by the weight for that input
and add the bias. If this value is greater than zero we return 1, otherwise
0. Perceptrons, remember, are binary classifiers, so 1 indicates that x is a
member of the class and 0, not a member.

It is standard to define the dot product of two vectors of length l as

x · y =

l∑
i=1

xiyi (1.2)

so we can simplify the notation for the perceptron computation as follows:

fΦ(x) =

{
1 if b+ w · x > 0

0 otherwise
(1.3)

Elements that compute b+ w ·x are called linear units and as in Figure 1.3
we identify them with a Σ. Also, when we discuss adjusting the parameters
it is useful to recast the bias as another weight in w, one whose feature value
is always 1. (This way we only need to talk about adjusting the ws.)

We care about perceptrons because there is a remarkably simple and
robust algorithm — the perceptron algorithm — for finding these Φ given
training examples. We indicate which example we are discussing with a
superscript, so the input for the kth example is xk = [xk1 . . . x

k
l] and its

answer is ak. For a binary classifier such as a perceptron, the answer is a
1 or 0 indicating membership in the class, or not. When classifying into m
classes, the answer would be an integer from 0 to m− 1.

It is sometimes useful to characterize machine learning as a function
approximation problem. From this point of view a single unit perceptron
defines a parameterized class of functions. Learning the perceptron weights

6 CHAPTER 1. FEED-FORWARD NEURAL NETS

is then picking out the member of the class that best approximates the
solution function — the “true” function that, given any set of pixel values,
correctly characterizes the image as, say, a zero or not.

As in all machine-learning research, we assume we have at least two and
preferably three sets of problem examples. The first is the training set. It
is used to adjust the parameters of the model. The second is called the
development set and is used to test the model as we try to improve it. (It
is also referred to as the held-out set or the validation set.) The third is
the test set. Once the model is fixed and (if we are lucky) producing good
results, we then evaluate on the test-set examples. This prevents us from
accidentally developing a program that works on the development set but
not on yet unseen problems. These sets are sometimes called corpora, as
in “test corpus.” The Mnist data we use is available on the web. The
training data consists of 60,000 images and their correct labels, and the
development/test set has 10,000 images and labels.

The great property of the perceptron algorithm is that, if there is a set
of parameter values that enables the perceptron to classify all the training
set correctly, the algorithm is guaranteed to find it. Unfortunately, for most
real-world examples there is no such set. On the other hand, even then
perceptrons often work remarkably well in the sense that there are parameter
settings that label a very high percentage of the examples correctly.

The algorithm works by iterating over the training set several times,
adjusting the parameters to increase the number of correctly identified ex-
amples. If we get though the training set without any parameters needing
to change, we know we have a correct set and we can stop. However, if there
is no such set then they continue to change forever. To prevent this we cut
off training after N iterations, where N is a system parameter set by the
programmer. Typically N grows with the total number of parameters to be
learned. Henceforth we will be careful to distinguish between the system pa-
rameters Φ and other numbers associated with our program that we might
otherwise call “parameters” but are not part of Φ, such as N , the number
of iterations though the training set. We call the latter hyperparameters.
Figure 1.5 gives pseudocode for this algorithm. Note the standard use of
∆x as “change in x.”

The critical lines here are 2(a)i and 2(a)ii. Here ak is either 1 or 0,
indicating if the image is a member of the class (ak = 1) or not. Thus
the first of the two lines says, in effect, if the output of the perceptron
is the correct label, do nothing. The second specifies how to change the
weight wi so that, if we were immediately to try this example again, the
perceptron would either get it right or at least get it less wrong, namely add

1.1. PERCEPTRONS 7

1. set b and all of the w’s to 0.

2. for N iterations, or until the weights do not change

(a) for each training example xk with answer ak

i. if ak − f(xk) = 0 continue

ii. else for all weights wi, ∆wi = (ak − f(xk))xi

Figure 1.5: The perceptron algorithm

(ak − f(xk))xki to each parameter wi.

The best way to see that line 2(a)ii does what we want is to go through
the possible things that can happen. Suppose the training example xk is a
member of the class. This means that its label ak = 1. Since we got this
wrong, f(xk) (the output of the perceptron on the kth training example)
must have been 0, so (ak−f(xk)) = 1 and for all i ∆wi = xi. Since all pixel
values are ≥ 0 the algorithm increases the weights, and next time f(xk)
returns a larger value — it is “less wrong.” (We leave it as an exercise for
the reader to show that the formula does what we want in the opposite
situation — when the example is not in the class but the perceptron says
that it is.)

With regard to the bias b, we are treating it as a weight for an imaginary
feature x0 whose value is always 1 and the above discussion goes through
without modification.

Let us do a small example. Here we only look at (and adjust) the weights
for four pixels, pixels [7, 7] (center of top left corner), [7, 14] (top center),
[14, 7], and [4, 14]. It is usually convenient to divide the pixel values to
make them come out between zero and one. Assume that our image is a
zero, so (a = 1), and the pixel values for these four locations are .8, .9,
.6, and 0 respectively. Since initially all our parameters are zero, when we
evaluate f(x) on the first image w ·x+ b = 0, so f(x) = 0, so our image was
classified incorrectly and a(1) − f(x1) = 1. Thus the weight w7,7 becomes
(0 + 0.8 ∗ 1) = 0.8. In the same fashion, the next two wjs become 0.9 and
0.6. The center pixel weight stays zero (because the image value there is
zero). The bias becomes 1.0. Note in particular that if we feed this same
image into the perceptron a second time, with the new weights it would be
correctly classified.

Suppose the next image is not a zero, but rather a one, and the two
center pixels have value one and the others zero. First, b+ w · x = 1 + .8 ∗

8 CHAPTER 1. FEED-FORWARD NEURAL NETS

Σ

Σ

Σ

Figure 1.6: Multiple perceptrons for identification of multiple classes

0 + .9 ∗ 1 + .6 ∗ 0 + 0 ∗ 1 = 1.9, so f(x) > 0 and the perceptron misclassifies
the example as a zero. Thus f(x) − lx = 0 − 1 = −1 and we adjust each
weight according to line 2(a)ii. w0,0 and w14,7 are unchanged because the
pixel values are zero, while w7,14 now becomes .9− .9 ∗ 1 = 0 (the previous
value minus the weight times the current pixel value). We leave the new
values for b and w14,14 to the reader.

We go through the training data multiple times. Each pass through the
data is called an epoch. Also, note that if the training data is presented to
the program in a different order, the weights we learn are different. Good
practice is to randomize the order in which the training data is presented
each epoch. We come back to this point in Section 1.6. However, for students
just coming to this material for the first time, we give ourselves some latitude
here and omit this nicety.

We can extend perceptrons to multiclass decision problems by creating
not just one perceptron, but one for each class we want to recognize. For
our original 10-digit problem we would have 10, one for each digit, and then
return the class whose perceptron value is the highest. Graphically this is
seen in Figure 1.6, where we show three perceptrons for identifying an image
as in one of three classes of objects.

While Figure 1.6 looks very interconnected, in actuality it simply shows
three separate perceptrons that share the same inputs. Except for the fact

1.2. CROSS-ENTROPY LOSS FUNCTIONS FOR NEURAL NETS 9

∑

Figure 1.7: NN showing layers

that the answer returned by the multiclass perceptron is the number of the
linear unit that returns the highest value, all the perceptrons are trained
independently of the others, using exactly the same algorithm shown earlier.
So, given an image and label we run the perceptron algorithm step (a) 10
times for the 10 perceptrons. If the label is, say, five but the perceptron
with the highest value is six, then the perceptrons for zero to four do not
change their parameters (since they correctly said, I am not a zero, or one,
etc.). The same is true for six to nine. On the other hand, perceptrons five
and six do modify their parameters since they reported incorrect decisions.

1.2 Cross-entropy Loss Functions for Neural Nets

In its infancy, a discussion of neural nets (we henceforth abbreviate as NN)
would be accompanied by diagrams much like that in Figure 1.6 with the
stress on individual computing elements (the linear units). These days we
expect the number of such elements to be large so we talk of the computation
in terms of layers — a group of storage or computational units that can be
thought of as working in parallel and then passing values to another layer.
Figure 1.7 is a version of Figure 1.6 that emphasizes this view. It shows an
input layer feeding into a computational layer.

10 CHAPTER 1. FEED-FORWARD NEURAL NETS

Implicit in the “layer” language is the idea that there may be many
layers, each feeding into the next. This is so, and this piling of layers is the
“deep” in “deep learning.”

Multiple layers, however, do not work well with perceptrons, so we need
another method of learning how to change weights. In this section we con-
sider how to do this using the next simplest network configuration, feed-
forward neural networks, and a relatively simple learning technique, gradient
descent. (Contrariwise, some researchers refer to feed-forward NNs trained
with gradient descent as multilevel perceptrons.)

Before we can talk about gradient descent, however, we first need to
discuss loss functions. A loss function is a function from an outcome to how
“bad” the outcome is for us. In learning model parameters, our goal is to
minimize loss. The loss function for perceptrons has the value zero if we got
a training example correct, one if was incorrect. This is known as a zero-one
loss. Zero-one loss has the advantage of being pretty obvious, so obvious
that we never bothered to justify its use. However, it has disadvantages. In
particular, it does not work well with gradient descent learning where the
basic idea is to modify a parameter according to the rule

∆φi = −L ∂L
∂φi

(1.4)

Here L is the learning rate, a real number that scales how much we change
a parameter at a given time. The important part is the partial derivative
of the loss L with respect to the parameter we are adjusting. Or, to put
it another way, if we can find how the loss is affected by the parameter in
question, we should change the parameter to decrease the loss (hence the
minus sign preceding L). In our perceptron, and more generally in NNs, the
outcome is determined by Φ, the model parameters, so in such models the
loss is a function L(Φ).

To make this easy to visualize, suppose our perceptron has only two
parameters. Then we can think of a Euclidean plane with two axes, φ1 and
φ2 and for every point in the plane the value of the loss function hanging
over (or under) the point. Say our current values for the parameters are
1.0 and 2.2 respectively. Look at the plane at position (1, 2.2) and observe
how L behaves at that point. Figure 1.8, a slice along the plane φ2 = 2.2,
shows how an imaginary loss behaves as a function of φ1. Look at the loss
when φ1 = 1. We see that the tangent line has a slope of about −1

4 . If the
learning rate L = .5, then Equation 1.4 tells us to add (−.5) ∗ (−1

4) = .125
— that is, move about .125 units to the right, which indeed decreases the
loss.

1.2. CROSS-ENTROPY LOSS FUNCTIONS FOR NEURAL NETS 11

1 2 3

Figure 1.8: Loss as a function of φ1

For Equation 1.4 to work the loss has to be a differentiable function of
the parameters, which the zero-one loss is not. To see this, imagine a graph
of the number of mistakes we make as a function of some parameter, φ. Say
we just evaluated our perceptron on an example, and got it wrong. Well,
if, say, we keep increasing φ (or perhaps decrease it) and we do so enough,
eventually f(x) changes its value and we get the example correct. So when
we look at the graph we see a step function. But step functions are not
differentiable.

There are, however, other loss functions. The most popular, the closest
thing to a “standard” loss function, is the cross-entropy loss function. In
this section we explain what this is and how our network is going to compute
it. The subsequent section uses it for parameter learning.

Currently our network of Figure 1.6 outputs a vector of values, one for
each linear unit, and we choose the class with the highest output value. We
now change our network so that the numbers output are (an estimate of)
the probability distribution over classes, in our case the probability that
the correct class random variable C = c for c ∈ [0, 1, 2, . . . , 9]. A probability
distribution is a set of non-negative numbers that sum to one. Currently our
network outputs numbers, but they are generally both positive and negative.
Fortunately, there is a convenient function for turning sets of numbers into

12 CHAPTER 1. FEED-FORWARD NEURAL NETS

∑ σ

Figure 1.9: A simple network with a softmax layer

probability distributions, softmax:

σ(x)j =
exj∑
i e
xi

(1.5)

Softmax is guaranteed to return a probability distribution because even if x
is negative ex is positive, and the values sum to one because the denominator
sums over all possible values of the numerator. For example, σ([−1, 0, 1]) ≈
[0.09, 0.244, 0.665]. A special case that we refer to in our further discussion
is when all the NN outputs into softmax are zero. e0 = 1, so if there are 10
options all of them receive probability 1

10 , which generalizes naturally to 1
n

if there are n options.
By the way, “softmax” gets its name from the fact that it is a “soft”

version of the “max” function. The output of the max function is com-
pletely determined by the maximum input value. Softmax’s output is mostly
but not completely determined by the maximum. Many machine-learning
functions have the name softX for different X but where the outputs are
“softened.”

Figure 1.9 shows a network with a softmax layer added in. As before,
the numbers coming in on the left are the image pixel values; however,
now the numbers going out on the right are class probabilities. It is also
useful to have a name for the numbers leaving the linear units and going

1.2. CROSS-ENTROPY LOSS FUNCTIONS FOR NEURAL NETS 13

into the softmax function. These are typically called logits — a term for
un-normalized numbers that we are about to turn into probabilities using
softmax. (There seem to be several pronunciations of “logit.” The most
common seems to be LOW-jit.) We use l to denote the vector of logits (one
for each class). So we have:

p(li) =
eli∑
j e

lj
(1.6)

∝ eli (1.7)

Here the second line expresses the fact that, since the denominator of the
softmax function is a normalizing constant to make sure the numbers sum
to one, the probabilities are proportional to the softmax numerator.

Now we are in a position to define our cross-entropy loss function X:

X(Φ, x) = − ln pΦ(ax) (1.8)

The cross-entropy loss for an example x is the negative log probability as-
signed to x’s label. Or to put it another way, we compute the probabilities
of all the alternatives using softmax, then pluck out the one for the correct
answer. The loss is the negative log probability of that number.

Let’s see why this is reasonable. First, it goes in the right direction. If X
is a loss function, it should increase as our model gets worse. Well, a model
that is improving should assign higher and higher probability to the correct
answer. So we put a minus sign in front so that the number gets smaller as
the probability gets higher. Next, the log of a number increases/decreases
as the number does. So indeed, X(Φ, x) is larger for bad parameters than
for good ones.

But why put in the log? We are used to thinking of logarithms as
shrinking distances between numbers. The difference between log(10,000)
and log(1000) is 1. One would think that would be a bad property for a
loss function: it would make bad situations look less bad. But this charac-
terization of logarithms is misleading. It is true as x gets larger ln x does
not increase to the same degree. But consider the graph of –ln(x) in Figure
1.10. As x goes to zero, changes in the logarithm are much larger than the
changes to x. And since we are dealing with probabilities, this is the region
we care about.

As for why this function is called cross-entropy loss, in information the-
ory when a probability distribution is intended to approximate some true
distribution, the cross entropy of the two distributions is a measure of how

14 CHAPTER 1. FEED-FORWARD NEURAL NETS

1 2 3

1

2

0

Figure 1.10: Graph of − lnx

different they are. The cross-entropy loss is an approximation of the negative
of the cross entropy. As we needn’t go any deeper than this into information
theory in this book, we leave it with this shallow explanation.

1.3 Derivatives and Stochastic Gradient Descent

We now have our loss function and we can compute it using the following
equations:

X(Φ, x) = − ln p(a) (1.9)

p(a) = σa(l) =
ela∑
i e
li

(1.10)

lj = bj + x ·wj (1.11)

We first compute the logits l from Equation 1.11. These are then used by
the softmax layer to compute the probabilities (Equation 1.10) and then
we compute the loss, the negative natural logarithm of the probability of
the correct answer (Equation 1.9). Note that previously the weights for a
linear unit were denoted as w. Now we have many such units, so wj are the
weights for the jth unit and bj is its bias.

This process, going from input to the loss, is called the forward pass of
the learning algorithm, and it computes the values that are going to be used

1.3. DERIVATIVES AND STOCHASTIC GRADIENT DESCENT 15

in the backward pass — the weight adjustment pass. Several methods are
used for this. Here we use stochastic gradient descent. There term gradient
descent gets its name from looking at the slope of the loss function (its
gradient), and then having the system lower its loss (descend) by following
the gradient. The learning method as a whole is commonly known as back
propagation.

We start by looking at the simplest case of gradient estimation, that for
one of the biases, bj . We can see from Equations 1.9–1.11 that bj changes loss
by first changing the value of the logit lj , which then changes the probability
and hence the loss. Let’s take this in steps. (In this we are considering only
the error induced by a single training example, so we writeX(Φ, x) asX(Φ).)
First:

∂X(Φ)

∂bj
=
∂lj
∂bj

∂X(Φ)

∂lj
(1.12)

This uses the chain rule to say what we said earlier in words — changes in
bj cause changes in X by virtue of the changes they induce in the logit lj .

Look now at the first partial derivative on the right in Equation 1.12.
Its value is, in fact, just 1:

∂lj
∂bj

=
∂

∂bj
(bj +

∑
i

xiwi,j) = 1 (1.13)

where wi,j is the ith weight of the jth linear unit. Since the only thing in
bj +

∑
i xiwi,j that changes as a function of bj is bj itself, the derivative is 1.

We next consider how X changes as a function of lj :

∂X(Φ)

∂lj
=
∂pa
∂lj

∂X(φ)

∂pa
(1.14)

where pi is the probability assigned to class i by the network. So this says
that since X is dependent only on the probability of the correct answer, lj
affects X only by changing this probability. In turn,

∂X(φ)

∂pa
=

∂

∂pa
(− ln pa) = − 1

pa
(1.15)

(from basic calculus).

This leaves one term yet to evaluate:

∂pa
∂lj

=
∂σa(l)

∂lj
=

{
(1− pj)pa a = j

−pjpa a 6= j
(1.16)

16 CHAPTER 1. FEED-FORWARD NEURAL NETS

The first equality of Equation 1.16 comes from the fact that we get our
probabilities by computing softmax on the logits. The second equality comes
from Wikipedia. The derivation requires careful manipulation of terms and
we do not carry it out. However, we can make it seem reasonable. We are
asking how changes in the logit lj are going to affect the probability that
comes out of softmax. By reminding ourselves that

σa(l) =
ela∑
i e
li

it makes sense that there are two cases. Suppose the logit we are varying
(j) is not equal to a. That is, suppose this is a picture of a 6, but we are
asking about the bias that determines logit 8. In this case lj appears only
in the denominator, and the derivative should be negative (or zero) since
the larger lj , the smaller pa. This is the second case in Equation 1.16, and
sure enough, this case produces a number less than or equal to zero since
the two probabilities we multiply cannot be negative.

On the other hand, if j = a, then lj appears in both the numerator
and denominator. Its appearance in the denominator tends to decrease
the output, but in this case it is more than offset by the increase in the
numerator. Thus for this case we expect a positive (or zero) derivative, and
this is what the first case of Equation 1.16 delivers.

With this result in hand we can now derive the equation for modifying
the bias parameters bj . Substituting Equations 1.15 and 1.16 into Equation
1.14 gives us:

∂X(Φ)

∂lj
= − 1

pa

{
(1− pj)pa a = j

−pjpa a 6= j
(1.17)

=

{
−(1− pj) a = j

pj a 6= j
(1.18)

The rest is pretty simple. We noted in Equation 1.12 that

∂X(Φ)

∂bj
=
∂lj
∂bj

∂X(Φ)

∂lj

and then that the first of the derivatives on the right has value 1. So the
derivative of the loss with respect to bj is given by Equation 1.14. Last, using
the rule for changing weights (Equation 1.12), we get the rule for updating
the NN bias parameters:

∆bj = L

{
(1− pj) a = j

−pj a 6= j
(1.19)

1.3. DERIVATIVES AND STOCHASTIC GRADIENT DESCENT 17

The equation for changing weight parameters (as opposed to bias) is a
minor variation of Equation 1.19. The equation corresponding to Equation
1.12 for weights is:

∂X(Φ)

∂wi,j
=

∂lj
∂wi,j

∂X(Φ)

∂lj
(1.20)

First, note that the rightmost derivative is the same as in Equation 1.12.
This means that during the weight adjustment phase we should save this
result when we are doing the bias changes to reuse here. The first of the
two derivatives on the right evaluates to

∂X(Φ)

∂wi,j
=

∂

∂wi,j
(bj + (w1,jx1 + . . .+ wi,jxi + . . .)) = xi (1.21)

(Had we taken to heart the idea that a bias is simply a weight whose corre-
sponding feature value is always 1, we could have just derived this equation,
and then Equation 1.13 would have followed immediately from 1.21 when
applied to this new pseudoweight.)

Using this result yields our equation for weight updates:

∆wi,j = −Lxi
∂X(Φ)

∂lj
(1.22)

We have now derived how the parameters of our model should be ad-
justed in light of a single training example. The gradient descent algorithm
would then have us go though all the training examples recording how each
would recommend moving the parameter values, but not actually changing
them until we have made a complete pass through all of them. At this point
we modify each parameter by the sum of the changes from the individual
examples.

The problem here is that this algorithm can be very slow, particularly if
training set is large. We typically need to adjust the parameters often since
they are going to interact in different ways as each increases and decreases as
the result of particular test examples. Thus in practice we almost never use
gradient descent but rather stochastic gradient descent, which updates the
parameters every m examples, for m much less that the size of the training
set. A typical m might be twenty. This is called the batch size.

In general, the smaller the batch size, the smaller the learning rate L
should be set. The idea is that any one example is going to push the weights
toward classifying that example correctly at the expense of the others. If the
learning rate is low, this does not matter that much, since the changes made
to the parameters are correspondingly small. Conversely, with larger batch

18 CHAPTER 1. FEED-FORWARD NEURAL NETS

1. for j from 0 to 9 set bj randomly (but close to zero)

2. for j from 0 to 9 and for i from 0 to 783 set wi,j similarly

3. until development accuracy stops increasing

(a) for each training example k in batches of m examples

i. do the forward pass using Equations 1.9, 1.10, and 1.11

ii. do the backward pass using Equations 1.22, 1.19, and 1.14

iii. every m examples, modify all Φs with the summed updates

(b) compute the accuracy of the model by running the forward pass
on all examples in the development corpus

4. output the Φ from the iteration before the decrease in development
accuracy.

Figure 1.11: Pseudocode for simple feed-forward digit recognition

size we are implicitly averaging over m different examples, so the dangers
of tilting parameters to the idiosyncrasies of one example are lessened and
changes made to the parameters can be larger.

1.4 Writing Our Program

We now have the broad sweep of our first NN program. The pseudocode is
in Figure 1.11. Starting from the top, the first thing we do is initialize the
model parameters. Sometimes it is fine to initialize all to zero, as we did in
the perceptron algorithm. While this is so in our current problem as well, it
is not always the case. Thus general good practice is to set weights randomly
but close to zero. You might also want to give the Python random-number
generator a seed so when you are debugging you always set the parameters
to the same initial values and thus should get exactly the same output. (If
you do not, Python uses a numbers from the environment, like the last few
digits from the clock, as the seed.)

Note that at every iteration of the training we first modify the param-
eters, and then use the model on the development set to see how well it
performs with its current set of parameters. When we run development ex-
amples we do not run the backward training pass. If we were actually going
to be using our program for some real purpose (e.g., reading zip codes on

1.4. WRITING OUR PROGRAM 19

mail), the examples we see are not ones on which we have been able to train,
and thus we want to know how well our program works “in the wild.” Our
development data are an approximation to this situation.

A few pieces of empirical knowledge come in handy here. First, it is
common practice to have pixel values not stray too far from −1 to 1. In
our case, since the original pixel values were 0 to 255, we simply divided
them by 255 before using them in our network. This is an instance of a
process called data normalization. There are no hard and fast rules, but
often keeping inputs from –1 to 1 or 0 to 1 makes sense. One place we
can see why this is true here is in Equation 1.22 above, where we saw that
the difference between the equation for adjusting the bias term and that
for a weight coming from one of the NN inputs was that the latter had
multiplicative term xi, the value of the input term. At the time we said
that if we had taken to heart our comment that the bias term was simply a
weight term whose input value was always 1, the equation for updating bias
parameters would have fallen out of Equation 1.22. Thus, if we leave the
input values unmodified and one of the pixels has the value 255, we modified
its weight value 255 times more than we modify a bias. Given we have no a
priori reason to think one needs more correction than the other, this seems
strange.

Next there is the question of setting L, the learning rate. This can be
tricky. In our implementation we used 0.0001. The first thing to note is
that setting it too large is much worse than too small. If you do this you
get a math overflow error from softmax. Looking again to Equation 1.5,
one of the first things that should strike you are the exponentials in both
the numerator and denominator. Raising e (≈ 2.7) to a large value is a
foolproof way to get an overflow, which is what we will be doing if any of
the logits get large, which in turn can happen if we have a learning rate that
is too big. Even if an error message does not give you the striking warning
that something is amiss, a too high learning rate can cause your program to
wander around in an unprofitable area of the learning curve.

For this reason it is standard practice to observe what happens to the
loss on individual examples as the computation proceeds. Let us start with
what to expect on the very first training image. The numbers go through
the NN and get fed out to the logits layer. All our weights and biases are
zero plus or minus a small bit (say .1). This means all the logit values are
very close to zero, so all the probabilities are very close to 1

10 . (See the
discussion on page 12.) The loss is minus the natural log of the probability
assigned to the correct answer, − ln(1

10) ≈ 2.3. As a general trend we expect
individual losses to decline as we train on more examples. But naturally,

20 CHAPTER 1. FEED-FORWARD NEURAL NETS

some images are further from the norm than others, and thus are classified
by the NN with less certainty. Thus we see individual losses that go higher
or lower, and the trend may be difficult to discern. Thus, rather than print
out one loss at a time, we sum all of them as we go along and print the
average every, say, 100 batches. This average should decrease in an easily
observable fashion, though even here you may see jitter.

Returning to our discussion of learning rate and the perils of setting it
too high, a learning rate that is too low can really slow down the rate at
which your program converges to a good set of parameters. So staring small
and experimenting with larger values is usually the best course of action.

Because so many parameters are all changing at the same time, NN al-
gorithms can be hard to debug. As with all debugging, the trick is to change
as few things as possible before the bug manifests itself. First, remember
the point that when we modify weights, if you immediately run the same
training example a second time, the loss is less. If this is not true then either
there is a bug, or you set the learning rate too high. Second, remember that
it is not necessary to change all the weights to see the loss decrease. You can
change just one of them, or one group of them. For example, when you first
run the algorithm only change the biases. (However, if you think about it, a
bias in a one-layer network is mostly going to capture the fact that different
classes occur with different frequencies. This does not happen much in the
Mnist data, so we do not get much improvement by just learning biases in
this case.)

If your program is working correctly you should get an accuracy on the
development data of about 91% or 92%. This is not very good for this task.
In later chapters we see how to achieve about 99%. But it is a start.

One nice thing about really simple NNs that that sometimes we can
directly interpret the values of individual parameters and decide if they are
reasonable or not. You may remember that in our discussion of Figure
1.1, we noted that the pixel (8,8) was dark — it had a pixel value of 254.
We remarked that this was somewhat diagnostic of images of the digit 7,
as opposed to, for example, the digit 1, which would not normally have
markings in the upper left-hand corner. We can turn this observation into
a prediction about values in our weight matrix wi,j , where i is the pixel
number and j is the answer value. If the pixel values go from 0 to 784, then
the position (8,8) would be pixel 8·28+8 = 232, and the weight connecting it
to the answer 7 (the correct answer) would be w232,7, while that connecting
it to 1 would be w232,1. You should make sure you see that this now suggests
that w232,7 should be larger than w232,1. We ran our program several times
with low-variance random initialization of our weights. In each case the

1.5. MATRIX REPRESENTATION OF NEURAL NETS 21

former number was positive (e.g., .25) while the second was negative (e.g.,
–.17).

1.5 Matrix Representation of Neural Nets

Linear algebra gives us another way to represent what is going on in a NN:
using matrices. A matrix is a two-dimensional array of elements. In our
case these elements are real numbers. The dimensions of a matrix are the
number of rows and columns, respectively. So a l by m matrix looks like
this:

X =


x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m

. . .
xl,1 xl,2 . . . xl,m

 (1.23)

The primary operations on matrices are addition and multiplication.
Addition of two matrices (which must be of the same dimensions) is element-
wise. That is, if we add two matrices X = Y + Z, then xi,j = yi,j + zi,j .

Multiplication of two matrices X = YZ is defined when Y has dimen-
sions l and m and those of Z are m and n. The result is a matrix of size l
by n, where:

xi,j =

k=m∑
k=1

yi,kzk,j (1.24)

As a quick example,

(
1 2

)(1 2 3
4 5 6

)
+
(

7 8 9
)

=
(

9 12 15
)

+
(

7 8 9
)

=
(

16 20 24
)

We can use this combination of matrix multiplication and addition to
define the operation of our linear units. In particular, the input features are
a 1 ∗ l matrix X. In the digit problem l = 784. The weights on the units are
W where wi,j is the ith weight for unit j. So the dimensions of W are the
number of pixels by the number of digits, 784 ∗ 10. B is a vector of biases
with length 10, and

L = XW + B (1.25)

where L is a length 10 vector of logits. It is a good habit when first seeing
an equation like this to make sure the dimensions work.

22 CHAPTER 1. FEED-FORWARD NEURAL NETS

We can now express the loss (L) for our feed-forward Mnist model as
follows:

Pr(A(x)) = σ(xW + b) (1.26)

L(x) = − log(Pr(A(x) = a)) (1.27)

where the first equation gives the probability distribution over the possible
classes (A(x)), and the second specifies the cross-entropy loss.

We can also express the backward pass more compactly. First, we intro-
duce the gradient operator

∇lX(Φ) =

(
∂X(Φ)

∂l1
. . .

∂X(Φ)

∂lm

)
(1.28)

The inverted triangle, ∇xf(x), denotes a vector created by taking the partial
derivative of f with respect to all the values in x. Previously we just talked
about the partial derivative with respect to individual lj . Here we define
the derivative with respect to all of l as the vector of individual derivatives.
We also remind the reader of the transpose of a matrix — making the rows
of the matrix into columns, and vice versa:

x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m

. . .
xl,1 xl,2 . . . xl,m


T

=


x1,1 x2,1 . . . xl,1
x1,2 x2,2 . . . xl,2

. . .
x1,m x2,m . . . xl,m

 (1.29)

With these we can rewrite Equation 1.22 as

∆W = −LXT∇lX(Φ) (1.30)

On the right we are multiplying a 784 ∗ 1 times a 1 ∗ 10 matrix to get a
784 ∗ 10 matrix of changes to the 784 ∗ 10 matrix of weights W.

This is an elegant summary of what is going on when the input layer
feeds into the layer of linear units to produce the logits, which is followed
by the loss derivatives propagating back to the changes in the parameters.
But there is also a practical reason for preferring this new notation. When
run with a large number of linear units, linear algebra in general and deep-
learning training in particular can be very time consuming. However, a great
many problems can be expressed in matrix notation, and many programming
languages have special packages that let you program using linear algebra
constructs. Furthermore, these packages are optimized to make them more
efficient than if you had coded them by hand. In particular, if you program in

1.5. MATRIX REPRESENTATION OF NEURAL NETS 23

Python it is well worth using the Numpy package and its matrix operations.
Typically you get an order-of-magnitude speedup.

Furthermore, one particular application of linear algebra is computer
graphics and its use in game-playing programs. This has resulted in special-
ized hardware called graphics processing units or GPUs. GPUs have slow
processors compared to CPUs, but they have a lot of them, along with the
software to use them efficiently in parallel for linear algebraic computations.
Some specialized languages for NNs (e.g., Tensorflow) have built-in software
that senses the availability of GPUs and uses them without any change in
code. This typically gives another order-of-magnitude increase in speed.

There is yet a third reason for adopting matrix notation in this case.
Both the special-purpose software packages (e.g., Numpy) and hardware
(GPUs) are more efficient if we process several training examples in parallel.
Furthermore, this fits with the idea that we want to process some number m
of training examples (the batch size) before we update the model parameters.
To this end, it is common practice to input all m of them to our matrix
processing to run together. In Equation 1.25 we envisioned the image x
as a matrix of size 1*784. This was one training example, with 784 pixels.
We now change this so the matrix has dimensions m by 784. Interestingly,
this almost works without any changes to our processing (and the necessary
changes are already built into, e.g., Numpy and Tensorflow). Let’s see why.

First, consider the matrix multiplication XW where now X has m rows
rather than 1. Of course, with one row we get an output of size 1 ∗ 784.
With m rows the output is m ∗ 784. Furthermore, as you might remember
from linear algebra but can in any case confirm by consulting the definition
of matrix multiplication, the output rows are as if in each case we did mul-
tiplication of a single row and then stacked them together to get the m∗784
matrix.

Adding on the bias term in the equation does not work out so well. We
said that matrix addition requires both matrices to have the same dimen-
sions. This is no longer true for Equation 1.25, as XW now has size m by
10 whereas B, the bias terms, has size 1 by 10. This is where the modest
changes come in.

Numpy and Tensorflow have broadcasting. When some arithmetic oper-
ation requires arrays to have sizes different from the ones they have, arrays
dimensions can sometimes be adjusted. In particular, when one of the arrays
has dimension 1∗n and we require m∗n, the first gets m−1 (virtual) copies
made of its one row or column so that it is the correct size. This is exactly
what we want here. This makes B effectively m ∗ 10. So we add the bias to
all the terms in the m ∗ 10 output from the multiplication. Remember what

24 CHAPTER 1. FEED-FORWARD NEURAL NETS

we did when this was 1 by 10. Each of the 10 was one possible decision for
what the correct answer might be, and we added the bias to the number for
that decision. Now we are doing the same, but for each possible decision
and for all the m examples we are running in parallel.

1.6 Data Independence

All the theorems to the effect that if the following assumptions hold, then
our NN models, in fact, converge to the correct solution depend on the iid
assumption — that our data are independent and identically distributed. A
canonical example is cosmic ray measurements — the rays stream in and
the processes involved are random and unchanging.

Our data seldom (almost never) look like this — imagine the National
Institute of Standards providing a constant stream of new examples. For
the data in the first epoch the iid assumption looks pretty good, but as soon
as we start on the second, our data are identical to the first time. In some
cases our data can fail to be iid starting with training example 2. This is
often the case in deep reinforcement learning (deep RL, Chapter 6), and for
this reason networks in that branch of deep RL often suffer from instability
— failure of the net to converge on the correct solution, or sometimes any
solution. Here we consider a relatively small example where just entering
the data in a non-random order can have disastrous results.

Suppose for each Mnist image we added a second that is identical but
with black and white reversed — i.e., if the original has a pixel value v, the
reversed image has −v. We now train our Mnist perceptron on this new
corpus, but using different training example orders. (And we assume the
batch size is some even integer.) In the first ordering each original Mnist
digit image is immediately followed by its reversed version. The claim is (and
we verified this empirically) that our simple Mnist NN fails to perform better
than chance. A few moments’ thought should make this seem reasonable.
We see image one, and the backward pass modifies the weights. We now
process the second, reversed image. Because the input is minus the previous
input and everything else is the same, the changes to all of the weights
exactly cancel out the previous ones, and at the end of the training set there
are no changes to any of the weights. So no learning, and the same random
choices we started with.

On the other hand, there really should not be anything too difficult
about learning to handle each data set, regular and reversed, separately
and it should be only modestly more difficult for a single set of weights to

1.7. REFERENCES AND FURTHER READINGS 25

handle both. Indeed, simply randomizing the order of input is sufficient
to get performance back to nearly the level of the original problem. If we
see the reverse image, say, 10,000 samples later, the weights have changed
sufficiently so the reverse image does not exactly cancel out the original
learning. If we had an unending source of images and flipped a coin to decide
to feed the NN the original or reversed, then even this small cancelation
would go away.

1.7 References and Further Readings

In this and subsequent “References and Further Readings” sections I try to
do several things more or less simultaneously: (a) point the student to follow-
on material for the chapter topic, (b) identify some important contributions
to the field, and (c) cite references that I myself used to learn this material.
In all cases, particularly (b), I make no claims to completeness or objectivity.
I realized this when in preparation for writing this section I started to read
up on the history of neural nets. In particular I read a blog post by Andrey
Kurenkov [Kur15] to check my memories (and perhaps add to them).

One of the key early papers in NNs was that by McCulloch and Pitts
[MP43], who proposed what we call here a linear unit as a formal model
of a neuron. This is back in 1943. They did not, however, have a learning
algorithm that could train one or more of them to do a task. That was
Rosenblatt’s big contribution in his 1958 perceptrons paper [Ros58]. How-
ever, as we noted in the text, his algorithm only worked for a single-layer
NN.

The next big step was the invention of back propagation, which does
work for multiple-layered NNs. This was one of those situations where many
researchers all came to an idea independently over a period of several years.
(This happens, of course, only when the initial papers do not attract enough
attention that everyone else finds out that the problem had been solved.)
The paper that brought this period to an end was by Rumelhart, Hinton,
and Williams, and it explicitly notes that theirs is a rediscovery [RHW86].
This paper was one of many from a group at University of San Diego that
was responsible for the second flowering of neural networks under the rubric
of parallel distributed processing (PDP). A two-volume collection of these
papers was quite influential [RMG+87].

As for how I learned whatever I know about NNs, I give more specifics in
later chapters. For this chapter I remember very early on reading a blog by
Steven Miller [Mil15] that goes through the forward and backward passes

26 CHAPTER 1. FEED-FORWARD NEURAL NETS

of back propagation very slowly and with a great numerical example. More
generally, let me note two general NN textbooks I have consulted. One
is Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
[GBC16]; the second is Hands-On Machine Learning with Scikit-Learn and
Tensorflow by Aurélien Géron [Gér17].

1.8 Written Exercises

Exercise 1.1: Consider our feed-forward Mnist program with a batch size
of one. Suppose we look at the bias variables before and after training on
the first example. If they are being set correctly (i.e., if there are no bugs
in our program), describe the changes you should see in their values.

Exercise 1.2: We simplify our Mnist computation by assuming our “im-
age” has two binary-valued pixels, 0 and 1, there are no bias parameters,
and we are performing a binary classification problem. (a) Compute the
forward-pass logits and probabilities when the pixel values are [0,1], and the
weights are:

.2 –.3
–.1 .4

Here w[i, j] is the weight on the connection between the ith pixel and the
jth unit. E.g., w[0, 1] here is −.3. (b) Assume the correct answer is 1 (not
0) and use a learning rate of 0.1. What is the loss? Also, compute ∆w0,0 on
the backward pass.

Exercise 1.3: Same questions as in Exercise 1.2 except the image is [0,0].

Exercise 1.4: A fellow student asks you, “In elementary calculus we found
minima of a function by differentiating it, setting the resulting expression to
zero, and then solving the equation. Since our loss function is differentiable,
why don’t we do that rather than bothering with gradient descent?” Explain
why this is not, in fact, possible.

Exercise 1.5: Compute the following:(
1 2
3 4

)(
0 1
2 3

)
+
(

4 5
)

(1.31)

You should assume broadcasting so the computation is well defined.

1.8. WRITTEN EXERCISES 27

Exercise 1.6: In this chapter we limited ourselves to classification prob-
lems, for which cross entropy is typically the loss function of choice. There
are also problems where we want our NN to predict particular values. For
example, undoubtedly many folks would like a program that, given the price
of a particular stock today plus all sorts of other facts about the world, out-
puts the price of the stock tomorrow. If we were training a single-layer NN
to do this we we would typically use the squared-error loss:

L(X,Φ) = (t− l(X,Φ))2 (1.32)

where t is the actual price that was achieved on that day and l(X,Φ) is
the output of the one layer NN with Φ = {b,W}. (This is also known
as quadratic loss.) Derive the equation for the derivative of the loss with
respect to bi.

Chapter 2

Tensorflow

2.1 Tensorflow Preliminaries

Tensorflow is an open-source programming language developed by Google
that is specifically designed to make programming deep-learning programs
easy, or at least easier. We start with the traditional first program:

import tensorflow as tf

x = tf.constant("Hello World")

sess = tf.Session()

print(sess.run(x)) #will print out "Hello World"

If this looks like Python code, that is because it is. In fact, Tensorflow
(henceforth TF) is a collection of functions that can be called from inside
different programming languages. The most complete interface is from inside
Python, and that is what we use here.

The next thing to note is that TF functions do not so much execute a
program as define a computation that is executed only when we call the run

command, as in the last line of the above program. More precisely, the TF
function Session in the third line creates a session, and associated with this
session is a graph defining a computation. Commands like constant add
elements to this computation. In this case the element is just a constant data
item whose value is the Python string “Hello World”. The third line tells
TF to evaluate the TF variable pointed to by x inside the graph associated
with the session sess. As you might expect, this results in the printout
“Hello World”.

It is instructive to contrast this behavior with what happens if we replace
the last line with print(x). This prints out:

29

30 CHAPTER 2. TENSORFLOW

x = tf.constant(2.0)

z = tf.placeholder(tf.float32)

sess= tf.Session()

comp=tf.add(x,z)

print(sess.run(comp,feed_dict={z:3.0})) # Prints out 5.0

print(sess.run(comp,feed_dict={z:16.0})) # Prints out 18.0

print(sess.run(x)) # Prints out 2.0

print(sess.run(comp)) # Prints out a very long error message

Figure 2.1: Placeholders in TF

Tensor("Const:0", shape=(), dtype=string)

The point is that the Python variable ‘x’ is not bound to a string, but rather
to a piece of the Tensorflow computation graph. It is only when we evaluate
this portion of the graph by executing sess.run(x) that we access the value
of the TF constant.

So, perhaps to belabor the obvious, in the above code ‘x’ and ‘sess’ are
Python variables, and as such could have been named whatever we wanted.
import and print are Python functions, and must be spelled this way for
Python to understand which function we want executed. Last, constant,
Session and run are TF commands and again the spelling must be exact
(including the capital “S” in Session). Also, we always need first to import

tensorflow. Since this is fixed we omit it henceforth.

In the code in Figure 2.1, x is again a Python variable whose value is a
TF constant, in this case the floating-point number 2.0. Next, z is a Python
variable whose value is a TF placeholder. A placeholder in TF is like the
formal variable in a programming language function. Suppose we had the
following Python code:

x = 2.0

def sillyAdd(z):

return z+x

print(sillyAdd(3)) # Prints out 5.0

print(sillyAdd(16)) # Prints out 18.0

Here ‘z’ is the name of sillyAdd’s argument, and when we call the function
as in sillyAdd(3) it is replaced by its value, 3. The TF version works
similarly, except the way to give TF placeholders a value is different, as seen
in the fifth line of Figure 2.1:

2.1. TENSORFLOW PRELIMINARIES 31

print(sess.run(comp,feed_dict={z:3.0})).

Here feed dict is a named argument of run (so its name must be spelled
correctly). It takes as possible values Python dictionaries. In the dictionary
each placeholder required by the computation must be given a value. So
the first sess.run prints out the sum of 2.0 and 3.0, and the second 18.0.
The third is there to note that if the computation does not require the
placeholder’s value, then there is no need to supply it. On the other hand,
as the comment on the fourth print statement indicates, if the computation
requires a value and it is not supplied you get an error.

Tensorflow is called Tensorflow because its fundamental data structures
are tensors — typed multidimensional arrays. There are fifteen or so tensor
types. When we defined the placeholder z above we gave its type as a
float32. Along with its type, a tensor has a shape. So consider a 2 ∗ 3
matrix. It has shape [2, 3]. A vector of length 4 has shape [4]. This is
different from a 1 ∗ 4 matrix, which has shape [1, 4], or a 4 by 1 matrix
whose shape is [4, 1]. A 3 by 17 by 6 array has shape [3, 17, 6]. They are
all tensors. Scalars (i.e., numbers) have the null shape, and are tensors as
well. Also, be aware that tensors do not make the linear-algebra distinction
between row vectors and column vectors. There are tensors whose shape
has one component, e.g., [5], and that is it. How we draw them on the
page is immaterial to the mathematics. When we illustrate array tensors we
always obey the rule that the zeroth dimension is drawn vertically and the
first horizontally. But that is the limit of our consistency. (Also, note that
tensor components are referred to in zero-based counting.)

Returning to our discussion of placeholders: most placeholders are not
the simple scalars of our previous examples, but rather multidimensional
tensors. For example, the next section starts with a simple Tensorflow pro-
gram for Mnist digit recognition. The primary TF code will take an image
and run the forward NN pass to get the network’s guess as to what digit we
are looking at. Also, during the training phase it runs the backward pass
and modifies the program’s parameters. To hand the program the image we
define a placeholder. It will be of type float32 and shape [28,28], or pos-
sibly [784], depending on if we handed it a two- or one-dimensional Python
list. E.g.,

img=tf.placeholder(tf.float32,shape=[28,28])

Note that shape is a named argument of the placeholder function.
One more TF data structure before we dive into the real program. As

noted before, NN models are defined by their parameters and the program’s

32 CHAPTER 2. TENSORFLOW

architecture — how the parameters are combined with the input values to
produce the answer. The parameters (e.g., the weights w that connect the
input image to the answer logits) are (typically) initialized randomly, and
the NN modifies them to minimize the loss on the training data. There
are three stages to creating TF parameters. First, create a tensor with
initial values. Then turn the tensor into a Variable (which is what TF
calls parameters) and then initialize the variables/parameter. For example,
let’s create the parameters we need for the feed-forward Mnist pseudocode
in Figure 1.11. First the bias terms b, then the weights W:

bt = tf.random_normal([10], stddev=.1)

b = tf.Variable(bt)

W = tf.Variable(tf.random_normal([784,10],stddev=.1))

sess=tf.Session()

sess.run(tf.global_variables_initializer())

print(sess.run(b))

The first line adds an instruction to create a tensor of shape [10] whose
ten values are random numbers generated from a normal distribution with
standard deviation 0.1. (A normal distribution, also called a Gaussian dis-
tribution, is the familiar bell-shaped curve. Numbers picked from a normal
distribution will be centered about the mean (µ), and how far they move
away from the mean is governed by the standard deviation (σ). More specifi-
cally, about 68% of the values picked will be within one standard deviation of
the mean, and the probability of going further than that decreases rapidly.)

The second line of the above code takes bt and adds a piece of the TF
graph that creates a variable with the same shape and values. Because we
seldom need the original tensor once we have created the variable, normally
we combine the two events without saving a pointer to the tensor, as in the
third line which creates the parameters W. Before we can use either b or W we
need to initialize them in the session we have created. This is done in the
fifth line. The sixth line prints out (when I just ran it; it will be different
every time):

[-0.05206999 0.08943175 -0.09178174 -0.13757218 0.15039739

0.05112269 -0.02723283 -0.02022207 0.12535755 -0.12932496]

If we had reversed the order of the last two lines we would have received an
error message when we attempted to evaluate the variable pointed to by b

in the print command.
So in TF programs we create variables in which we store the model

parameters. Initially their values are uninformative, typically random with

2.2. A TF PROGRAM 33

small standard deviation. In line with the previous discussion, the backward
pass of gradient descent modifies them. Once modified, the session pointed
to by sess retains the new values, and uses them the next time we run the
session.

2.2 A TF Program

In Figure 2.2 we give an (almost) complete TF program for a feed-forward
NN Mnist program. It should work as written. The key element that you do
not see here is the code mnist.train.next batch, which handles the details
of reading in the Mnist data. Just to orient yourself, note that everything
before the dashed line is concerned with setting up the TF computation
graph; everything after uses the graph first to train the parameters, and
then run the program to see how accurate it is on the test data. We now go
through this line by line.

After importing Tensorflow and the code for reading in Mnist data, we
define our two sets of parameters in lines 5 and 6. This is a minor variant
of what we just saw in our discussion of TF variables. Next, we make
placeholders for the data we feed into the NN. First, in line 8 we have the
placeholder for the image data. It is a tensor of shape [batchSz, 784].
In our discussion of why linear algebra was a good way to represent NN
compuations (page 23) we noted that our computation speeded up when we
process several examples at the same time, and furthermore, this fits nicely
with the notion of a batch size in stochastic gradient descent. Here we see
how this plays out in TF. Namely, our placeholder for the image takes not
one row of 784 pixels, but 100 of them (since this is the value of batchSz).
Similarly, in line 9 we see that we give the program 100 of the image answers
at a time.

One other point about line 9. We represent an answer by a vector of
length 10 with all values zero except the ath, where a is the correct digit
for that image. For example, we opened Chapter 1 with an image of a
7 (Figure 1.1). The corresponding representation of the correct answer is
(0,0,0,0,0,0,0,1,0,0). Vectors of this form are called one-hot vectors
because they have the property of selecting only one value as active.

Line 9 finishes with the parameters and inputs of our program and our
code moves on to placing the actual computations in the graph. Line 11 in
particular begins to show the power of TF for NN computations. It defines
most of the forward NN pass of our model. In particular it specifies that
we want to feed (a batch size of) images into our linear units (as defined

34 CHAPTER 2. TENSORFLOW

0 import tensorflow as tf

1 from tensorflow.examples.tutorials.mnist import input_data

2 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

3

4 batchSz=100

5 W = tf.Variable(tf.random_normal([784, 10],stddev=.1))

6 b = tf.Variable(tf.random_normal([10],stddev=.1))

7

8 img=tf.placeholder(tf.float32, [batchSz,784])

9 ans = tf.placeholder(tf.float32, [batchSz, 10])

10

11 prbs = tf.nn.softmax(tf.matmul(img, W) + b)

12 xEnt = tf.reduce_mean(-tf.reduce_sum(ans * tf.log(prbs),

13 reduction_indices=[1]))

14 train = tf.train.GradientDescentOptimizer(0.5).minimize(xEnt)

15 numCorrect= tf.equal(tf.argmax(prbs,1), tf.argmax(ans,1))

16 accuracy = tf.reduce_mean(tf.cast(numCorrect, tf.float32))

17

18 sess = tf.Session()

19 sess.run(tf.global_variables_initializer())

20 #---

21 for i in range(1000):

22 imgs, anss = mnist.train.next_batch(batchSz)

23 sess.run(train, feed_dict={img: imgs, ans: anss})

25 sumAcc=0

26 for i in range(1000):

27 imgs, anss= mnist.test.next_batch(batchSz)

28 sumAcc+=sess.run(accuracy, feed_dict={img: imgs, ans: anss})

29 print "Test Accuracy: %r" % (sumAcc/1000)

Figure 2.2: Tensorflow code for a feed-forward Mnist NN

2.2. A TF PROGRAM 35

0.20 0.10 0.20 0.10 0.40
0.20 0.10 0.20 0.10 0.40
0.20 0.10 0.20 0.10 0.40

→
−1.6 −2.3 −1.6 −2.3 −0.9
−1.6 −2.3 −1.6 −2.3 −0.9
−1.6 −2.3 −1.6 −2.3 −0.9

Figure 2.3: Operation of tf.log

0 0 1 0 0
0 0 1 0 0
0 0 0 0 1

*
1.6 2.3 1.6 2.3 0.9
1.6 2.3 1.6 2.3 0.9
1.6 2.3 1.6 2.3 0.9

=
0 0 1.6 0 0
0 0 1.6 0 0
0 0 0 0 0.9

Figure 2.4: Computation of answers times negative log probabilities

by W and b) and then apply softmax on all the results to get a vector of
probabilities.

We recommend that when looking at code like this, you first check the
shapes of the tensors involved to make sure they are sensible. Here the
innermost computation is a matrix multiplication matmul of the input images
[100, 784] times W [784, 10] to give us a matrix of shape [100, 10], to which
we add the biases, ending up with a matrix of shape [100, 10]. These are
the ten logits for the 100 images in our batch. We then pass this through
the softmax function and end up with a [100, 10] matrix of label probability
assignments for our images.

Line 12 computes the average cross-entropy loss over the 100 examples
we process in parallel. Working our way from the inside out, tf.log(x)
returns a tensor with every element of x replaced by its natural log. In
Figure 2.3 we show tf.log operating on an batch size of three vectors, each
with a five-member probability distribution.

Next the standard multiplication symbol “*” in ans * tf.log(prbs)

does element-by-element multiplication of two tensors. Figure 2.4 shows how
element-by-element multiplication of one-hot vectors for each label in the
batch times the negative natural-log matrix creates rows in which everything
is zeroed out except for the negative log of the probability of the correct
answer.

At this point, to get the per-image cross entropy we simply need to sum
all the values in the array. The first operation we apply to do this is

tf.reduce sum(A,reduction indices = [1]),

which sums the rows of A, as in Figure 2.5. A critical piece here is

reduction indices = [1].

In our earlier introduction of tensors we mentioned in passing that dimen-
sions of tensors use zero-based numbering. Now reduce sum can sum over

36 CHAPTER 2. TENSORFLOW

0 0 1.6 0 0
0 0 1.6 0 0
0 0 0 0 0.9

→
1.6
1.6
0.9

Figure 2.5: The computation of tf.reduce sum with a reduction index of
[1]

columns, the default, with reduction index=[0] or, as in this case, sum
over rows, reduction index=[1]. This results in a [100,1] array with the
log of the correct probability as the only entry in each row. (Figure 2.5 only
uses a batch size of three, and assumes five alternative choices, not 10.) As
the last bit of cross-entropy computation, reduce mean in line 13 of Figure
2.2 sums all the columns (again the default) and returns the average (1.1 or
thereabouts).

Finally we can move on to line 14 of Figure 2.2, and it is there that
TF really shows its merits: this one line is all we need to enable the entire
backward pass:

tf.train.GradientDescentOptimizer(0.5).minimize(xEnt)

This says to compute the weight changes using gradient descent and to
minimize the cross-entropy loss function defined in lines 12, and 13. It also
specifies a learning rate of .5. We do not have to worry about computing
derivatives or anything. If you express the forward computation in TF and
the loss in TF, then the TF compiler knows how to compute the necessary
derivatives and string them together in the right order to make the changes.
We can modify this function call by choosing a different learning rate, or, if
we had a different loss function, replace xEnt with something that pointed
to a different TF computation.

Naturally there are limits to TF’s ability to derive the backward pass
on the basis of the forward pass. To repeat, it is able to do this only if all
the forward-pass computations are done with TF functions. For beginners
like us, this is not too great a limitation as TF has a wide variety of built-in
operations that it knows how to differentiate and connect.

Lines 15 and 16 compute the accuracy of the model. That is, they
count the number of correct answers and divide by the number of images
processed. First, focus on the standard mathematical function argmax, as in
arg maxx f(x), which returns the value of x that maximizes f(x). In our use
here tf.argmax(prbs,1) takes two arguments. The first is the tensor over
which we are taking the argmax. The second is the axis of the tensor to use
in the argmax. This works like the named argument we used for reduce sum

2.2. A TF PROGRAM 37

— it lets us sum over different axes of the tensor. For example, if the tensor
is ((0,2,4),(4,0,3)) and we use axis 0 (the default) we get back (1,0,0). We
first compared 0 to 4 and returned 1 since 4 was larger. We then compared
2 to 0 and returned 0 since 2 was larger. If we had used axis 1 we would
have returned (2,0). In line 15 we have a batch-size array of logits. The
argmax function returns a batch-size array of maximum logit positions. We
next apply tf.equal to compare the max logits to the correct answer. It
returns a batch-size vector of boolean values (True if they are equal), which
tf.cast(tensor, tf.float32) turns into floating-point numbers so that
tf.reduce mean can add them up and get the percentage correct. Do not
cast the boolean values into integers, since when you take the mean it will
return an integer as well, which in this case will always be zero.

Next, once we have defined our session (line 18) and initialized the pa-
rameter values (line 19), we can train the model (lines 21 to 23). There
we use the code we got from the TF Mnist library to extract 100 images
and their answers at one time and then run them by calling sess.run on
the piece of the computation graph pointed to by train. When this loop is
finished we have trained on 1000 iterations with 100 images per iteration, or
100,000 test images all together. On my four-processor Mac Pro this takes
about 5 seconds (more the first time to get the right things into the cache).
I mention “four processor” because TF looks at the available computational
power and generally does a good job of using it without being told what
to do.

Note one slightly odd thing about lines 21 to 23 — we never explicitly
mention doing the forward pass! TF figures this out as well, based on the
computation graph. From the GradientDescentOptimizer it knows that
it needs to have performed the computation pointed to by xEnt (line 12),
which requires the probs computation, which in turn specifies the forward-
pass computation on line 11.

Last, lines 25 through 29 show how well we do on the test data in terms
of percentage correct (91% or 92%). First, just glancing at the organization
of the graph, observe that the accuracy computation ultimately requires the
forward-pass computation probs but not the backward pass train. Thus,
as we should expect, the weights are not modified to perform better on the
testing data.

As mentioned in Chapter 1, printing out the error rate as we train the
model is good debugging practice. As a general rule it decreases. To do this
we change line 23 to

acc,ignore= sess.run([accuracy,train],

38 CHAPTER 2. TENSORFLOW

feed_dict={img: imgs, ans: anss})

The syntax here is normal Python for combining computations. The value
of the first computation (that for accuracy) is assigned to the variable acc,
the second to ignore. (A common Python idiom would be to replace ignore
with the underscore symbol (), the universal Python symbol used when the
syntax requires a variable to accept a value but we have no need to remember
it.) Naturally we would also need to add a command to print out the value
of acc.

We have mentioned this to encourage the reader to avoid a common
mistake (at least your author and some of his beginning students have made
it). The mistake is to leave line 23 alone and add a new line 23.5:

acc= sess.run(accuracy, feed_dict={img: imgs, ans: anss}).

This, however, is less efficient as TF now does the forward pass twice, once
when we tell it to train and once when we ask for the accuracy. And there
is a more important reason to avoid this situation. Note that the first call
modifies the weights and thus makes the correct label for this image more
likely. By placing the request for the accuracy after that the programmer
gets an exaggerated idea of how well the program is performing. When we
have one call to sess.run but ask for both values, this does not happen.

2.3 Multilayered NNs

The program we have designed, in pseudocode in Chapter 1 and just now
in TF, is single layered. There is one layer of linear units. The natural
question is, can we do better with multiple layers of such units? Early
on NN researchers realized that the answer is “No.” This follows almost
immediately after we see that linear units can be recast as linear algebra
matrices — that is, once we see that a one-layer feed-forward NN is simply
computing y = XW. In our Mnist model W has shape [784, 10] in order to
transform the 784 pixel values into 10 logit values and add an extra weight
to replace the bias term. Suppose we add an extra layer of linear units U
with shape [784, 784], which in turn feeds into a layer V with the same
shape as W, [784, 10]:

y = (xU)V (2.1)

= x(UV) (2.2)

The second line follows from the associative property of matrix multipli-
cation. The point here is that whatever capabilities are captured in the

2.3. MULTILAYERED NNS 39

Figure 2.6: Behavior of tf.nn.relu

two-layer situation by the combination of U followed by the multiplication
with V could be captured by a one-layer NN with W = UV.

It turns out there is a simple solution — add some nonlinear computation
between the layers. One of the most commonly used is tf.nn.relu (or ρ),
which stands for rectified linear unit and is defined as

ρ(x) = max(x, 0), (2.3)

and is shown in Figure 2.6.
Nonlinear functions put between layers in deep learning are called acti-

vation functions. While relu is currently quite popular, others are in use as
well — e.g., the sigmoid function, defined as

S(x) =
e−x

1 + e−x
(2.4)

and shown in Figure 2.7. In all cases activations are applied piecewise to the
individual real numbers in the tensor argument. For example, ρ([1, 17,−3]) =
[1, 17, 0].

Before it was discovered that a nonlinearity as simple as relu would work,
sigmoid was very popular. But the range of values that sigmoid can output
is quite limited, zero to one, whereas relu goes from zero to infinity. This is
critical when we do the backward pass to find the gradient of how parameters
affect the loss. Back propagation through functions with a limited range of
values can make the gradient effectively zero — a process known as the
vanishing gradient problem. The simpler activation functions have been a
great help here. For this reason tf.nn.lrelu, leaky relu, is also very much

40 CHAPTER 2. TENSORFLOW

Figure 2.7: The sigmoid function

used because it has a still wider range of values than relu, as seen in Figure
2.8.

Putting the pieces of our multilayer NN together, our new model is:

Pr(A(x)) = σ(ρ(xU + bu)V + bv) (2.5)

where σ is the softmax function, U and V are the weights of the first and
second layer of linear units, and bu and bv are their biases.

Let’s now do this in TF. In Figure 2.9 we replace the definitions of W
and b in lines 5 and 6 from Figure 2.2 with the two layers U and V, lines
1 through 4 in Figure 2.9. We also replace the computation of prbs in line
11 of Figure 2.2 with lines 5 though 7 in Figure 2.9. This turns our code
into a multilayered NN. (Also, to reflect the larger number of parameters,
we need to lower the learning rate by a factor of 10.) While the old program
plateaued at about 92% accuracy after training on 100,000 images, the new
one achieves about 94% accuracy on 100,000 images. Furthermore, if we
increase the number of training images, performance on the test set keeps
increasing to about 97%. Note that the only difference between this code
and that without the nonlinear function is line 6. If we delete it, performance
indeed goes back down to about 92%. It is enough to make you believe in
mathematics!

One other point. In a single-layer network with array parameters W,
the shape of W is fixed by number of inputs on the one hand (784) and
the number of possible outputs on the other (10). With two layers there is
one more choice we are free to make, the hidden size. So U is input-size
by hidden-size and V is hidden-size by output-size. In Figiure 2.9 we just

2.3. MULTILAYERED NNS 41

Figure 2.8: The function lrelu

1 U = tf.Variable(tf.random_normal([784,784], stddev=.1))

2 bU = tf.Variable(tf.random_normal([784], stddev=.1))

3 V = tf.Variable(tf.random_normal([784,10], stddev=.1))

4 bV = tf.Variable(tf.random_normal([10], stddev=.1))

5 L1Output = tf.matmul(img,U)+bU

6 L1Output=tf.nn.relu(L1Output)

7 prbs=tf.nn.softmax(tf.matmul(L1Output,V)+bV)

Figure 2.9: TF graph construction code for multilevel digit recognition

42 CHAPTER 2. TENSORFLOW

set hidden-size to 784, the same as the input size, but nothing required this
choice. Typically, making it larger improves performance, but it plateaus.

2.4 Other Pieces

In this section we cover aspects of TF that are very useful when doing the
programming assignments suggested in the rest of the book (e.g., check-
pointing) or that we use otherwise in the upcoming chapters.

2.4.1 Checkpointing

It is often useful to checkpoint a TF computation — save the tensors in
a computation so the computation can be resumed at another time, or for
reuse in a different program. In TF we do so by creating and using saver
objects:

saveOb= tf.train.Saver()

As before, saveOb is Python variable and the choice of name is yours.
The object can be created at at any time prior to its use, but for rea-
sons explained below, doing this just before initializing variables (calling
global variable initialize) is a logical place. Then after every n epochs
of training, save the current values of all your variables:

saveOb.save(sess, "mylatest.ckpt")

The save method takes two arguments: the session to be saved, and the file
name and location. In the above case the information goes in the same direc-
tory as the Python program. If the argument had been tmp/model.checkpt

it would have gone in the tmp subdirectory.
The call to save creates four files. The smallest, named checkpoint, is

an Ascii file specifying a few high-level details of the checkpointing that has
been done to that directory. The name checkpoint is fixed. If you name
one of your files “checkpoint” it will be overwritten. The other three file
names use the string you gave to save. In this case they are named:

mylatest.ckpt.data-00000-of-00001

mylatest.ckpt.index

mylatest.chpt.meta

The first of these has the parameter values you saved. The other two contain
metainformation that TF uses when you want to import these values (as

2.4. OTHER PIECES 43

described shortly). If your program calls save repeatedly, these files are
overwritten each time.

Next we want to, say, do further training epochs on the same NN model
we have already started training. The simplest thing to do is to modify the
original training program. You retain the creation of the saver object, but
now we want to initialize all TF variables with the saved values. Thus, one
typically removes global variable initialize and replaces it with a call
to the restore method of our saver object:

saveOb.restore(sess, "mylatest.ckpt")

The next time you call the training program it resumes training with the
TF variables set to the values they had when you last saved them in your
previous training. Nothing else changes, however. So, if your training code
printed out, say, epoch number following by the loss, this time around it will
print out epoch numbers starting with one unless you rewrite your code to do
otherwise. (Naturally if you want to fix this, or generally make things more
elegant, you can, but writing better Python code is not our main concern
here.)

2.4.2 tensordot

tensordot is a generalization of matrix multiplication to tensors. We are fa-
miliar with standard matrix multiplication, matmul from the previous chap-
ter. We can call tf.matmul(A, B) when A and B have the same number of
dimensions, say n, the last dimension of A has the same size as the second
to last dimension of B, and the first n− 2 dimensions are identical. So if the
dimensions of A are [2, 3, 4] and those of B are [2, 4, 6], then the dimensions
of the product are [2, 3, 6]. Matrix multiplication can be thought of as
taking repeated dot products. For example, the matrix multiplication

(
1 2 3
4 5 6

) −1 −2
−3 −4
−5 −6

 (2.6)

can be accomplished by taking the dot product of the vectors < 1, 2, 3 >
and < −1,−3,−5 > and putting the answer in the top left position in the
result matrix. Continuing in this fashion, we take the dot product of the ith
row with the jth column, and that is the i, jth value in the answer. So if A
is the first of the above matrices and B is the second, this computation can
also be expressed as:

44 CHAPTER 2. TENSORFLOW

tf.tensordot(A, B, [[1], [0]])

The first two arguments are, of course, the tensors upon which we are op-
erating. The third argument is a two-element list: the first element is a list
of dimensions from the first argument, the second element is a correspond-
ing list of dimensions from the second argument. This instructs tensordot
to take the dot products of these two dimensions. Naturally, the specified
dimensions must have equal size if we are to take their dot product. Since
the 0th dimension is what we are drawing as rows and the 1st is columns,
this says to take the dot products of each of the rows of A with each of the
columns of B. tensordot places the output dimensions in left-to-right or-
dering, starting with those of A and then going to those of B. That is, in
this case we have the input dimensions [2, 3] followed by [3, 2]. The two
dimensions involved in the dot product “disappear” (dimensions 1 and 0) to
give an answer with dimensions [2, 2].

Figure 2.10 gives a more complicated example that matmul could not
handle in one instruction. We have borrowed it from Chapter 5 where
the variable names will make sense. Here we look at it just to see what
tensordot is doing. Without looking at the numbers, just look at the third
argument in the tensordot function call, [[1] [0]]. This means we
are taking the dot product of the 1 dimension of encOut and the 0 dimension
of AT. This is legal since they both have size 4. That is, we are taking dot
product of two tensors with dimensions [2, 4, 4] and [4, 3] respectively.
(The numbers in italics are the dimensions which undergo dot product.)
Since these dimensions go away after the dot product, the resulting tensor
has dimensions [2, 4, 3], which, when we print it out at the bottom of the
example, is correct. Briefly descending to the actual arithmetic, we are
taking the dot product of the columns in the display of the two tensors.
That is, the first dot product is between [1, 1, 1,-1] and [.6, .2, .1,

.1]. The result, .8, appears as the first numeric value in the resulting
tensor.

Lastly, tensordot is not limited to taking the dot product of a single
dimension from each tensor. If the dimensions of A are [2, 4, 4] and those of
B are [4, 4] then the operation tensordot(A, B, [[1,2],[0,1]]) results
in a tensor of dimension [2].

2.4.3 Initialization of TF Variables

In Section 1.4 we said that it is generally good practice to initialize NN
parameters (i.e., TF variables) randomly but close to zero. In our first TF
program (Figure 2.9) we cashed out this injunction with a command like:

2.4. OTHER PIECES 45

eo= (((1, 2, 3, 4),

(1, 1, 1, 1),

(1, 1, 1, 1),

(-1, 0,-1, 0)),

((1, 2, 3, 4),

(1, 1, 1, 1),

(1, 1, 1, 1),

(-1, 0,-1, 0)))

encOut=tf.constant(eo, tf.float32)

AT = ((.6, .25, .25),

(.2, .25, .25),

(.1, .25, .25),

(.1, .25, .25))

wAT = tf.constant(AT, tf.float32)

encAT = tf.tensordot(encOut,wAT,[[1],[0]])

sess= tf.Session()

print sess.run(encAT)

[[[0.80000001 0.5 0.5]

[1.50000012 1. 1.]

[2. 1. 1.]

[2.70000005 1.5 1.5]]

...]

Figure 2.10: Example of tensordot

46 CHAPTER 2. TENSORFLOW

b = tf.Variable(tf.random normal([10], stddev=.1))

where we assumed that a standard deviation of 0.1 was sufficiently “close to
zero.”

There is, however, a body of theory and practice on the choice of standard
deviations in these case. Here we give a rule called Xavier initialization. It
is routinely used to set the standard deviation when randomly initializing
variables. Let ni be the number of connections coming into the layer and
no be the number going out. For the variable W in Figure 2.9 ni = 784,
the number of pixels, and no = 10, the number of alternative classifications.
For Xavier initialization we set σ, the standard deviation, as follows:

σ =

√
2

ni + no
(2.7)

E.g., for W , since the values in question are 784 and 10 we get σ ≈ 0.0502,
which we rounded to 0.1. In general the standard deviations recommended
might vary between 0.3 for a 10 ∗ 10 layer and 0.03 for one of 1000 ∗ 1000.
The more input and output values, the lower the standard deviation.

Xavier initialization was originally created be used with the sigmoid ac-
tivation function (see Figure 2.7). As noted before, σ(x) becomes relatively
unresponsive to x when x is much below –2 or above +2. That is, if the
values fed into a sigmoid are too high or too low, a change in them may have
little to no effect on values of the loss. Going in the opposite direction, on
the backward pass changes in the loss will have no effect on the parameters
that feed into the sigmoid if change in the loss is wiped out by the sigmoid.
Instead, we want the variance of the ratio between a level’s input and out-
put to be about one. Here we are using variance in its technical sense: the
expected value of the squared difference between the value of a numerically
valued random variable and its mean. Also, the expected value of a random
variable X (denoted E[X]) is the probabilistic average of its possible values:

E[X] =
∑
x

p(X = x) ∗ x. (2.8)

A standard example is the expected value of a roll of a fair six-sided die:

E[R] =
1

6
∗ 1 +

1

6
∗ 2 +

1

6
∗ 3 +

1

6
∗ 4 +

1

6
∗ 5 +

1

6
∗ 6 = 3.5 (2.9)

So we want to keep the ratio of the input variance to the output variance
to about 1 so the level does not contribute to undue attenuation of the signal
by the sigmoid function. This places constraints on how we initialize. We

2.4. OTHER PIECES 47

give as a brute fact (you can look up the derivation) that for a linear unit
with weight matrix W the variance in the forward pass (Vf) and backward
pass (Vb) are respectively:

Vf (W) = σ2 · ni (2.10)

Vb(W) = σ2 · no (2.11)

where σ is the standard deviation of W’s weights. (This makes sense given
that the variance of a single Gaussian is (σ2).) If we set both Vf and Vb to
zero and solve for σ we get:

σ =

√
1

ni
(2.12)

σ =

√
1

no
. (2.13)

Naturally this has no solution unless the cardinality of the inputs is the same
as the outputs. Since more often than not this is not the case, we take an
“average” between the two values, giving us the Xavier rule

σ =

√
2

ni + no
(2.14)

There are equivalent equations for other activation functions. With the
advent of relu and other activation functions that do not saturate as easily
as sigmoid, the issue is not as important as it once was. Nevertheless the
Xavier rule does give us a good handle on what the standard deviation
should be, and the TF versions of it and its relatives are frequently used.

2.4.4 Simplifying TF Graph Creation

Looking back at Figure 2.9, we see that we needed seven lines of code to
spell out our two-layer feed-forward network. In the grand scheme of things
that is not much — consider what would be required were we programing
in Python without TF. However, if we were creating, say, an eight-layer
network — and by the end of this book you will be doing just that — that
would require twenty-four lines of code or thereabouts.

TF has a handy group of functions, the layers module, for more com-
pactly coding very common layered situations. Here we introduce:

tf.contrib.layers.fully connected.

48 CHAPTER 2. TENSORFLOW

A layer is said to be fully connected if all its units are connected to all the
units in the subsequent layer. All of the layers we use in the first two chapters
are fully connected, so it has not been necessary to distinguish between them
and networks that lack this property. To define such a layer we typically do
the following: (a) create the weights W, (b) create the biases b, (c) do the
matrix multiplication and add in the biases, and finally (d) apply an acti-
vation function. Assuming we have imported tensorflow.contrib.layers

as layers, this can all be done with the single line:

layerOut=layers.fully connected(layerIn,outSz,activeFn)

The above call creates a matrix initialized with Xavier initialization and
a vector of zero-initialized biases. It returns layerIn times the matrix, plus
the biases, to which the activation function specified by activeFn has been
applied. If you do not specify an activation function it uses relu. If you
specify None as the activation function then no activation is used.

With fully connected we can write all seven lines of Figure 2.9 as:

L1Output=layers.fully connected(img,756)

prbs=layers.fully connected(L1Output,10,tf.nn.softmax)

Note that we specified the use of tf.nn.softmax to apply to the output of
the second layer by using it as the activation function for the second layer.

Of course, if we have a one-hundred-layer NN and this happens, even
writing out 100 calls to fully connected is tedious. Fortunately, we can
use Python, or whatever the TF API happens to be, for the specification of
our network. To cite a somewhat fanciful example, suppose we wanted to
create 100 hidden layers, each one 1 smaller than the previous, where the
size of the first is a system parameter. We could write:

outpt = input

for i in range(100):

outpt = layers.fully_connected(outpt, sysParam - i)}

This example is silly but the point is serious: pieces of TF graphs can be
passed around and operated on in Python like lists or dictionaries.

2.5 References and Further Readings

Tensorflow was started by Google Brain, a project within Google originated
by two Google researchers, Jeff Dean and Greg Corrado, and Stanford profes-
sor Andrew Ng. At this time it was called “DistBelief.” When its use moved

2.6. WRITTEN EXERCISES 49

beyond that one project, Google proper took over further development and
hired Geoffrey Hinton from University of Toronto, whom we mentioned in
Chapter 1 for his pioneering deep-learning contributions.

Xavier initialization takes its name from the first name of Xavier Glorot,
the first author of [GB10], which introduced the technique.

These days Tensorflow is only one of many programming languages aimed
at deep-learning programming (e.g., [Var17]). In terms of number of users,
Tensorflow is by far the most popular. After that, Keras, a higher-level
language built on top of Tensorflow, is second, followed by Caffe, originally
developed at University of California, Berkeley. Facebook is now support-
ing a open-source version of Caffe, Caffe2. Pytorch is a Python interface
for Torch, a language that has gained favor in the deep-learning natural-
language-processing community.

2.6 Written Exercises

Exercise 2.1: What would be the result if in Figure 2.5 we had instead
computed tf.reduce sum(A), where A is the array on the left of the figure?

Exercise 2.2: What is wrong with taking line 14 from Figure 2.2 and in-
serting it between lines 22 and 23, so that the loop now looks like:

for i in range(1000):

imgs, anss = mnist.train.next_batch(batchSz)

train = tf.train.GradientDescentOptimizer(0.5).minimize(xEnt)

sess.run(train, feed_dict={img: imgs, ans: anss})

Exercise 2.3: Here is another variation on the same lines of code. Is this
OK? If not, why not?

for i in range(1000):

img, anss= mnist.test.next_batch(batchSz)

sumAcc+=sess.run(accuracy, feed_dict={img:img, ans:anss})

Exercise 2.4: In Figure 2.10, what would be the the shape of the tensor
output of the operation

tensordot(wAT, encOut, [[0],[1]]) ?

Explain.

Exercise 2.5: Show the computation that confirms that the first number
in the tensor printed out at the bottom of the example in Figure 2.10 (0.8)
is correct (to three places).

50 CHAPTER 2. TENSORFLOW

Exercise 2.6: Suppose input has shape [50,10]. How many TF variables
are created by the the following:

O1 = layers.fully connected(input, 20, tf.sigmoid) ?

What will the standard deviation be for the variables in the matrix created?

Chapter 3

Convolutional Neural
Networks

The NNs considered so far have all been fully connected. That is, they have
the property that all the linear units in a layer are connected to all the
linear units in the next layer. However, there is no requirement that NNs
have this particular form. We can certainly imagine doing a forward pass
where a linear unit feeds its output to only some of the next layer’s units.
Slightly harder, but not all that hard, is seeing that, say, Tensorflow, if it
knows which units are connected to which, can correctly compute the weight
derivatives on the backward pass.

One special case of partially connected NNs is convolutional neural net-
works. Convolutional NNs are particularly useful in computer vision, and
so we continue with our discussion of the Mnist data set.

The one-level fully connected Mnist NN learns to associate particular
light intensities at certain positions in the image with certain digits — e.g.,
high values at position (8,14) with the number 1. But this is clearly not how
people work. Photographing the digits in a brighter room might add 10 to
each pixel value, but would have little if any influence on our categorization
— what matters in scene recognition is differences in pixel values, not their
absolute values. Furthermore, the differences are only meaningful between
nearby values. Suppose you are in a small room lit by a single lightbulb
in one corner of the room. What we perceive as a light patch on, say,
some wallpaper at the opposite end of the room could, in fact, be reflecting
back fewer photons than a “dark” patch near the bulb. What matters in
sorting out what is going on in a scene is local light intensity differences,
with the emphasis on “local” and “differences.” Naturally computer vision

51

52 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0

–1.0 –1.0 –1.0 –1.0
–1.0 –1.0 –1.0 –1.0

Figure 3.1: A simple filter for horizontal line detection

researchers are quite aware of this and the standard response to these facts
has been the near universal adoption of convolutional methods.1

3.1 Filters, Strides, and Padding

For our purposes a convolutional filter (also called a convolutional kernel)
is a (typically small) array of numbers. If we are dealing with a black and
white image it is a two-dimensional array. Mnist is black and white, so
that is all we need here. If we had color we would need a three-dimensional
array — or equivalently three two-dimensional arrays — one each for red,
blue, and green (RBG) wavelengths of light, from which it is possible to
reconstruct all colors. For the moment we ignore the complications of color.
We come back to them later.

Consider the convolution filter shown in Figure 3.1. To convolve a filter
with a patch of an image we take the dot product of the filter and an
equal-size piece of the image. You should remember that the dot product
of two vectors does pairwise multiplication of the corresponding elements
of the vectors and sums the products to get a single number. Here we are
generalizing this notion to arrays of two or more dimensions, so we multiply
the corresponding elements of the arrays and then sum all the products.

More formally, we consider the convolution kernel to be a function, the
kernel function. We get the value V of this function at a position x, y on an
image I as follows:

V (x, y) = (I ·K)(x, y) =
∑
m

∑
n

I(x+m, y + n)K(m,n) (3.1)

That is, formally, convolution is an operation (here represented by a center
dot) that takes two functions, I and K, and returns a third function that

1The discussion here uses the term “convolution” as it is used in deep learning. This
is close to but not exactly the same as its use in mathematics, where deep-learning con-
volution would be called cross-correlation.

3.1. FILTERS, STRIDES, AND PADDING 53

0.0 0.0 0.0 0.0 0.0 0.0
0.0 2.0 2.0 2..0 0.0 0.0
0.0 2.0 2.0 2..0 0.0 0.0
0.0 2.0 2.0 2..0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

Figure 3.2: Image of a small square

performs the operation on the right. For our usual purposes we can skip
the formal definition and just go to the right-hand-side operations. Also, we
normally think of the point x, y as at or near the middle of the patch we are
working on, so for the 4 ∗ 4 kernel shown above both m and n might vary
from –2 up to and including +1.

Let us convolve the filter in Figure 3.1 with the lower right-hand piece
of the simple image of a square shown in Figure 3.2. The bottom two rows
of the filter all overlap with zeros in the image. But the filter’s top left
four elements all overlap with the 2.0s of the square, so the value of the
filter on this patch is 8. Naturally, if all the pixel values were zero the
filter application value would be zero. But if the entire image patch were
all 10s, it would still be zero. In fact, it is not hard to see that this filter
has highest values for patches with a horizontal line running through the
middle of the patch going from high values on the top and lower values
below. The point, of course, is that filters can be made to be sensitive to
changes in light intensities rather than their absolute values and, because
filters are typically much smaller than complete images they concentrate on
local changes. We can, of course, designe a filter kernel that has high values
for image patches with straight lines going from upper left to lower right, or
whatever.

In the above discussion we have presented the filter as if it were designed
by the programmer to pick out a particular kind of feature in the image,
and indeed, this is what was done before the advent of deep convolutional
filtering. However, what makes deep-learning approaches special is that the
filter’s values are NN parameters — they are learned during the backward
pass. In our current discussion of how convolution works it is easier to
ignore this and we continue to present our filters “predesigned” until the
next section.

Besides convolving a filter with an image patch, we also speak of con-
volving a filter with an image. This involves applying the filter to many of

54 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

∑ σ

Figure 3.3: An image recognition architecture with convolution filters

the patches in the image. Usually we have a lot of different filters, and the
goal of each filter is to pick up a specific feature in the image. Having done
this, we can then feed all the feature values to one or more fully connected
layers and then into softmax and hence to the loss function. This archi-
tecture is shown in Figure 3.3. There we represent the convolution filter
layer as a three-dimensional box (because a bank of filters is (at least) a
three-dimensional tensor, height by width by number of different filters).

Notice the deliberate vagueness above when we said we convolve a filter
with “many” of the patches in an image. To begin to make this more precise,
we first define stride — the distance between two applications of a filter. A
stride of, say, two would mean that we apply a filter at every other pixel.
To make this still more specific we talk of both horizontal stride, sh, and
vertical stride, sv. The idea is that as we go across the image we apply the
filter after every sh pixels. When we reach the end of a line we descend
vertically sv lines and repeat the process. When we apply a filter using a
stride of two we still apply the filter to all pixels in the region (not, e.g.,
only every other one). The only thing affected by the stride is where the
filter is next applied.

Next we define what we mean by the “end of a line” in applying a filter.
This is done by specifying the padding for the convolution. TF allows two
possible paddings, Valid and Same paddings. After convolving the filters

3.1. FILTERS, STRIDES, AND PADDING 55

0 1 23 24 25 26 27

. . 3.2 3.1 2.5 2..0 0 0

. . 3.2 3.1 2.5 2.0 0 0

. . 3.2 3.1 2.5 2.0 0 0

. . 3.2 3.1 2.5 2..0 0 0

. . 3.2 3.1 2.5 2.0 0 0

Figure 3.4: End of line with Valid and Same padding

with a particular patch of the image we move sh to the right. There are three
possibilities: (a) we are nowhere near the image boundary, so we continue
working on this line, (b) the leftmost pixel for the next convolution patch
is beyond the image edge, and (c) the leftmost pixel the filters look at is in
the image, but the rightmost is beyond the end of the image. Same padding
stops in case (b), Valid stops in case (c). For example, Figure 3.4 shows the
situation where our image is 28 pixels wide, our filter is 4 pixels wide by 2
pixels high, and our stride is 1. With Valid padding, we stop after pixel 24
with zero-based counting. This is because our stride would take us to pixel
25, and to fit in a filter of width 4 would require a 29th pixel, which does
not exist. Same padding would continue to convolve until after pixel 27.
Naturally, we make the same choice in the vertical direction when we reach
the bottom of the image.

The decision on where to stop is called padding because when going
horizontally with Same padding, by the time we stop we have to be using
“imaginary” pixels. The left-hand side of the filter is within the image
boundary, but the right-hand side is not. In TF the imaginary pixels have
value zero. So with Same padding we need to pad the boundary of the
image with imaginary pixels. With Valid padding almost never do we need
actual padding since we stop convolving before any part of the filter moves
beyond the image edge. When padding is required (with Same padding),
the padding is applied to all edges as equally as possible.

Since we are going to need this later we give the number of patch con-
volutions we apply horizontally for Same padding:

dih/she (3.2)

where dxe is the ceiling function. It returns the smallest integer ≥ x. To
see that we need the ceiling function, consider the case when the image is

56 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

an odd number of pixels wide, say five, and the stride is two. First the filter
is applied to the patch 0–2 in the horizontal direction. Then it moves two
positions to the right and is applied to 2–4. When we get to position 4,
it should be applied to 4–6. Since the width is 5, there is no position 6.
However, for Same padding we add a zero to the end of the line to let the
filter work on positions 4–6, and the total number of applications is 4. If
Same padding did not add the extra zeros, the above equation would have
the floor function rather than ceiling. Naturally the same reasoning applies
in the vertical direction, giving us div/sve.

For Valid padding the number horizontally is

b(ih − fh + 1)/shc (3.3)

If you don’t see this last equation immediately, first make sure you see that
ih − fh is how often you can shift (before running out of space) if the stride
is one. But the number of applications is one plus the number of shifts.

Despite its use of imaginary pixels, Same padding is quite popular be-
cause when combined with stride of one, it has the property that the size of
the output is the same as that of the original image. Frequently we combine
many layers of convolution, each output becoming the input for the next
layer. No matter what the stride size, valid padding always has an output
smaller than the input. With repeated convolution layers the result gets
eaten away from the outside in.

Before moving on to actual code we need to discuss how convolution
affects how we represent images. The heart of a convolutional NN in TF is
the two-dimensional convolution function

tf.nn.conv2d(input, filters, strides, padding)

plus optional named arguments that we ignore here. The 2d in the name
specifies that we are convolving an image. (There are also 1d and 3d versions
that convolve one-dimensional objects, such as an audio signal, or for 3d,
perhaps a video clip.) As you might expect, the first argument is a batch
size of individual images. So far we have thought of an individual image
as a 2D array of numbers — each number a light intensity. If you include
the fact that we have batch size of them, the input is a three-dimensional
tensor.

But tt.nn.conv2d requires individual images to be three-dimensional
objects where the last dimension is a vector of channels. As mentioned
earlier, normal color images have three channels — one each for red, blue,
and green (RBG). From now on when we discuss images, we are still talking

3.2. A SIMPLE TF CONVOLUTION EXAMPLE 57

(1, –1, –1) (1, –1, –1) (1, –1, –1) (1, –1, –1)
(–1 , 1, 1) (–1, 1, 1) (–1, 1, 1) (–1, 1, 1)
(–1 , 1, 1) (–1, 1, 1) (–1, 1, 1) (–1, 1, 1)

Figure 3.5: A simple filter for horizontal ketchup line detection

about a 2D array of pixels, but each pixel is a list of intensities. That list
has one value in it for black and white pictures, three values for colored
ones.

The same is true for convolution filters. A m ∗ n filter matches up with
m by n pixels, but now both the pixels and the filter may have multiple
channels. In a somewhat fanciful case, we create a filter to find horizontal
edges of ketchup bottles in Figure 3.5. The topmost row of the filter is
activated most highly when the input light is intense only for red, and less
intense for blue and green. The next two rows want less red (so there is
some contrast) and more blue and green.

Figure 3.6 shows a simple TF example of applying a small convolution
feature to a small invented image. As noted above, the first input to conv2D

is a 4D tensor, here the constant I. In the comment just before declaring
I we show what it would look like as a simple 2D array, without the extra
dimensions added by batch size (here one) and channel size (again one).
The second argument is a 4D tensor of filters, here W, again with a comment
showing a 2D version, this time without the extra dimensions of number of
channels and number of filters (one each). We then show the call to conv2D

with horizontal and vertical strides both one and Valid padding. Looking at
the result, we see that it is 4D [batchSz(1), height(2), width(2), channels(1)].
The height and width are much reduced from the image size, as we should
expect when we use Valid padding, and also the filter is quite active (with a
value of 6), again as we would expect since it is designed to pick up vertical
lines, which are exactly what appear in the image.

3.2 A Simple TF Convolution Example

We now go through the exercise of turning the feed-forward TF Mnist pro-
gram of Chapter 2 into a convolutional NN model. The code we create is
given in Figure 3.7.

As already noted, the key TF function call is tf.nn.conv2d. In Figure
3.7 we see in line 5

58 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

ii = [[[[0],[0],[2],[2]],

[[0],[0],[2],[2]],

[[0],[0],[2],[2]],

[[0],[0],[2],[2]]]]

’’’ ((0 0 2 2)

(0 0 2 2)

(0 0 2 2)

(0 0 2 2))’’’

I = tf.constant(ii, tf.float32)

ww = [[[[-1]],[[-1]],[[1]]],

[[[-1]],[[-1]],[[1]]],

[[[-1]],[[-1]],[[1]]]]

’’’((-1 -1 1)

(-1 -1 1)

(-1 -1 1))’’’

W = tf.constant(ww, tf.float32)

C = tf.nn.conv2d(I, W, strides=[1, 1, 1, 1], padding=’VALID’)

sess = tf.Session()

print sess.run(C)

’’’[[[6.] [0.]]

[[6.] [0.]]]]’’’

Figure 3.6: A simple exercise using conv2D

3.2. A SIMPLE TF CONVOLUTION EXAMPLE 59

1 image = tf.reshape(img, [100, 28, 28, 1])

2 #Turns img into 4d Tensor

3 flts=tf.Variable(tf.truncated_normal([4,4,1,4],stddev=0.1))

4 #Create parameters for the filters

5 convOut = tf.nn.conv2d(image, flts, [1, 2, 2, 1], "SAME")

6 #Create graph to do convolution

7 convOut= tf.nn.relu(convOut)

8 #Don’t forget to add nonlinearity

9 convOut=tf.reshape(convOut,[100, 784])

10 #Back to 100 1d image vectors

11 prbs = tf.nn.softmax(tf.matmul(convOut, W) + b)

Figure 3.7: Primary code needed to turn Figure 2.2 into a convolutional NN

convOut = tf.nn.conv2d(image, flts, [1, 2, 2, 1], "SAME")

We look at each argument in turn. As just discussed, image is a four-
dimensional tensor — in this case a vector of three-dimensional images. We
choose batch size to be 100, so tf.nn.conv2d wants 100 3D images. The
functions that read the data in Chapter 2 read in vectors of one-dimensional
images (of length 784), so line 1 of Figure 3.7

image = tf.reshape(img,[100, 28, 28, 1])

converts the input to shape [100, 28, 28, 1], where the final “1” indicates we
have only one input channel. tf.reshape works pretty much like Numpy
reshape.

The next argument to tf.nn.conv2d in line 5 is a pointer to the filters
to be used. This too is a 4D tensor, this time of shape

[height, width, channels, number]

The filter parameters are created in line 3. We have chosen 4 by 4 filters
([4,4]), each pixel has one channel ([4,4,1]), and we have chosen to make
four filters ([4,4,1,4]). Note that the filter height and width, and how many
we create, are all hyperparameters. The number of channels (in this case
1) is determined by the number of channels in the image, so is fixed. Very
importantly, we have finally done what we promised at the beginning — line
3 creates the filter values as parameters of the NN model (with initial values
mean zero and standard deviation 0.1), so they are learned by the model.

60 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

The strides argument to tf.nn.conv2d is a list of four integers indicat-
ing the stride size in each of the four dimensions of input. In line 5 we see
we have chosen strides of 1, 2, 2 and 1. In practice the first and last are
almost always 1. At any rate, it is hard to imagine a case where they would
not be 1. After all, the first dimension is the separate 3D images in the
batch. If the stride along this dimension were two, we would be skipping
every other image! Equally odd, if the last stride were greater than one,
let’s say two, and we had three color channels, then we would look only at
the red and blue light, skipping green. So typical values for stride would be
(1, 1, 1, 1), or if we want to convolve only every other image patch in both
the horizontal and vertical directions, (1, 2, 2, 1). This is why you often see
in discussions of tf.nn.conv2d instructions to the effect that the first and
last strides must be one.

The final argument, padding, is a string equal to one of the padding types
TF recognizes, e.g., SAME.

The output of conv2d is a lot like the input. It too is a 4D tensor,
and like the input the first dimension of the output is the batch size. Or
in other words, the output is a vector of convolution outputs, one for each
input image. The next two dimensions are the number of filter applications,
horizontally followed by vertically; these can be determined as in Equations
3.2 and 3.3. The last dimension of the output tensor is the number of filters
being convolved with the image. Above we said we would use four. That is,
the output shape is

[batch-size, horizontal-size, vertical-size, number-filters]

In our case this is going to be (100, 14, 14, 4). If we think of the output as a
sort of “image,” then the input is 28 by 28 with one channel, but the output
is (14 by 14) and 4 channels. This means that in both cases an input image
is represented by 784 numbers. We chose this deliberately to keep things
similar to Chapter 2, but we need not have done so. We could have, say,
chosen to have 16, rather than four, different filters, in which case we would
have an image represented by (14*14*16= 3136) numbers.

In line 11 we feed these 784 values into a fully connected layer that
produces logits for each image, which in turn are fed into softmax, and we
then compute the cross-entropy loss (not shown in Figure 3.7) and we have
a very simple convolutional NN for Mnist. The code has the general shape
of that in Figure 2.2. Also, line 7 above puts a nonlinearity between the
output of the convolution and the input of the fully connected layer. This is
important. As seen before, without nonlinear activation functions between
linear units one does not get any improvement.

3.3. MULTILEVEL CONVOLUTION 61

The performance of this program is significantly better than that of
Chapter 2’s — 96% or a bit more, depending on the random initialization
(compared to 92% for the feed-forward version). The number of model
parameters is virtually the same for the two versions. The feed-forward
layer in both uses 7840 weights in W and 100 biases in b (784 + 10 weights
in each unit in the fully connected layer, times 10 units). Convolution adds
four convolution filters, each with 4*4 weights, or 64 more parameters. This
is why we set the convolution output size at 784. To a zeroth approximation
the quality of an NN goes up as we give it more parameters to use. Here,
however, the number of parameters has essentially remained constant.

3.3 Multilevel Convolution

As stated earlier, we can improve the accuracy still further by going from
one layer of convolution to several. In this section we construct a model
with two layers.

The key point in multilevel convolution is one we made in passing in
discussing the output from tf.conv2d: it has the same format as the image
input. Both are batch size vectors of 3D images, and the images are 2D plus
one extra dimension for the number of channels. Thus the output from one
layer of convolution can be the input to a second layer, and that is exactly
what one does. When we talk of the place-holder image coming from the
data, the last dimension is the number of color channels. When we talk of the
conv2d output, we say the last dimension is the number of different filters
in the convolution layer. The word “filter” here is a good one. After all, to
let only blue light through a lens we literally put a colored filter in front.
So three filters give us images in the RBG spectra. Now we get “images” in
pseudospectra like the “horizontal line-boundary spectra.” This would be
the imaginary image produced by the filter of, e.g., Figure 3.1. Furthermore,
just as filters for images with RBG have weights associated with all three
spectra, the second convolution layer has weights for each channel output
from the first.

We give the code for turning the feed-forward Minst NN into a two-
layer convolution model in Figure 3.8. Lines 1–4 are repeats of the first
lines of Figure 3.7 except in line 2 we increase the number of filters in
the first convolution layer to 16 (from 4 in the earlier version). Line 2 is
responsible for creating the second convolution layer filters flts2. Note that
we created 32 of them. This is reflected in Line 5, where the values of the 32
filters become the 32 input channel values to the second convolution layer.

62 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

1 image = tf.reshape(img, [100, 28, 28, 1])

2 flts=tf.Variable(tf.normal([4, 4, 1, 16], stddev=0.1))

3 convOut = tf.nn.conv2d(image, flts, [1, 2, 2, 1], "SAME")

4 convOut= tf.nn.relu(convOut)

5 flts2=tf.Variable(tf.normal([2, 2, 16, 32], stddev=0.1))

6 convOut2 = tf.nn.conv2d(convOut, flts2, [1, 2, 2, 1], "SAME")

7 convOut2 = tf.reshape(convOut2, [100, 1568])

8 W = tf.Variable(tf.normal([1568,10],stddev=0.1))

9 prbs = tf.nn.softmax(tf.matmul(convOut2, W) + b)

Figure 3.8: Primary code needed to turn Figure 2.2 into a two-layer convo-
lutional NN

When we linearize these output values in line 7 there are (784*4) of them.
Remember we started with 784 pixels, and each convolution layer used stride
2, both horizontally and vertically. So the resulting 3D image dimensions
after the first convolution were (14, 14, 16). The second convolution also
had stride two on the 14 by 14 image and had 32 channels, so the output
is [100, 7, 7, 32] and the linearized version of a single image in line 7 has
7 ∗ 7 ∗ 32 = 1568 scalar values, which is then also the height of W that turns
these image values into 10 logits.

Stepping back from the details, note the overall flow of the model. We
start with a 28∗28 picture. At the end we have a 7∗7 “picture,” but we also
have 32 different filter values at each point in the 2D array. Or, to put it
another way, at the end we have split out image into 49 patches, where each
patch was initially 4 ∗ 4 pixels and is now characterized by 32 filter values.
Since this improves performance, we are entitled to assume that these values
are saying important things about what is going on in their corresponding
4 ∗ 4 patch.

Indeed, this seems to be the case. While at first glance the actual values
in the filters can be baffling, at least at the beginning levels study can reveal
some logic in their “construction.” Figure 3.9 shows the 4 ∗ 4 weights for
four of the eight first-level convolution filters in that were learned in one run
of the code in Figure 3.7. You might spend a few seconds on them to see if
you can make out what they are looking for. For some you might. Others
do not make much sense to me. However, cross correlating with Figure 3.10
should help. Figure 3.10 was created by printing out, for our now standard
image of a 7, the filter with the highest value for all 14 by 14 points in the
image after the first convolution layer. Fairly quickly the impression of a
7 emerges from a fog of zeros, so filter 0 is associated with a region of all

3.3. MULTILEVEL CONVOLUTION 63

-0.152168 -0.366335 -0.464648 -0.531652

0.0182653 -0.00621072 -0.306908 -0.377731

0.482902 0.581139 0.284986 0.0330535

0.193956 0.407183 0.325831 0.284819

0.0407645 0.279199 0.515349 0.494845

0.140978 0.65135 0.877393 0.762161

0.131708 0.638992 0.413673 0.375259

0.142061 0.293672 0.166572 -0.113099

0.0243751 0.206352 0.0310258 -0.339092

0.633558 0.756878 0.681229 0.243193

0.894955 0.91901 0.745439 0.452919

0.543136 0.519047 0.203468 0.0879601

0.334673 0.252503 -0.339239 -0.646544

0.360862 0.405571 -0.117221 -0.498999

0.520955 0.532992 0.220457 0.000427301

0.464468 0.486983 0.233783 0.101901

Figure 3.9: Filters 0, 1, 2, and 7 of the eight filters created in one run of the
two-layer convolution NN

64 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 5 2 2 2 2 2 2 2 2 2 0 0

0 0 1 1 4 4 4 4 4 2 2 2 0 0

0 0 1 1 1 1 1 1 1 1 2 7 0 0

0 0 0 0 0 0 0 5 1 4 2 7 0 0

0 0 0 0 0 0 0 5 1 2 7 0 0 0

0 0 0 0 0 0 5 1 4 2 7 0 0 0

0 0 0 0 0 5 2 1 2 7 0 0 0 0

0 0 0 0 0 5 1 4 2 0 0 0 0 0

0 0 0 0 5 1 4 2 7 0 0 0 0 0

0 0 0 0 2 1 2 2 0 0 0 0 0 0

0 0 0 0 1 1 1 7 0 0 0 0 0 0

Figure 3.10: Most active feature for all 14 by 14 points in layer 1 after
processing Figure 1.1

zeros. We can then note that the right-hand edge of the 7’s diagonal is
pretty much all 7s, whereas the bottom of the horizon pieces in the image
corresponds to 1s. Look again at the filter values. To me, the 1s, 2s and 7s
seem to fit the results in Figure 3.9. On the other hand, there is nothing in
filter 0 to suggest blank. However, this too makes sense. We used Numpy’s
arg-max function, which returns the position of the largest number in a list
of numbers. All the pixel values for the blank regions are zero, so all the
filters return 0. If the arg-max function returns the first value in the case
when all values are equal, this is what we would expect.

Figure 3.11 is similar to Figure 3.10 except it shows the most active filters
in layer 2 of the model. It is less interpretable than layer 1. There are various
arguments for why this might be the case. We include it mostly because
the first convolutional layer of illustrations is much more interpretable than
most, but we should not assume that what we saw for layer 1 is typical.

3.4 Convolution Details

3.4.1 Biases

We can also have biases with our convolution kernels. We have not men-
tioned this until now because it is only in the last example that multiple

3.4. CONVOLUTION DETAILS 65

0 0 0 0 0 0 0

17 11 31 17 17 16 16

6 16 12 6 6 5 5

17 17 17 5 24 5 10

0 0 11 26 3 5 0

0 17 11 24 5 10 0

0 6 24 8 5 0 0

Figure 3.11: Most active features for all 7 by 7 points in layer 2 after pro-
cessing Figure 1.1

filters have been applied to each patch, i.e., we specified 16 different filters
in line 2 of Figure 3.8. A bias can cause the program to give more or less
weight to one filter channel than another by adding in a different value to
the channel’s convolution output. Thus the number of bias variables at a
particular convolution layer is equal to the number of output channels. For
example, in Figure 3.8 we could add biases to the first convolution layer by
adding the following between lines 3 and 4:

bias = tf.Variable(tf.zeros [16])

convOut += bias

Broadcasting is implicit. While convOut has shape [100, 14,1 4, 16], bias
has shape [16], so the addition implicitly creates [100, 14, 14] copies of it.

3.4.2 Layers with Convolution

Section 2.4.4 showed how one standard component of NN architectures,
fully connected layers, could be written efficiently using layers. There are
equivalent functions for convolutional layers:

tf.contrib.layers.conv2d(inpt,numFlts, fltDim, strides, pad)

plus optional named arguments. For example, lines 2 through 4 in Figure
3.8 can be replaced with

convOut = layers.conv2d(image,16, [4,4], 2,"Same") ?

The convolution output is pointed to by convOut. As before, we create
16 different kernels, each with dimensions 4*4. Strides in both directions
are two, and we use Same padding. This is not quite identical to the non-
layers version since layers.conv2d assumes you want biases unless you

66 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

tell it otherwise. If we insist on no biases we simply give a value to the
appropriately named argument use bias=False.

3.4.3 Pooling

As you might expect for larger pictures (e.g., 1000 ∗ 1000 pixels), the re-
duction in image size between the original image and the values fed to a
fully connected layer, followed by softmax at the end, is much more ex-
treme. There are TF functions that can help handle this reduction. Note in
our program that the reduction was because the strides in convolution only
looked at every other patch. We could have done the following instead:

convOut = tf.nn.conv2d(image, flts, [1,1,1,1], "SAME")

convOut = tf.nn.max pool(convOut, [1,2,2,1], [1,2,2,1], "SAME").

These two lines are intended to replace line 3 in Figure 3.8. Instead of a
convolution with stride two, we first applied convolution with stride one.
Thus convOut is of shape [batchSz, 28, 28, 1] — no reduction in image
size. The next line gives us a reduction in image size exactly equal to that
produced by the stride of two we originally used.

The key function here, max pool, finds the maximum value for a filter
over a region in the image. It takes four arguments, with three of the four
the same as conv2d. The first is our standard 4D tensor of images, the
third the strides, and the last the padding. In the above case max pool is
looking at convOut, the 4D output of the first convolution. It is doing so
with strides [1, 2, 2, 1]. The first element of the list says to look at every
image in the batch size, and the last says to look at every channel. The two
2s say move two units over before doing the operation again, and do this
both horizontally and vertically. The second argument specifies the size of
the region over which it is to find the maximum. As usual, the first and last
1s are pretty much forced, while the middle two 2s specify that we are to
take the maximum over a 2 ∗ 2 patch of convOut.

Figure 3.12 contrasts the two different ways we can achieve a factor of
four dimensionality reduction in our Mnist program, though here we do it
on a 4∗4 image. (The numbers are invented.) In the top row we applied the
filter with stride two (Same padding) and immediately got the 2 ∗ 2 array
of filter values. In the second row we applied the filter with stride one that
creates a 4∗4 array of values. Then for each separate 2∗2 patch, we output
the highest value that gives us the final array on the lower right of the figure.

Before moving on, we note that there is also avg pool, which works
identically to max pool, except that the value for a pool is the average of

3.5. REFERENCES AND FURTHER READINGS 67

-1 2 -3 4

-4 -3 2 1

0 -1 3 2

3 -2 1 0

→ 5 6

3 4

-1 2 -3 4

-4 -3 2 1

0 -1 3 2

3 -2 1 0

→

5 4 6 7

2 3 5 6

3 4 4 4

2 2 3 4

→ 5 7

4 4

Figure 3.12: Factor of 4 dimensionality reduction, with and without
max pool

the individual values, not the maximum.

3.5 References and Further Readings

The paper that introduced the learning of convolutional kernels though NNs
and back propagation is by Yann LeCun et al. [LBD+90], although a later,
much more complete exploration of the topic, also by LeCun et al. [LBBH98],
is the definitive reference. Part of my education in convolutional NNs was
provided by Google’s tutorial on Mnist digit recogntion [Ten17b].

If you find the idea of getting NNs that can recognize images really
neat and want a next project to work on, I would recommend the CFAIR
10 dataset (Canadian Institute for Advanced Research) [KH09]. It too is
a ten-way image classification task, but the objects to recognize are more
complicated (airplane, cat, frog), the images are in color, the backgrounds
can be complicated, and the object to classify is not nicely centered. The
image sizes are also larger [32, 32, 3]. The dataset can be downloaded
from [Kri09]. The total number of images is about that of Mnist — 60,000,
so the total data imprint is manageable. There is also an online Google
tutorial on building a NN for this task [Ten17a].

If you are really ambitious you could try working on the Imagenet Large
Scale Visual Recognition Challenge data set (ILSVRC). This is much more
difficult. There are 1000 image types, including such classics as french fries
or mashed potatoes. This for the last six or seven years has been the dataset
used by serious computer vision researchers in an annual competition. For
NNs the big year was 2012 when the Alexnet deep learning program won the

68 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

competition — the first time an NN program had won. The program, by
Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton [KSH12], achieved a
top-5 score of 15.5% — 15.5% of the time the correct label was not one of
the top five answers as scored by the program’s assessment of the probability
that a particular label is the correct one. The second-place contestant scored
26.2%. Since 2012 all first-place finishers have NNs.

2012 15.5
2013 11.2
2014 6.7
2015 3.6
Human 5–10

Here the “Human” entry indicates that people perform in the 5 to 10% range
at this task depending on training.

Tables and charts with the above information are common presentation
points when explaining the impact of deep learning on artificial intelligence
over the last 10 years or so.

3.6 Written Exercises

Exercise 3.1: (a) Design a 3∗3 kernel that detects vertical lines in a black
and white image, and returns the value 8 when applied to the upper-left-
hand side of the image in Figure 3.2. It should return zero if all the pixels
in the patch are of equal intensity. (b) Design another such kernel.

Exercise 3.2: In our discussion of Equation 3.2 we said in an off-hand
comment that the size of the convolution filter had no impact on the number
of applications when using Same padding. Explain how this can be.

Exercise 3.3: In our discussion of padding we said that Valid padding al-
ways yields an output image having smaller 2D dimensions than the input.
Strictly speaking, this is not the case. Explain the (relatively uninteresting)
case when this statement is false.

Exercise 3.4: Suppose the input to a convolution NN is a 32 ∗ 32 color
image. We want to apply eight convolution filters to it, all with shape
5 ∗ 5. We are using Valid padding and a stride of two both vertically and
horizontally. (a) What is the shape of the variable in which we store the
filters’ values? (b) What is the shape of the output of tf.nn.conv2d?

3.6. WRITTEN EXERCISES 69

Exercise 3.5: Explain what the following code does differently from the
almost identical code at the beginning of Section 3.4.3:

convOut = tf.nn.conv2d(image, flts, [1,1,1,1], "SAME")

convOut = tf.nn.maxpool(convOut, [1,2,2,1], [1,1,1,1], "SAME").

In particular, for an arbitrary values of image and flts, does convOut have
same shape, in both cases? Does it necessarily have the same values? Is one
set of values a proper subset of the other? In each case, why or why not?

Exercise 3.6: (a) How many variables are created when we execute the
following layers command?

layers.conv2d(image,10, [2,4], 2, "Same", use bias=False).

Assume image has shape [100, 8, 8, 3]. Which of these shape values are
irrelevant to the answer? (b) How many are irrelevant if use bias is set to
True (the default)?

Chapter 4

Word Embeddings and
Recurrent NNs

4.1 Word Embeddings for Language Models

A language model is a probability distribution over all strings in a language.
At first blush this is a hard notion to get your head around. For example,
consider the previous sentence “At first blush. . . .” There is a good chance
you have never seen this particular sentence, and unless you reread this
book you will never see it a second time. Whatever its probability, it must
be very small. Yet contrast that sentence with one having the same words
but in reverse order. That is still less likely by a huge factor. So strings of
words can be more or less reasonable. Furthermore, programs that want to,
say, translate Polish into English need to have some ability to distinguish
between sentences that sound like English and those that do not. A language
model is a formalization of this idea.

We can get some further purchase on the concept by breaking the strings
into individual words and then asking, what is the probability of the next
word given the previous ones? So let E1,n = (E1 . . . En) be a sequence of
n random variables denoting a string of n words and e1,n be one candidate
value. E.g., if n were 6 then perhaps e1,6 is (We live in a small world) and
we could use the chain rule in probability to give us:

P (We live in a small world) = P (We)P (live|We)P (in|We live) (4.1)

71

72 CHAPTER 4. WORD EMBEDDINGS AND RECURRENT NNS

More generally:

P (E1,n = e1,n) =

j=n∏
j=1

P (Ej = ej |E1,j−1 = e1,j−1). (4.2)

Before we go on, we should back up a bit to where we mentioned “break-
ing the strings into a sequence of words.” This is called tokenization, and if
this were a book on text understanding we might spend a chapter on this by
itself. However, we have different fish to fry, so we simply say that a “word”
for our purposes is any sequence of characters between two white spaces
(where we consider a line feed as a white space). Note that this means that,
e.g., “1066” is a word in the sentence “The Norman invasion happened in
1066.” Actually, this is false: according to our definition of “word,” the
word that appears in the above sentence is “1066.”—that is, “1066” with a
period after it. So we also assume that punctuation (e.g., periods, commas,
colons) is split off from words, so that the final period becomes a word in its
own right, separate from the “1066” word that preceded it. (You may now
be beginning to see how we might spend an entire chapter on this.)

Also, we are going to cap our English vocabulary at some fixed size,
say 10,000 different words. We use V to denote our vocabulary and |V | its
size. This is necessary because by the above definition of “word” we should
expect to see words in our development and test sets that do not appear
in the training set — e.g., “132,423” in the sentence “The population of
Providence is 132,423.” We do this by replacing all words not in V (so-
called unknown words) by a special word “*UNK*”. So this sentence would
now appear in our corpus as “The population of Providence is *UNK* .”

The data we are using in this chapter is known as the Penn Treebank
Corpus, or the PTB for short. The PTB consists of about 1,000,000 words
of news articles from the Wall Street Journal. It has been tokenized but
not “unked,” so the vocabulary size is close to 50,000 words. It is called
a “treebank” because all the sentences have been turned into trees that
show their grammatical structure. Here we ignore the trees as we are only
interested in the words. We also replace all words that occur 10 times or
less by *UNK*.

With that out of the way, let us return to Equation 4.2. If we had a very
large amount of English text we might be able to estimate the first two or
three probabilities on its right-hand side simply by counting how often we
see, e.g., “We live” and how often “in” appears next, and then dividing the
second by the first (i.e., use the maximum likelihood estimate) to give us
an estimate of, e.g., P (in|We live). But as n gets large this is impossible for

4.1. WORD EMBEDDINGS FOR LANGUAGE MODELS 73

lack of any examples in the training corpus of a particular, say, fifty-word
sequence.

One standard response to this problem is to assume that the probability
of the next word depends only on the previous one or two words, so that
we can ignore all the words before that when estimating the probability of
the next. The version where we assume words depend only on the previous
word looks like this:

P (E1,n = e1,n) = P (E1 = e1)

j=n∏
j=2

P (Ej = ej |Ej−1 = ej−1) (4.3)

This is called a bigram model, where “bigram” means “two word.” It is called
this because each probability depends only on a sequence of two words. We
can simplify this equation if we put a imaginary word “STOP” at the be-
ginning of the corpus, and then after every sentence. This is called sentence
padding. So if the first “STOP” is e0 Equation 4.3 becomes

P (E1,n = e1,n) =

j=n∏
j=1

P (Ej = ej |Ej−1 = ej−1) (4.4)

Henceforth we assume that all our language corpora are sentence padded.
Thus, except for the first STOP, our language model predicts all the STOPs
as well as all the real words.

With the simplifications we have put it place, it should be clear that
creating a bad language model is trivial. If, say, |V | = 10, 000 we can
take the probability of any word coming after any other as 1

10000 . What we
want, of course, is a good one — one in which if the last word is “the”, the
distribution assigns very low probability to “a” and a much higher one to,
say, “cat”. We do this using deep learning. That is, we give the deep network
a word wi and expect as output a reasonable probability distribution over
possible next words.

To start, we need somehow to turn words into the sorts of things that
deep networks can manipulate, i.e., floating-point numbers. The now stan-
dard solution is to associate each word with a vector of floats. These vectors
are called word embeddings. For each word we initialize its embedding as a
vector of e floats, where e is a system hyperparameter. An e of 20 is small,
100 common, and 1000 not unknown. Actually, we do this in two steps.
First, every word in the vocabulary V has a unique index (an integer) from
0 to |V | − 1. We then have an array E of dimensions |V | by e. E holds all
the word embeddings so that if, say, “the” has index 5, the 5th row of E is
the embedding of “the.”

74 CHAPTER 4. WORD EMBEDDINGS AND RECURRENT NNS

E
E W,b σ

Figure 4.1: A feed-forward net for language modeling

With this in mind, a very simple feed-forward network for estimating
the probability of the next word is shown in Figure 4.1. The small square
on the left is the input to the network — the integer index of the current
word, ei. On the right are the probabilities assigned to possible next words
ei+1, and the cross-entropy loss function is − lnP (ec), the negative natural
log of the probability assigned to the correct next word. Returning to the
left again, the current word is immediately translated into its embedding by
the embedding layer which looks up the eith row in E. From that point on
all NN operations are on the word embedding.

A critical point is that E is a parameter of the model. That is, initially
the numbers in E are random with mean zero and small standard deviation,
and their values are modified according to stochastic gradient descent. More
generally, in the backward pass Tensorflow starts with the loss function and
works backward, looking for all parameters that affect the loss. E is one such
parameter, so TF modifies it. What is amazing about this, aside from the
fact that the process converges to a stable solution, is that the solution has
the property that words that behave in similar ways end up with embeddings
that are “close together.” So if e (the size of the embedding vector) is,
say, 30, then the prepositions “near” and “about” point in roughly the
same direction in 30-dimensional space, and neither is very close to, say,
“computer” (which is closer to “machine”).

4.1. WORD EMBEDDINGS FOR LANGUAGE MODELS 75

Word Numbers Word Largest Cosine Similarity Most Similar

0 under
1 above 0.362 0
2 the –0.160 0
3 a 0.127 2
4 recalls 0.479 1
5 says 0.553 4
6 rules –0.066 4
7 laws 0.523 6
8 computer 0.249 2
9 machine 0.333 8

Figure 4.2: Ten words, the largest cosine similarity to the previous words,
and the index of the word with highest similarity

With a bit more thought, however, perhaps this is not so amazing. Let us
think more closely about what happens to embeddings as we try to minimize
loss. As already stated, the loss function is the cross-entropy loss. Initially
all the logit values are about equal since all the model parameters are about
equal (and close to zero).

Now, suppose we had already trained on the pair of words “says that”.
This would cause the model parameters to move in such a way that the
embedding for “says” leads to a higher probability for “that” coming next.
Now consider the first time the model sees the word “recalls”, and say that
furthermore it too is followed by a “that”. One way to modify the param-
eters to make “recalls” predict “that” with higher probability is to have its
embedding become more similar to that for “says” since it too wants to pre-
dict “that” as the next word. This is indeed what happens. More generally,
two words that are followed by similar words get similar embeddings.

Figure 4.2 shows what happens when we run our model on about a mil-
lion words of text, a vocabulary size of about 7,500 words and an embedding
size of 30. The cosine similarity of two vectors is a standard measure of how
close two vectors are to each another. In the case of two-dimensional vectors
it is the standard cosine function and is 1.0 if the vectors point in the same
direction, 0 if they are orthogonal and –1.0 if in opposite directions. The
computation for arbitrary-dimension cosine similarity is

cos(x,y) =
x · y

(
√

(
∑i=n

i=1 x
2
i)(
√

(
∑i=n

i=1 y
2
i)

(4.5)

Figure 4.2 shows five pairs of similar words numbered from zero to nine.

76 CHAPTER 4. WORD EMBEDDINGS AND RECURRENT NNS

For each word we compute its cosine similarity with all the words that
precede it. Thus we would expect all odd-numbered words to be most similar
to the word that immediately precedes them, and that is indeed the case.
We would also expect even-numbered words (the first of each similar-word
pairs) not to be very similar to any of the previous words. For the most
part this is true as well.

Because embedding similarity to a great extent mirrors meaning simi-
larity, embeddings have been studied a lot as a way to quantify “meaning”
and we now know how to improve this result by quite a bit. The main fac-
tor is simply how many words we use for training, though there are other
architectures that help as well. However, most methods suffer from simi-
lar limitations. For example, they are often blind when trying to distin-
guish between synonyms and antonyms. (Arguably “under” and “above”
are antonyms.) Remember that a language model is trying to guess the
next word, so words that have similar next words get similar embeddings,
and very often antonyms do exactly that. Also, getting good models for
embeddings of phrases is much hard than for single words.

4.2 Building Feed-Forward Language Models

Now let us build a TF program for computing bigram probabilities. It is
very similar to the digit recognition model in Figure 2.2 as in both cases
we have a single fully connected feed-forward NN ending in a softmax to
produce the probabilities needed for a cross-entropy loss. There are only a
few differences.

First, rather than an image, the NN takes a word index i where 0 ≤
i < |V | as input, and the first thing is to replace it by E[i], the word’s
embedding:

inpt=tf.placeholder(tf.int32, shape=[batchSz])

answr=tf.placeholder(tf.int32, shape=[batchSz])

E = tf.Variable(tf.random_normal([vocabSz, embedSz],

stddev = 0.1))

embed = tf.nn.embedding_lookup(E, inpt)

We assume that there is unshown code that reads in the words and re-
places the characters by unique word indices. Furthermore this code pack-
ages up batchSz of them in a vector. inpt points to this vector. The
correct answer for each word (the next word of the text) is a similar vec-
tor, answr. Next we created the embedding lookup array E. The function

4.2. BUILDING FEED-FORWARD LANGUAGE MODELS 77

tf.nn.embedding lookup creates the necessary TF code and puts it into
the computation graph. Future manipulations (e.g., tf.matmul) then oper-
ate on embed. Naturally, TF can determine how to update E to lower the
loss, just like the other model parameters.

Turning to the other end of the feed-forward network, we use a built-in
TF function to compute the cross-entropy loss:

xEnt = tf.nn.sparse_softmax_cross_entropy_with_logits

(logits=logits,labels=answr)

loss = tf.reduce_sum(xEnt)

The TF function tf.nn.sparse softmax cross entropy with logits takes
two named arguments. Here the logits argument (which we conveniently
named logits) is a batchSz of logit values (i.e., a batchSz by vocabSz

array of logits). The labels argument is a vector of correct answers. The
function feeds the logits into softmax to get a column vector of probabil-
ities batchSz by vocabSz. That is, si,j , the i, jth element of softmax, is
the probability of word j in the ith example in that batch. The function
then locates the probability of the correct answer (from answr) for each
line, computes its natural log and outputs a batchSz by 1 array (effectively
a column vector) of those log probabilities. The second line above takes that
column vector and sums it to get the total loss for that batch of examples.

If you are curious, the use of the word “sparse” here is the same as (and
presumably taken from) that in, e.g., sparse matrix. A sparse matrix is one
with very few nonzero values, so it is space efficient to store only the position
and values of the nonzero values. Going back to our computation of loss in
the first TF Mnist program (page 33), we assumed the correct labels for
the digit images were provided in the form of one-hot vectors with only the
position of the correct answer nonzero. In tf.nn.sparse softmax we just
give the correct answer. The correct answer can be thought of as a sparse
version of the one-hot representation.

Returning to the language model with this code in hand, we do a few
epochs over our training examples and get embeddings that demonstrate
word similarities like those in Figure 4.2. Also, if we want to evaluate the
language model we can print out the total loss on the training set after every
epoch. It should decrease with increasing epoch number.

In Chapter 1 (page 20) we suggested that within training epochs we print
out the average per-example loss, since if our parameters are improving the
model, the loss should decrease (the numbers we see should get smaller).
Here we suggest a minor tweak on this idea. First, note that in language

78 CHAPTER 4. WORD EMBEDDINGS AND RECURRENT NNS

modeling an “example” is assigning probabilities to possible next words, so
the number of training examples is the number of words in our training
corpus. So rather than talk about average per-example loss we talk about
average per-word loss. Next, rather than print out average per-word loss,
print out e raised to this power. That is, for a corpus d with |d| words, if
the total loss is xd, then print out:

f(d) = e
xd
|d| . (4.6)

This is called the perplexity of the corpus d. It is a good number to think
about because it actually has a somewhat intuitive meaning: on average
guessing the next word is equivalent to guessing the outcome of tossing a
fair die with that number of outcomes. Note what this means for guessing
the second word of our training corpus given the first word. If our corpus has
a vocabulary size of 10,000 and we start with all our parameters near zero,
then the 10,000 logits on the first example are zero and all the probabilities
are 10−4. Readers should confirm that this results in a perplexity that is
exactly the vocabulary size. As we train the perplexity decreases, and, for
the particular corpus your author used with a vocabulary size of about 7,800
words, after two training epochs with a training set of about 106 words the
development set had perplexity 180 or so. With a four-CPU laptop the
model took about 3 minutes per epoch.

4.3 Improving Feed-Forward Language Models

There are many ways to improve the language model we just developed. For
example, in Chapter 2 we saw that adding a hidden layer (with an activation
function between the two layers) improved our Mnist performance from 92%
correct to 98%. Adding a hidden layer here improves the development set
perplexity from 180 to about 177.

But the most straightforward way to get better perplexity is to move
from a bigram language model to a trigram model. Remember that in going
from Equation 4.2 to Equation 4.4 we assumed that the probability of a
word depends only on the previous word. Obviously this is false. In general,
the choice of the next word can be influenced by words arbitrarily far back,
and the influence of the word two back is very large. So a properly trained
model that bases its guess on the two previous words (called a trigram model
because probabilities are based upon sequences of three words) gets much
better perplexity than bigram models.

4.4. OVERFITTING 79

In our bigram model we had one placeholder for the previous word index,
inpt, and one for the word to predict (assuming a batch size of one) answr.
We now introduce a third placeholder that has the index of the word two
back, inpt2. In the TF computation graph we add a node that finds the
embedding of inpt2,

embed2 = tf.nn.embedding lookup(E, inpt2),

and then one for concatenating the two:

both= tf.concat([embed,embed2],1)

Here the second argument specifies which axis of the tensor has the con-
catenation done to it. (Remember, in reality we are doing a batch-size of
embeddings at the same time, so each of the results of the lookups is a
matrix of size batch-size times embedding-size. We want to end up with a
matrix of batch-size times (embedding-size *2), so the concatenation hap-
pens along axis 1, the rows (remember, the columns are axis 0). Lastly, we
need to change the dimensions of W from embedding-size ∗ vocabulary-size
to (embedding-size ∗ 2) ∗vocabulary-size.

In other words, we input the embeddings for two previous words, and the
NN uses both in estimating the probability of the next word. Furthermore,
the backward pass updates the embeddings of both words. This lowers the
perplexity from 180 to about 140. Adding yet another word to the input
layer lowers things still more, to about 120.

4.4 Overfitting

In Section 1.6 we discussed the iid assumption that lurks behind all the
guarantees that the training methods of our NNs do, in fact, lead to good
weights. In particular, we noted that as soon as we use our training data
for more than one epoch all bets are off.

But aside from a rather contrived example, we offered no empirical evi-
dence on this point. The reason is that the data we used in our Chapter 1
examples, Mnist, is, as data sets go, very well behaved. What we want from
training data, after all, is that it covers all the possible things that might
occur (and in the correct proportions), so when we look at the testing data
there are no surprises. With only ten digits and 60,000 training examples,
Mnist meets this criterion quite well.

Unfortunately, most data sets are not that complete, and written-language
data sets in general (and the Penn Treebank in particular) are far from ideal.

80 CHAPTER 4. WORD EMBEDDINGS AND RECURRENT NNS

Epoch 1 2 3 4 5 6 7 10 15 20 30
Train 197 122 100 87 78 72 67 56 45 41 35

Dev 172 152 145 143 143 143 145 149 159 169 182

Figure 4.3: Overfitting in a language model

Epoch 1 2 3 4 5 6 7 10 15 20 30
Dropout 213 182 166 155 150 144 139 131 122 118 114
L2 Reg 180 163 155 148 144 140 137 130 123 118 112

Figure 4.4: Language-model perplexity when using regularization

Even if we restrict vocabulary size to 8,000 words and only look at trigram
models, there is a large number of trigrams in the test set that do not appear
in the training data. At the same time, repeatedly seeing the same (relatively
small) set of examples causes the model to overestimate their probability.
Figure 4.3 shows perplexity results for a two-layer trigram language model
trained on the Penn Treebank. The rows give the number of epochs we have
trained for and the average perplexity for each training example at each
epoch, followed by the average over the development corpus.

First, looking at the row of training perplexity, we see that it decreases
monotonically with increasing epoch. This is as it should be. The row of
development perplexities tells a more complicated story. It too starts out
decreasing, from 172 on the first epoch to 143 on the fourth, but then it
holds steady for two epochs, and starting on the seventh epoch it increases.
By the 20th iteration it is up to 169, and it reaches 182 on the 30th. The
difference between the training and development results on the 30th epoch,
35 vs. 182, is classic overfitting of the training data.

Regularization is the general term for modifications to fix overfitting. The
simplest regularization technique is early stopping: we just stop training at
the point where the development perplexity is the lowest. But while simple,
early stopping is not the best method for correcting an overfitting problem.
Figure 4.4 shows two much better solutions, dropout and L2 regularization.

In dropout we modify the network to randomly drop pieces of our com-
putation. For example, the dropout data in Figure 4.4 came from randomly
dropping the output of 50% of the the first layer of linear units. So the
next layer sees zeros in random locations in its input vector. One way to
think of this is that the training data no longer is identical at each epoch,
since each time different units are dropped. Another way to see why this
helps is to note that the classifier cannot depend on the coincidence of a

4.4. OVERFITTING 81

lot of features of the data lining up in a particular way, and thus it should
generalize better. As we can see from Figure 4.4, it really does help prevent
overfitting. For one thing, the first line of Figure 4.4 shows no reversal in
the perplexity of the development corpus. Even at 30 epochs perplexity is
decreasing, albeit at a glacier-like rate (about 0.1 units per epoch). Further-
more, the absolute lower value using dropout is much better than we can
achieve by early stopping — a perplexity of 114 vs. 145.

The second technique we showcase in Figure 4.4 is L2 regularization.
L2 starts from the observation that overfitting in many kinds of machine
learning is accompanied by the learning parameters getting quite large (or
quite small for weights below zero). We commented earlier that seeing the
same data repeated times causes the NN to overestimate the probabilities
of what it has seen at the expense of all the examples that could occur, but
did not, in the training data. This overestimation is achieved by weights
with large absolute values or, almost equivalently, large squared values. In
L2 regularization we add to the loss function a quantity proportional to the
sum of the squared weights. That is, if before we were using cross-entropy
loss, our new loss function would be:

L(Φ) = −log(Pr(c)) + α
1

2

∑
φ∈Φ

φ2 (4.7)

Here α is a real number that controls how we weight the two terms. It is
usually small; in the above experiments we set it to .01, a typical value.
When we differentiate the loss function with respect to φ, the second term
adds αφ to the total of ∂L

∂φ . This encourages both positive and negative φ
to move closer to zero.

Both forms of regularization work about equally well on this example,
though in general dropout seems to be the preferred method. They are both
easy to add to a TF network. To drop out, say, 50% of the values coming
out of the first layer of linear units (e.g., w1Out), we add to our program:

keepP= tf.placeholder(tf.float32)

w1Out=tf.nn.dropout(w1Out,keepP)

Note that we made the keep probability a placeholder. We typically want
to do this because we do dropout only when training. When testing it is
not needed, and indeed is harmful. By making the value a placeholder we
can feed in the values 0.5 when we train and 1.0 when testing.

Using L2 regularization is just as easy. If we want to prevent the values
of, e.g., W1, the weights of some linear units, from getting too large, we
simply add:

82 CHAPTER 4. WORD EMBEDDINGS AND RECURRENT NNS

Figure 4.5: A graphical illustration of a recurrent NN

.01 * tf.nn.l2 loss(W1)

to the loss function we use when training. Here .01 is a hyperparameter
to weight how much we count the regularization compared to the original
cross-entropy loss. If your code computes perplexity by raising e to the per-
word loss, be sure to separate the combined loss used in training from the
loss used in the computation of perplexity. For the latter we only want the
cross-entropy loss.

4.5 Recurrent Networks

A recurrent neural network or RNN is, in some sense, the opposite of a
feed-forward NN. It is a network in which the output contributes to its own
input. In graph terminology it is a directed cyclic graph, as opposed to
feed-forward’s directed acyclic graph. The simplest version of an RNN is
illustrated in Figure 4.5. The box labeled Wrbr consists of a layer of linear
units with weights Wr and biases br plus an activation function. Input
comes into it from the bottom left and the output o goes out on the right
and splits. One copy circles back to itself; it is this circle that makes this
recurrent and not feed-forward. The other copy goes to a second layer of
linear units with parameters Wo,bo that is responsible for computing the

4.5. RECURRENT NETWORKS 83

output of the RNN and the loss. Algebraically we can express this as follows:

s0 = 0 (4.8)

st+1 = ρ((et+1 · st)Wr + br) (4.9)

o = st+1Wo + bo (4.10)

We start the recurrence relation with the state s0 initialized to some arbi-
trary value, typically a vector of zeros. The dimension of the state vector
is a hyperparameter. We get the next state by concatenating the next in-
put (et+1) with the previous state st, and feeding the result though the
linear unit Wr,br. We then feed the output through the relu function ρ.
(The choice of activation function is free.) Finally the output of the RNN
unit o is obtained by feeding the current state through a second linear unit
Wo, bo. The training loss function is again a free choice, most commonly
cross-entropy computed on o.

Recurrent networks are appropriate when we want previous inputs to
the network to have an influence arbitrarily far into the future. Since lan-
guage works this way, RNNs are frequently used in language-related tasks
in general and language-modeling in particular. Thus here we assume the
input is the embedding of the current word wi, the prediction is wi+1 and
the loss is our standard cross-entropy loss.

Computing the forward pass of the NN works pretty much as it does in a
feed-forward NN except that we remember o from the previous iteration and
concatenate it with the current word embedding at the start of the forward
pass. The backward pass, however, is not so obvious. Earlier, in explaining
how it is that the parameters in word embeddings are also updated by TF, we
said TF works backward from the loss function, tracing back, continuing to
look for parameters that have an effect on the error, and then differentiates
the error with respect to those parameters. In Chapter 1’s NN for Mnist
this took us back through the layer with W and b, but then stopped when
we encountered only the image pixels. The same is true for convolutional
NNs, though the ways in which parameters enter into the error function
computation are more complicated. But now there is potentially no limit
on how far back we need go in the backward pass.

Suppose we read in the 500th word and want to change model parameters
because we did not predict w501 with probability one. Tracing back, we find
that part of the mistake is due to the weights Wo of the network in the
upper right of Figure 4.5. But of course, one of the inputs to this layer is
the output from the recurrent unit o500 from when it just processed word
w500. And where did this value come from? Well, Wr,br, but also in part

84 CHAPTER 4. WORD EMBEDDINGS AND RECURRENT NNS

Figure 4.6: Back propagation through time with window size equal to three

it is due to o499. To make a long story short, to do this “properly” we need
to trace back the error through 500 loops of the recurrent layer, adjusting
the weights Wr,br over and over again due to the contributions from all
the mistakes starting with word one. This is not practical.

We solve this problem by brute force. We simply cut off the computation
after some arbitrary number of iterations backward. The number of itera-
tions is called the window size and is a system hyperparameter. The overall
technique is called back propagation through time and is illustrated in Figure
4.6, where we assume a window size of three. (A more realistic value for
window size would be, say, twenty.) In more detail, Figure 4.6 imagines we
are processing a corpus that starts with the phrase “It is a small world but
I like it that way” along with sentence padding. Back propagation though
time treats Figure 4.6 as if it were a feed-forward network taking in not a
single word, but a window-size (i.e., three) of them and then computing the
error on the three. For our short “corpus,” the first call to training would
take “STOP It is” as the input words and “it is a” as the three words to
predict.

Figure 4.6 imagines we are on the second call, where the incoming words
are “a small world” and they are to predict “small world but”. At the start
of the second forward pass the output from the first call comes in at the left
(O0) and it is concatenated with the embedding of “a” and passed through
the RNN to where it becomes O1 feeding the loss at E1.

But besides going to E1, O1 also goes on to be concatenated with the
second word, “small”. We compute the error there as well. Here we compute
the effect of both W and b (not to mention embeddings) on the error in
predicting “small”. But W and b cause the error in two different ways —

4.5. RECURRENT NETWORKS 85

STOP It is a small world

but I like it that way

STOP It is

but I like

a small world

it that way

Figure 4.7: Allotting words when batch size is two and window size is three

most directly from the error that leads from them to E2, but also from how
they contributed to O1. Naturally when we next compute E3, W and b
affect the error in three ways: directly from O3 from O1 and O2. So the
parameters in those variables are modified six times (or, equivalently, the
program keeps a running total and modifies them once).

Figure 4.6 ignores the issue of batch size. As you might expect, TF RNN
functions are built to allow simultaneous batch-size training (and testing).
So each call to the RNN takes a batch-size by window-size array of input
to predict a similarly sized array of prediction words. As noted before, the
semantics of this is that we are working on batch-size groups in parallel, so
the last words predicted from the first training call are the first input words
to the second.

To make this work out we need to be careful how we create the batches.
Figure 4.7 illustrates what happens for the mock corpus “STOP It is a small
world but l like it that way STOP”. We assume a batch size of two and a
window size of three. The basic idea is first to divide the corpus in two
and then fill each batch from pieces from each part (in this case half) of
the corpus. The top window in Figure 4.7 shows the corpus divided in two
pieces. The next pair of windows shows the two input batches that are
created from this. Each batch has three word segments from each half. We
also need to batch up the prediction words to feed into the network. This
is exactly like the above figure, but each word is one further along in the
corpus. So the top line of the prediction diagram would read, “It is a small
world but”.

Since the “corpus” is 14 words, each half consists of six words. To see why
six and not seven, concentrate on the predictions for the second batch. Go
through carefully with seven words per half and you find that we do not have

86 CHAPTER 4. WORD EMBEDDINGS AND RECURRENT NNS

a prediction word for the last input. Thus the corpus is initially divided into
S sections, where for a corpus of size x and a batch size b, S = b(c− 1)/bc
(where “bxc” is the floor function — the largest integer smaller than x).
Here the “minus one” gives the last input word its corresponding prediction
word.

We have said nothing so far about what we do at the end of a sentence.
The easiest thing is to simply plow on to the next. This means that a given
window-size segment fed to the RNN can contain pieces of two different
sentences. However, we have put the padding STOP word between them,
so the RNN should, in principle, learn what that means in terms of what
sorts of words are coming up — e.g., capitalized ones. Furthermore, there
can be good clues about subsequent words from the last words of the previ-
ous sentence. If we are just concerned with language modeling, separating
sentences with STOP but otherwise not worrying about sentence separation
when training or using RNNs seems to be sufficient.

Let us review RNNs by looking again at Figures 4.5 and 4.6 and thinking
about how we program the RNN language model. As we just noted, the
code taking us from our word corpora to model input needs to be slightly
revamped. Previously the input (and predictions) was a batch-size vector,
now it is a batch-size by window-size array. We also need to turn each word
into its word embedding, but this is unchanged from the feed-forward model.

Next, the word is fed into the RNN. The key TF code for the creation
of the RNN is:

rnn= tf.contrib.rnn.BasicRNNCell(rnnSz)

initialState = rnn.zero_state(batchSz, tf.float32)

outputs, nextState = tf.nn.dynamic_rnn(rnn, embeddings,

initial_state=initialState)

The first line here adds the RNN to the computation graph. Note that the
width of the RNN’s weight array is a free parameter, the rnnSz (you may
remember that when we added an extra layer of linear units to the Mnist
model at the end of Chapter 2 we had a similar situation). The last line is the
call to the RNN. It takes three arguments, and returns two. The inputs are,
first, the RNN proper, second, the words that the RNN is going to process
(there are batch-size by window-size of them), and the initialState that
it gets from the previous run. Since on the first call to dynamic rnn there
is no previous state, we create a dummy one with the function call on the
second line rnn.zero state.

tf.nn.dynamic rnn has two outputs. The first, which we named outputs,
is the information that feeds the error computation. In Figure 4.6 these are

4.5. RECURRENT NETWORKS 87

[[-0.077 0.022 -0.058 -0.229 0.145]

[-0.167 0.062 0.192 -0.310 -0.156]

[-0.069 -0.050 0.203 0.000 -0.092]]

[[[-0.073 -0.121 -0.094 -0.213 -0.031]

[-0.077 0.022 -0.058 -0.229 0.145]]

[[0.179 0.099 -0.042 -0.012 0.175]

[-0.167 0.062 0.192 -0.310 -0.156]]

[[0.103 0.050 0.160 -0.141 -0.027]

[-0.069 -0.050 0.203 0.000 -0.092]]]

Figure 4.8: next state and outputs of an RNN

the outputs O1, O2, O3. So output has the shape [batch-size, window-
size, hidden-size]. The first dimension packages up batch-size examples.
Each example itself consists of O1, O2, and O3, so the second dimension is
window-size. Last, e.g., O1 is a vector of rnn-size floats that comprise the
RNN output from a single word.

The second output from tf.nn.dynamic rnn we called nextState and
it is the last output (O3) from this pass though the RNN. The next time we
call tf.nn.dynamic rnn we have initialState = nextState. Note that
nextState is, in fact, information that is present in outputs since it is
the collection of O3 from the batch-size examples. For example, Figure 4.8
shows next state and outputs for batch-size three, window size two, and
rnn size five. With window size two, every other line of the output is a
next-state line. It is somewhat convenient to have the next state packaged
up for us separately, but the real reason for this repetition will become clear
in the next section.

The last piece of the language model is the loss. This is computed in the
upper right-hand side of Figure 4.5. As we see there, the RNN output is first
put through a layer of linear units to get the logits for softmax, and then
we compute the cross-entropy loss from the probabilities. As just discussed,
the output of the RNN is a 3D tensor with shape [batch-size, window-size,
rnn-size]. Up until now we have only passed 2D tensors, matrices, through
our linear units, and we have done so with matrix multiplication — e.g.,
tf.matmul(inpt, W).

The easiest way to handle this is to change the shape of the RNN output
tensor to make it a matrix with the correct properties:

88 CHAPTER 4. WORD EMBEDDINGS AND RECURRENT NNS

output2 = tf.reshape(output,[batchSz*windowSz, rnnSz])

logits = matmul(output2,W)

Here W is the linear layer (Wo) that takes the output of the RNN and
turns it into the logits in Figure 4.5. We then can hand this to
tf.nn.sparse softmax cross entropy with logits, which returns a col-
umn vector of loss values that reduce to a single value with tf.reduce mean.
This final value can be exponentiated to give us our perplexity.

Changing the shape of the RNN output was convenient here for peda-
gogical reasons (it allowed us to reuse tf.matmul) and computational ones
(it put things into the shape required by sparse softmax). In other situ-
ations the downstream computation might require the original shape. For
this we can turn to one of many TF functions that handle multidimensional
tensors. Here the one we would use is that covered in Section 2.4.2. The
call to it would be:

tf.tensordot(outputs, W, [[2], [0]])

This code performs a repeated dot product (in effect, a matrix multiplica-
tion) between the second component (zero-based) of outputs and the zeroth
of W.

One more point about the use of general RNN. In the Python code that
goes along with the above TF code for RNNs we see something like this:

inputSt = sess.run(initialSt)

for i in range(numExamps)

‘‘read in words and embed them’’

logts, nxts=sess.run([logits,nextState],

{{input=wrds, nextState=inputSt})

inputSt=nxts

Nothing here should be taken literally except (a) how the input state for
the RNN is initialized, (b) how we pass it to TF with the piece of the feed
dictionary nextState=inputState, and (c) how we then update inputSt

in the last line above. Up until now we have only used feed dict to pass
values to TF placeholders. Here nextState points not to a placeholder, but
rather a piece of code that generates the zero state with which we start the
RNN. This is allowed.

4.6 Long Short-Term Memory

A long short-term memory NN (LSTM) is a particular kind of RNN that
almost always outperforms the simple RNN presented in the last section.

4.6. LONG SHORT-TERM MEMORY 89

Figure 4.9: The architecture of LSTMs

The problem with standard RNNs is that while the goal is to remember
things from far back, in practice they seem to forget quickly. In Figure 4.9
everything in the dotted box corresponds to a single RNN unit. Obviously
LSTMs elaborate the architecture quite significantly. First, note that we
have shown one copy of an LSTM in a back-prop-though-time diagram. So
on the left we have information coming in from processing the previous word
(using two tensors of information rather than one). At the bottom we have
the next word coming in. On the right we have two tensors going out to
inform the next time unit and, as in plain RNNs, we have this information
going “up” in the diagram to predict the next word and the loss (upper
right-hand side).

The goal is to improve the RNN’s memory of past events by training it
to remember the important stuff and forget the rest. To this end, LSTMs
pass two versions of the past. The “official” selective memory is at the top
and a more local version at the bottom. The top memory timeline is called
the cell state and abbreviated c. The lower line is called h.

Figure 4.9 introduces several new connectives and activation functions.
First, we see that the memory line is modified at two locations before being
passed on to the next time unit. They are labeled times (X), and plus (+).
The idea is that memories are removed at the times unit, and added at the
plus unit.

90 CHAPTER 4. WORD EMBEDDINGS AND RECURRENT NNS

Why do we say this? Look now at the current word embedding coming
in at the bottom left. It goes through a layer of linear units followed by a
sigmoid activation function, as indicated by the W,b,S annotation: W,b
make up the linear unit and S is the sigmoid function. We showed the
sigmoid function in Figure 2.7. You might want to review it because a few
of its specifics matter in the following discussion. In math notation we have
the operation:

h′ = ht · e (4.11)

f = S((h′Wf + bf) (4.12)

We use a center dot · to indicate concatenation of vectors. To repeat, at lower
left we concatenate the previous h-line ht and the current word embedding e
to give h′, which in turn is fed into the “forgetting” linear unit (followed by a
sigmoid) to produce f , the forgetting signal that is moving up the left-hand
side of the figure.

The output of the sigmoid is then multiplied element-wise with the mem-
ory c-line coming in top left. (By “element-wise” we mean that, e.g., the
x[i, j]th element of one array is multiplied by (or added to, etc.) the y[i, j]th
the element of the other.)

c′t = ct � f (4.13)

(Here “�” indicates element-wise multiplication.) Given that sigmoids are
bounded by zero and one, the result of the multiplication must be a reduction
in the absolute value at each point of the main memory. This corresponds
to “forgetting.” Overall this configuration, sigmoid feeding a multiplicative
layer, is a common pattern when we want “soft” gating.

Contrast this with the goings on at the additive unit that the memory
next encounters. Again, the next word embedding has come in from bottom
left, and this time it goes separately through two linear layers, one with
sigmoid activation, one with the tanh activation function, shown in Figure
4.10. Tanh stands for hyperbolic tangent.

a1 = S(h′Wa1 + ba1) (4.14)

a2 = tanh((ht · e)Wa2 + ba2) (4.15)

It is important that, unlike the sigmoid function, tanh can output both
positive and negative values, so it can express new material as opposed to
just scale. The result of this is added to the cell state at the cell labeled
“+”:

ct+1 = c′t ⊕ (a1 � a2) (4.16)

4.6. LONG SHORT-TERM MEMORY 91

Figure 4.10: The tanh function

After this the cell memory line splits. One copy goes out the right, and one
copy goes through a tanh and is then combined with a linear transforma-
tion of the more local history/embedding to become the new h-line on the
bottom:

h′′ = h′Wh + bh (4.17)

ht+1 = h′′ � a2 (4.18)

This is to be concatenated with the next word embedding, and the process
repeats. The point to be emphasized here is that the cell-memory line never
goes directly though linear units. Things are de-emphasized (e.g., forgotten)
at the “X” unit and added at “+,” but that is it. Thus the logic of the LSTM
mechanism.

As for the program, only one small change is needed to the TF version:

tf.contrib.rnn.BasicRNNCell(rnnSz)

becomes

tf.contrib.rnn.LSTMCell(rnnSz)

Note that this change affects the state that is passed from one time unit to
the next. Previously, as shown in Figure 4.8, the states had shape [batchSz,
rnnSz]. Now it is [2, batchSz, rnnSz], one [batchSz, rnnSz] tensor for the
c-line, one for the h-line.

In performance the LSTM version is much better, at the cost of taking
longer to train. Take an RNN model such as that we developed in the
last section, give it plenty of resources (word-embedding vectors of size 128,
hidden size of 512) and we get a respectable perplexity of 120 or so. Make
the single function call change from an RNN to a LSTM and our perplexity
goes down to 101.

92 CHAPTER 4. WORD EMBEDDINGS AND RECURRENT NNS

4.7 References and Further Readings

The paper that introduced what we now think of as the standard feed-
forward language model is that by Bengio et al. [BDVJ03]. It also originated
the term “word embedding.” The idea of representing words in a continuous
space, particularly vectors of numbers, is much earlier. It is the Bengio
paper, however, that showed that word embeddings as we now know them
are almost automatic byproducts of NN language models.

Arguably, it is not until the work of Mikolov et al. that word embed-
dings became a near universal component of NN natural-language process-
ing. They developed several models that go by the name of word2vec. The
standard paper is [MSC+13]. The most popular of the word2vec models is
skip-gram model. In our presentation, embeddings were optimized to predict
the next word given the previous words. In the skip-gram model each single
word is asked to predict all its neighboring words. One striking result of the
word2vec models is the use of word embeddings to solve word analogy prob-
lems — e.g., Male is to king as female is to what? Unexpectedly, answers to
these problems fell out from the word embeddings they created. One simply
took the embedding for the word “king”, subtracted that for “male”, added
“female”, and then looked for the word embedding nearest the result. A
great blog on word embeddings and their issues is that by Sebastian Ruder
[Rud16].

Recurrent neural networks have been around since at least the mid-1980s,
but they did not perform well until Sepp Hochreiter and Jürgen Schmidhuber
created LSTMs [HS97]. A blog by Chris Colah gives a good explanation of
LSTMs [Col15], and my Figure 4.9 is a reworking of one of his diagrams.

4.8 Written Exercises

Exercise 4.1: Assume that our corpus starts out “ *STOP* I like my cat
and my cat likes me . *STOP*” . Also assume that we assign individual
words their unique integer as we read in the corpus, starting with 0. If
we have batch size 5, write out the values we should read in to fill the
placeholders inpu and answr on the first training batch.

Exercise 4.2: Explain why, if you hope to have any chance of learning a
good embedding-based language model, you may not set all of E to zero.
Make sure your explanation also works for setting all of E to one.

4.8. WRITTEN EXERCISES 93

Exercise 4.3: Explain why, if you are using L2 regularization, it is posi-
tively a bad idea to compute the actual total loss.

Exercise 4.4: Consider building a trigram-fully-connected language model.
In our version we concatenated the embeddings for the two previous inputs
to form the model input. Does the order in which we concatenate have any
effect on the model’s ability to learn? Explain.

Exercise 4.5: Consider an NN unigram model. Can its model perplexity
be any better than picking words from a uniform distribution? Why or
why not? Explain what pieces of the bigram model are needed for optimal
performance of a unigram model.

Exercise 4.6: A linear gated unit (LGU) is a variant of LSTMs. Referring
back to Figure 4.9, we see that the latter has one hidden layer that controls
what gets removed from the main memory line, and a second that controls
what is added. In both cases the layers take the lower line of control as input,
and produce a vector of numbers between 0 and 1 that are multiplied with
the memory line (forgetting) or added to it (remembering). LGUs differ in
replacing these two layers by a single layer with the same input. The output
is multiplied by the control line as before. However, it is also subtracted
from one, multiplied by the control layer, and added to the memory line. In
general, LGUs work as well as LSTMs and, having one fewer linear layer,
are slightly faster. Explain the intuition. Modify Figure 4.9 so it represents
the workings of a LGU.

Chapter 5

Sequence-to-Sequence
Learning

Sequence-to-sequence learning (typically abbreviated seq2seq) is a deep learn-
ing technique for mapping a sequence of symbols to another sequence of
symbols when it is not possible (or at least we cannot see how) to perform
the mapping on the basis of the individual symbols themselves. The proto-
typical application for seq2seq is machine translation (abbreviated MT) —
having a computer translate between natural languages such as French and
English.

It has been recognized since around 1990 that expressing this mapping
in a program is quite difficult, and that a more indirect approach works
much better. We give the computer an aligned corpus — many examples of
sentence pairs that are mutual translations of each other — and require the
machine to figure out the mapping for itself. This is where deep learning
comes in. Unfortunately, the deep learning-techniques we have learned for
natural-language tasks, e.g., LSTMs, by themselves are not sufficient for
MT.

Critically, language modeling, the task we concentrated on in the last
chapter, proceeds on a word-by-word basis. That is, we put in a word and we
predict the next one. MT does not work like this. Consider some examples
from the Canadian Hansard’s, the record of everything that has been said
in the Canadian parliament that by law must be published in Canada’s two
official languages, French and English. The first pair of sentences of a section
I happen to have at hand is:

edited hansard number 1
hansard révisé numéro 1

95

96 CHAPTER 5. SEQUENCE-TO-SEQUENCE LEARNING

An early lesson for English speakers learning French (and presumably vice
versa) is that adjectives typically go before the noun they modify in English,
and after in French. So here the adjectives “edited” and “révisé” are not in
the same positions in the translations. The point is that we cannot work
our way left to right in the source language (the language we are translating
from) spitting out one word at a time in the target language. In this case
we could have input two words and output two, but the observed sequential
mismatches can grow much larger. The following occurs a few lines after
the previous example. Note that the text is tokenized — twice the French
punctuation is separated from the words to which it would ordinarily be
attached:

this being the day on which parliament was convoked by procla-
mation of his excellency ...
parlement ayant été convoqué pour aujourd ’ hui , par procla-
mation de son excellence ...

The word-by-word translation of the French would be “parliament having
been convoked for today, by proclamation of his excellency,” and in particu-
lar “this being the day” is translated into “aujourd ’ hui.” (Indeed, generally
the lengths of the sentences in the pair are not the same.) Thus the require-
ment for sequence-to-sequence learning, where a sequence is generally taken
to be a complete sentence.

5.1 The Seq2Seq Paradigm

The diagram of a very simple seq2seq model is shown in Figure 5.1. It
shows the process over time (time as usual running from left to right) of
translating “hansard révisé numero 1” into “edited hansard number 1”. The
model consists of two RNNs. As opposed to LSTMs, we are assuming an
RNN model that passes a single memory line. We could use BasicRNNCell;
however, a better choice is a newer competitor to the LSTM, the Gated
Recurrent Unit, or GRU, which passes only a single memory line between
time units.

The model operates in two passes, each having its own GRU. The first
pass is called the encoding pass and is represented in the lower half of Figure
5.1. The pass ends when the last French token (always STOP) is processed
by the lower GRU. The GRU state is then passed on to the second half of
the process. The goal of this pass is to produce a vector that “summarizes”
the sentence. This is sometimes called a sentence embedding by analogy to
word embeddings.

5.1. THE SEQ2SEQ PARADIGM 97

Figure 5.1: A simple sequence-to-sequence learning model

98 CHAPTER 5. SEQUENCE-TO-SEQUENCE LEARNING

The second half of seq2seq learning is called the decoding pass. As seen in
the figure, it is a pass through the target language (here English) sentence.
(Perhaps it is time to make explicit that we are talking here about what
happens during training, so we know the English sentence.) This time the
goal is to predict the next English word after each word is input. The loss
function is the usual cross-entropy loss.

The terms encode and decode come from communication theory. A mes-
sage must be encoded to form the signal that is sent, and then decoded back
again from the signal that is received. If there is noise in the communication
the signal received will not necessarily be identical to the one sent. Imagine
that the original message was English and the noise converted it to French.
Then the process of translating it (back) to English is “decoding.”

Note that the first input word for the decoding pass is the padding word
STOP. It is also the last word to be output. Were we to use the model for
real French-to-English MT, the system does not have the English available.
But it can assume that we start the processing with STOP. Then to generate
each subsequent word we give the LSTM the previous predicted word. It
stops processing when the LSTM predicts that the next “word” should be
STOP again. Naturally we should also work this way when testing. Then
we know the English, but we only use that information for evaluation. This
means that in actual translation we predict the next translation word partly
on the basis of the last translated word, which could very well be a mistake.
If it is, then there is greatly increased likelihood that the next word will be
wrong, etc.

In this chapter we ignore the complexity of real MT by evaluating our
program’s ability to predict the correct next English word given the correct
previous word. Of course in real MT there is no single correct English
translation for a particular French sentence, so just because our program
does not predict the exact word used in our parallel corpus’ translation does
not mean it is wrong. Objective MT evaluation is a topic of importance,
but one we ignore here.

One last simplification before we look at writing an NN MT program.
Figure 5.1 is laid out as a back-propagation-though-time diagram, so all the
RNN units in the bottom row are actually the same recurrent unit, but at
successive times. Similarly for the units in the top row. As you may remem-
ber, back-prop-though-time models have a window-size hyperparameter. In
MT we want to process an entire sentence in one fell swoop, but sentences
come in all sizes. (In the Penn Treebank they range from one word to over
150.) We simplify our program by working only on sentences where both
the French and English are less than 12 words long, or 13 including a STOP

5.2. WRITING A SEQ2SEQ MT PROGRAM 99

1 with tf.variable_scope("enc"):

2 F = tf.Variable(tf.random_normal((vfSz,embedSz),stddev=.1))

3 embs = tf.nn.embedding_lookup(F, encIn)

4 embs = tf.nn.dropout(embs, keepPrb)

5 cell = tf.contrib.rnn.GRUCell(rnnSz)

6 initState = cell.zero_state(bSz, tf.float32)

7 encOut, encState = tf.nn.dynamic_rnn(cell, embs,

8 initial_state=initState)

9

10 with tf.variable_scope("dec"):

11 E = tf.Variable(tf.random_normal((veSz,embedSz),stddev=.1))

12 embs = tf.nn.embedding_lookup(E, decIn)

13 embs = tf.nn.dropout(embs, keepPrb)

14 cell = tf.contrib.rnn.GRUCell(rnnSz)

15 decOut,_ = tf.nn.dynamic_rnn(cell, embs, initial_state=encState)

Figure 5.2: TF for two RNNs in an MT model

word. We then make each sentence length 13 by adding extra padding
STOPs. Thus the program can assume that all sentences have the same
length of 13 words. So consider the short French-English aligned sentences
with which we started our discussion of MT, “edited hansard number 1”
and “hansard révisé numéro 1”. The French sentence we input would look
like this:

hansard révisé numéro 1 STOP STOP STOP STOP STOP STOP
STOP STOP STOP

and the English:

STOP edited hansard number 1 STOP STOP STOP STOP
STOP STOP STOP STOP

5.2 Writing a Seq2Seq MT program

Let us start by reviewing the RNN models we covered in Chapter 4, with
a slight twist. So far we have not paid much attention to good software
engineering practices. Here, however, TF, for reasons to be explained, forces
us to clean up our act. Since we are creating two nearly identical RNN
models we introduce the TF construct variable scope. Figure 5.2 shows
the TF code for the two RNNs we need in our simple seq2seq model.

100 CHAPTER 5. SEQUENCE-TO-SEQUENCE LEARNING

W = tf.Variable(tf.random_normal([rnnSz,veSz],stddev=.1))

b = tf.Variable(tf.random_normal([veSz,stddev=.1))

logits = tf.tensordot(decOut,W,axes=[[2],[0]])+b

loss = tf.contrib.seq2seq.sequence_loss(logits, ans,

tf.ones([bSz, wSz]))

Figure 5.3: TF for seq2seq decoder

We divide the code into two pieces; the first creates the encoding RNN,
and the second the decoding. Each section is enclosed within a TF variable scope

command. This function takes one argument, a string to serve as the name
for the scope. The purpose of variable scope is to let us package together
a group of commands in such a way as to avoid variable-name conflicts. For,
example, both the top and bottom segments use the variable name cell in
such a way that without two separate scopes, they would have stepped on
each other with very bad results.

But even if we had been careful and given each of our variables unique
names, this code still would not have worked correctly. For reasons buried
in TF code details, when dynamic rnn creates the material to insert into
the TF graph, it always uses the same name to point to it. Unless we put
the two calls in separate scopes (or unless the code is set up not to mind
that the two calls are, in fact, one and the same), we get an error message.

Now consider the code within each variable scope. For the encoder we
first create space for the French-word embeddings, F. We assume a place-
holder named encIn that accepts a tensor of French-word indices with shape
batch size by window size. The lookup function then returns a 3D tensor,
of shape batch size by window size by embedding size (line 3), to which we
apply dropout with the probability of keeping a connection set to keepProb

(line 4). We then create the RNN cell, this time using the GRU variant of
the LSTM. Line 7 then uses the cell to produce the outputs and the next
state.

The second GRU is parallel to the first, except that the call to dynamic rnn

takes as its input the state output of the encoder RNN, rather than a zero-
valued initial state. This is the state=encState in line 15. Again consulting
Figure 5.1, the decoder RNN’s word-by-word output feeds into a linear layer.
The figure does not show, but the reader should imagine, the layer’s output
(the logits) feeding into a loss computation. The code would look like that
in Figure 5.3. The only thing new here is the call to seq2seq loss, a spe-
cialized version of cross-entropy loss in cases when logits are 3D tensors. It

5.2. WRITING A SEQ2SEQ MT PROGRAM 101

Figure 5.4: Seq2seq sentence summarization by addition

takes three arguments, the first two standard — the logits and a 2D tensor
of correct answer (batch size by window size). The third argument allows
a weighted sum — for situations where some errors should count more to-
ward the total loss than others. In our case we want every mistake to count
equally, so the third argument has all weights equal to 1.

As we said earlier, the whole idea of the simplest seq2seq model in Figure
5.1 is that the encoding pass creates a “summary” of the French sentence
by passing the French though the GRU and then using the final GRU state
output as the summary. There are, however, a lot of different ways to
create such sentence summaries, and a significant body of research has been
devoted to looking at these alternatives. Figure 5.4 shows a second model
that for MT is slightly superior. The difference in implementation is small:
rather than pass the encoder final state to the decoder as its start state,
we rather take the sum of all the encoder states. Since we padded all the
French and English sentences to be of length 13, this means that we take
all 13 states and sum them. The hope is that this sum is more informative
than the one final vector, which in fact seems to be the case.

102 CHAPTER 5. SEQUENCE-TO-SEQUENCE LEARNING

Actually, your author chose to take the mean of the state vectors as
opposed to the sum. If you go back to chapter 1 and look at the forward
pass computation, you will remember that taking the mean rather than the
sum makes no difference in the final probabilities, as softmax will wash any
multiplicative differences away, and taking the mean just corresponds to
dividing by window size (13). Furthermore, the direction of the parameter
gradient does not change either. What can and does change is the magnitude
of the change we make in the parameter values. In the current situation
taking the sum is roughly equivalent to multiplying the learning rate by 13.
As a general practice it is better in such situations to keep parameter values
near zero, and modify the learning rate directly.

5.3 Attention in Seq2seq

The notion of attention in seq2seq models arises from the idea that, although
in general we need to understand an entire sentence before we can translate
it, in practice for a given patch of target word translations, some parts of
the source sentence are more important than others. In particular, much
more often than not, the first few French words inform the first few English,
the middle of the French sentence leads to the middle of the English, etc.
While this is particularly true for English and French, which are very similar
as languages go, even languages which have no obvious commonalities have
this property. The reason is the given new distinction. It seems to be the
case in all languages that, when saying something new about things we have
already been talking about (and this is usually what happens in coherent
conversation or writing), we first mention the “given” — what we have been
talking about, and only then mention the new material. So in a conversation
about Jack we might say, “Jack ate a cookie,” but if we were talking about
a batch of cookies, “One of the cookies was eaten by Jack.”

Figure 5.5 illustrates a small variation on the summing seq2seq mech-
anism of Figure 5.4 in which the summary concatenated with the English
word embedding is fed into the decoder cell at each window position. This
contrasts with Figure 5.4, where just the English word is fed in. From our
new viewpoint, this model gives equal attention to all the states from the
encoder when working on all parts of the English. In attention models we
modify this so that different states are mixed together in different propor-
tions before being handed to the decoder RNN. We call this position-only
attention. True attention models are more complicated, but we leave this to
Further Reading.

5.3. ATTENTION IN SEQ2SEQ 103

Figure 5.5: Seq2seq where the encoder summary is fed directly to each
decoder window position

104 CHAPTER 5. SEQUENCE-TO-SEQUENCE LEARNING

1/2 1/6 1/6
1/6 1/3 1/6
1/6 1/3 1/3
1/6 1/6 1/3

Figure 5.6: A possible weight matrix for weighting corresponding
French/English positions more highly

So we are going to build an attention scheme where, say, the attention
an English word at position i pays to the state of the French encoding at
position j depends only on i and j. Generally, the closer i and j, the greater
the attention. Figure 5.6 gives an imaginary weight matrix for a model
in which the encoder (French) window size is 4 and the decoder size is 3.
Heretofore we have assumed both window sizes to be 13, but there is no
reason they have to be the same. Furthermore, since French has about 10%
more words than a corresponding English translation, there is good reason
to pair slightly larger French window sizes with smaller English ones. In
addition, for pedagogical reasons, making the matrix asymmetrical helps
keep straight which numbers are refering to English word positions and
which are talking about French.

Here we assign W [i, j] to be the weight given to the ith French state
when used to predict the jth English word. So the total weight for any
English word is the column sum, which we have made 1. E.g., the first
column gives the weights for the first English word. Looking at the first
column, we see that the first French state counts for half of the emphasis
(in our imagined window size of 4), and the remaining three French states
all share the remaining emphasis equally. For the moment we assume that
in our real program a 13 ∗ 13 version of Figure 5.6 is a TF constant.

Next, given the 13 ∗ 13 weight matrix, how do we use it to vary the
attention for a particular English output? Figure 5.7 shows the tensor flow
and sample numerical calculations for the situation where batch size is 2,
window size 3, and RNN size is 4. At the top we see an imaginary encoder
output encOut. The batch size is 2, and to make things simple we made
the two batches identical. Within each batch we have the three vectors of
length 4, each being the length 4 (RNN size) vector for the RNN output at
that window position. So, for example, in batch 0, the first (0-based) state
vector is (1, 1, 1, 1).

Next we have our made-up weight vector, wAT, of dimensions 4 ∗ 3 (the
window sizes). It is French state position by English word position. So

5.3. ATTENTION IN SEQ2SEQ 105

eo= (((1, 2, 3, 4),

(1, 1, 1, 1),

(1, 1, 1, 1),

(-1, 0,-1, 0)),

((1, 2, 3, 4),

(1, 1, 1, 1),

(1, 1, 1, 1),

(-1, 0,-1, 0)))

encOut=tf.constant(eo, tf.float32)

AT = ((.6, .25, .25),

(.2, .25, .25),

(.1, .25, .25),

(.1, .25, .25))

wAT = tf.constant(AT, tf.float32)

encAT = tf.tensordot(encOut,wAT,[[1],[0]])

sess= tf.Session()

print sess.run(encAT)

’’’[[[0.80000001 0.5 0.5]

[1.50000012 1. 1.]

[2. 1. 1.]

[2.70000005 1.5 1.5]]

...] ’’’

decAT = tf.transpose(encAT,[0, 2, 1])

print sess.run(decAT)

’’’[[[0.80000001 1.50000012 2. 2.70000005]

[0.5 1. 1. 1.5]

[0.5 1. 1. 1.5]]

...]’’’

Figure 5.7: Simplified attention calculations with bSz = 2, wSz = 3, and
rnnSz = 4

106 CHAPTER 5. SEQUENCE-TO-SEQUENCE LEARNING

the first column says, in effect, that the first English word should be given
a state vector that is 60% the first French state vector and 20% each of the
other two RNN state vectors. It is arranged so that the weights for each
English word add up to 100%.

Next come the three TF commands that allow us to take in the un-
weighted encoder states and produce the weighted versions for each English
word decision. First we rearrange the encoder output tensor, from [bSz,

wSz, rnnSz] to [bSz, rnnSz, wSz]. This is done by the tf.transpose

command. The transpose command takes two arguments, the tensor to be
transposed and a bracketed vector of integers specifying the transpose to be
performed. Here we asked for [0, 2, 1] — keep the 0th dimension in place,
but the “2” says to make the dimension that was originally the second be-
come dimension 1, and the final 1 makes the last dimension what used to
be the first. We show the result of this transform where we executed print

sess.run(encOT),
We effected the transposition to make it easy to do the matrix multipli-

cation in the next step (the tensordot). In fact, if we do not have the com-
plication of batch size, we are multiplying tensors of shape [rnnSz, wSz]

∗ [wSz,wSz], and we could use standard matrix multiplication (matmul).
The extra dimension induced by batch size nixes this possibility and we fall
back on

encAT = tf.tensordot)(encOut.wAT,[[1],[0]])

Last we reverse the transposition we did two steps ago to put the encoder
output states back into their original form.

It is worth pausing a bit to compare the final result at the bottom of
Figure 5.7 with our imaginary encoder output at the top of the figure. The
column (.6, .2, .2) says to hand the first English word a vector composed of
60% “state” zero, which is [1, 2, 3, 4]. So we expect the resulting state to
increase as we go from left to right, which (.6, 1.4, 1.8, 2.6) does. The second
state, of all 1s, does not have much effect (it adds .2 to each position). But
the last state (0, –1, 0. –1) should make the the result have an up-and-down
pattern, which it does, sort of. (They components of (.6, 1.4, 1.8, 2.6) all
increase, but the first and third increases are larger than the second.)

Once we have the reweighted encoder states to feed the decoder, we
concatenate each with the English word embedding that we were already
feeding into the decoder RNN. This completes our simple attention MT
system. However, one thing is important to finish this example: we can
trivially have our program learn the attention weights by just making our
13 ∗ 13 attention array a TF variable rather than a constant. The idea

5.4. MULTILENGTH SEQ2SEQ 107

−6.3 1.3 .37 .13 .06 .04 .11 .10 .02
−.66 −..44 .64 .26 .16 .02 .03 .04 .06
−.38 −.47 −.04 .63 .18 .10 .07 .06 .12
−.30 −.44 −.35 −.15 .48 .24 .06 .13 0
−.02 −.16 −.35 −.37 −.23 .12 .32 .22 11

.05 −.11 −.11 −.35 −04 −.22 .05 .26 .24

.10 .02 −.04 −.23 −.32 −33 −.25 −.01 .28
0 .03 .01 −.18 −.21 −.26 −.30 −.1.1 −.17

Figure 5.8: Attention weights for the 8 ∗ 9 top left corner of the 13 ∗ 13
attention weight matrix

is similar to what we did when in Chapter 3 we had the NN learning the
convolution kernels. Figure 5.8 shows some of the weights learned in this
fashion. The bold numbers are the highest numbers in their row. They show
the expected rightward shift — the translation of words in the beginning,
middle, or end of the English should, in general, pay most attention to the
beginning, middle, or end of the French.

5.4 Multilength Seq2Seq

In the last section we restricted our translation pairs to examples where
both sentences are 12 words or less (13 including a STOP padding). In
real MT such limitations would not be permitted. On the other hand,
having a window of, say, 65, which would allow the translation of virtually
all sentences that came our way, would mean that a more normal sentence
would end up padded with 40 or 50 STOPs. The solution that has been
adopted in the NN MT community is to create models with multiple window
lengths. We now show how this works.

Consider again lines 5–8 of Figure 5.2. From our current perspective, it
is striking that neither of the two TF commands primarily responsible for
setting up the encoder RNN mentions the window size. GRU creation needs
to know the RNN size since, after all, it is in charge of allocating space for
the GRU’s variables. But window size does not enter into this activity. On
the other hand, dynamic rnn certainly does need to know the window size,
since it is responsible for creating the pieces of the TF graphic that execute
back propagation through time. And it gets the information, in this case
by way of the variable embds, which is of size [bSz, wSz, embedSz]. So

108 CHAPTER 5. SEQUENCE-TO-SEQUENCE LEARNING

suppose we decide to support two different window-size combinations. The
first, say, handles all sentences where the French is 14 words or less and the
English 12 words or less. The second we make double this, 28 and 24. If
either the French is larger than 28 or the English larger than 24 we throw
out the example. If either the French or English is larger than 14 or 12,
respectively, but smaller than the 28, 24 limits, we put the pair into the
larger group. We then create one GRU to use in both dynamic rnns as
follows:

cell = tf.contrib.rnn.GRUCell(rnnSz)

encOutSmall, encStateS = tf.nn.dynamic rnn(cell, smallerEmbs, ...)

encOutLarge, encStateL= tf.nn.dynamic rnn(cell, largerEmbs, ...)

Note that while we have two (or potentially five or six) dynamnic rnns,
depending on the range of sizes we want to accommodate, they all share the
same GRU cell so they learn and share the same knowledge of French. In a
similar fashion we would create one English GRU cell, etc.

5.5 Programming Exercise

This chapter has concentrated on NN technology used in MT, so here we
endeavor to built a translation program. Unfortunately, in the current state
of deep learning this is very difficult. While recent progress has been impres-
sive, the programs that boast good results require about a billion training
examples and days of training, if not longer. This does not make for a good
student assignment.

Instead we will use about a million training examples — some of the
Canadian Hansard’s text restricted to French/English training examples
where both sentences are 12 words or less (13 including the STOP padding).
We also set our hyperparameters on the small side: embedding size of 30,
RNN size of 64, and we only train for one epoch. We set the learning rate
to .005.

As noted earlier, evaluating MT programs is difficult, short of going
through and grading its translations by hand. We adopt a particularly
simple-minded scheme. We go through the correct English translation until
we hit the first STOP. A machine-generated word is considered correct if the
word in the same position in the Hansard’s English is identical. To repeat,
we stop scoring after the first STOP. For example,

the law is very clear . STOP
the *UNK* is a clear . STOP

5.5. PROGRAMMING EXERCISE 109

would count as 5 correct out of 7 words. At the end we divide the total
number of correct words by the total of all words in the development set
English sentences.

With this metric your author’s implementation scored 59% correct on
the test set after one epoch (65% after the second, and 67% after three).
Whether this sounds good or bad depends on your prior expectations. Given
our earlier comments about needing a billion training examples, perhaps
your expectations were low; certainly ours were. However, an examination
of the translations produced shows that even 59% is misleadingly optimistic.
We ran the program printing out the first sentence in every 400th batch
using a batch size of 32. The first two training examples of inputs correctly
translated were:

Epoch 0 Batch 6401 Cor: 0.432627
* * *
* * *
* * *

Epoch 0 Batch 6801 Cor: 0.438996
le très hon. jean chrétien
right hon. jean chrétien
right hon. jean chrétien

Here “* * *” is inserted between sessions of parliament by the editor. 14,410
lines of the file of 351,846 lines consist solely of this marking. By this point in
the first epoch (it is halfway through) the program has no doubt memorized
the corresponding “English” (which is, of course, identical). In a similar
vein, the names of the next speaker are always added to the Hansard’s
before what they say. Jean Chrétien was the prime minister of Canada
during this volume of the Hansard’s, and he seems to have spoken 64 times.
So the translation of this French sentence was also memorized. Indeed, one
might ask if any of the correct translations are not memorized. The answer
is yes, but not that many. Here are the last six from the 22,000 example
test set.

19154 the problem is very serious .
21191 hon. george s. baker :
21404 mr. bernard bigras (rosemont , bq) moved :
21437 mr. bernard bigras (rosemont , bq) moved :
21741 he is correct .
21744 we will support the bill .

110 CHAPTER 5. SEQUENCE-TO-SEQUENCE LEARNING

These are from a run with double attention for corresponding words, a
RNN size of 64, learning rate of .005, and one epoch. The accuracy metric
described earlier was 68.6% for the test set. We printed out any test example
that was completely correct and did not correspond to any English training
sentence.

It is interesting and useful to get some idea of how the state changes
between words of a sentence. In particular, the first seq2seq model used the
encoder final state to prime the English decoder. Since we just took the state
at word 13, no matter the length of the original French (maximum 12 words),
we are assuming that we have not lost much by taking the state after, say,
eight STOPs if the original French were five words. To test this, we looked
at the 13 states produced by the encoder and for each state computed the
cosine similarity between successive states. The following is from a training
sentence being processed in the third epoch:

English: that has already been dealt with .
Translation: it is a . a . .
French word indices:[18, 528, 65, 6476, 41, 0, 0, 0, 0, 0, 0, 0, 0]
State similarity: .078 .57 .77 .70 .90 1 1 1 1 1 1 1 1 1

You might first notice the terrible quality of the “translation” (two words
correct out of 8, “.”, and STOP). The state similarities, however, look rea-
sonable. In particular, once we hit the end of the sentence at word f5 (in
the French), all the state similarities are 1.0 — so the state does not change
at all due to the padding, as we hoped.

The least similar states are the first compared to the second. From there
the similarity increases almost monotonically. Or in other words, as we
progress through the sentence there is more past information worth preserv-
ing, so more of the old state hangs around, making the next state similar to
the current one.

5.6 Written Exercises

Exercise 5.1: Suppose we are using multiple-length seq2seq for an MT
program and have decided on two sentence sizes, one for up to 7 words (and
STOPs) for English and 10 for French and the other for up to 10 words for
English and 13 for French. Write out the input if the French sentence is “A
B C D E F” and the English is “M N O P Q R S T”.

Exercise 5.2: We chose to illustrate attention in Section 5.3 with a particu-
larly simple form, one that based the attention decision only on the location

5.7. REFERENCES AND FURTHER READINGS 111

of the attention in both the French and English. A more sophisticated ver-
sion bases the decision on the input state vectors to the English position
we are working on and the proposed state vector whose influence we are
deciding. While this can allow more sophisticated judgments, it requires
a significant complication of the model. In particular, we can no longer
use standard TF recurrent network back propagation through time for the
decoder. Explain why.

Exercise 5.3: It has frequently been observed that feeding the source lan-
guage into the seq2seq encoder backward (but leaving the decoder working
forward) improves MT performance by a slight but constant amount. Make
up a plausible story for why this could be the case.

Exercise 5.4: In principle, we could have a seq2seq model with two losses
that we add together to make the total loss. One would be the current
MT loss incurred by not predicting the next target word with probability
1. The second could be a loss in the encoder, asking the encoder to predict
the next source (e.g., French) word — i.e., a language model loss. (a) Make
up a plausible story for why this will degrade performance. (b) Make up a
plausible story for why this will improve performance.

5.7 References and Further Readings

In the 1980s a group at IBM led by Fred Jelinek began work on a project to
create a machine translation program by having the machine learn to trans-
late by noticing statistical regularities. The “noticing” came from Bayesian
machine learning and the data, as in this chapter, came from the Canadian
Hansard’s corpus [BCP+88]. This approach, after a few years of ridicule,
became the dominant approach, and remained so until recently. Now deep
learning approaches are rapidly gaining popularity and it is just a matter
of time before all commercial MT systems are NN based, if they are not
already. An early example of the NN approach is that by Kalchbrenner and
Blunsom [KB13].

Alignment in seq2seq models was introduced in Dzmitry Bahdanau et
al. [BCB14]. This group also seems to be the first to have adopted the
now standard term neural machine translation for this approach. In this
chapter’s position-only attention model the model is given only the numeric
values for the locations of the French and English words when deciding
how much weight to give to the corresponding French state. In [BCB14]

112 CHAPTER 5. SEQUENCE-TO-SEQUENCE LEARNING

the model also has information about the LSTM states at the French and
English locations.

As for on-line MT tutorials, one by Thad Luong et al. just came on-
line as this book was going to the publisher [TL]. The previous Google
seq2seq/MT tutorial was not so great for pedagogical purposes (imagine a
cookbook teaching how to make pancakes by saying “mix together 100,000
gallons of milk and a million eggs ...”), but this one looks pretty reasonable
and could well make a good foundation for further exploration of neural MT
in particular and seq2seq in general.

There are many other tasks besides MT for which seq2seq models have
been pressed into service. One that is particularly “hot” right now is chatbots
— programs that are given conversational expressions and attempt to carry
on the conversation. They are also one of the basics of home assistants —
e.g., Amazon’s Alexa. (“Hot” is definitely the right word here: there is an
on-line chatbot magazine and an article entitled “Why Chatbots Are the
Future of Marketing.”) A possible project on this topic is described in a
post by Surlyadeepan Ram [Ram17].

Chapter 6

Deep Reinforcement
Learning

Reinforcement learning (abbreviated RL) is the branch of machine learning
concerned with learning how an agent should behave in an environment in
order to maximize a reward. Naturally, deep reinforcement learning restricts
the learning method to deep learning.

Typically the environment is defined mathematically as a Markov deci-
sion process (MDP). MDPs consist of a set of states s ∈ S that the agent can
be in (e.g., locations on a map), a finite set of actions (a ∈ A), a function
T (s, a, s′) = Pr(St+1 = s′ | St = s,A = a) that takes the agent from one
state to another, a reward function from a state, action, and subsequent
state to the reals R(s, a, s′), and a discount γ ∈ [0, 1] (to be explained mo-
mentarily). In general actions are probabilistic, so T specifies a distribution
over the possible resulting state from taking an action in a particular state.
The models are called Markov decision processes because they make the
Markov assumption — if we know the current state, the history (how we got
to the current state) does not matter.

In MDPs time is discrete. At any time the agent is in some state, takes
an action that leads it to a new state, and receives some reward, often zero.
The goal is to maximize its discounted future reward as defined by

t=∞∑
t=0

γtR(st, at, st+1) (6.1)

If γ < 1 then this sum is finite. If γ is missing (or equivalently equal to 1)
then the sum can grow to infinity, which complicates the math. A typical
γ is .9. The quantity in Equation 6.1 is called discounted future reward

113

114 CHAPTER 6. DEEP REINFORCEMENT LEARNING

1. For all s set V (s) = 0

2. Repeat until convergence:

(a) For all s:

i. For all a, set Q(s, a) =
∑

s′ T (s, a, s′)(R(s, a, s′) + γV (s′))

ii. V (s) = maxaQ(s, a)

3. return Q

Figure 6.1: The value iteration algorithm

because the repeated multiplication by a quantity less than one causes the
model to “discount” (value less highly) rewards in the future compared to
rewards we get right now. This is reasonable since nobody lives forever.

Our goal is to solve the MDP — we also speak of finding an optimum
policy. A policy is a function π(s) = a that for every state s specifies the
action a the agent should take. A policy is optimum, denoted π∗(s), if the
specified actions lead to the maximum expected discounted future reward.
The expected here means to find the expected value, as explained in Section
2.4.3. Since actions are not deterministic, the same action may end up giving
quite different rewards.

So this chapter is concerned with learning optimal MDP policies: first
using so-called tabular methods, then using their deep-learning counterparts.

6.1 Value Iteration

A basic question we need to answer before we talk about solving MDPs
is whether we assume the agent “knows” the functions T and R or has to
wander around the environment learning them as well as creating its policy.
It simplifies things greatly if we know T and R, so we start with that case.
In this section we also assume there are only a finite number of states s.

Value iteration is about as simple as policy learning in MDPs gets. (In
fact, it is arguably not a learning algorithm at all, in that it does not need
to get training examples or interact with the environment.) The algorithm
is given in Figure 6.1. V is a value function a vector of size |s| where each
entry V (s) is the best expected discounted reward we can hope for when we
start in state s. Q (simply called the Q function) is a table of size |s| by
|a| in which we store our current estimate of the discounted reward when

6.1. VALUE ITERATION 115

0:S 1:F 2:F 3:F
4:F 5:H 6:F 7:H
8:F 9:F 10:F 11:H

12:H 13:F 14:F 15:G

S starting location
F frozen location
H hole
G goal location

Figure 6.2: The frozen-lake problem

taking action a in state s. The value function V has a real-number value for
every state: the higher the number, the better it is to reach that state. Q
is more fine-grained: it gives the values we can expect for each state-action
pair. If our values in V are correct then line 2(a)i will set Q(s, a) correctly.
It says that the value for Q(s, a) consists of the immediate reward R(s, a.s′)
plus the value for the state we end up in, as specified by V . Since actions
are not deterministic, we have to sum over all possible states. This gives us
the expectation.

Once we have the correct Q we can determine the optimal policy π by
always picking the action a = arg maxa′ Q(s, a′) . Here arg maxx g(x) returns
the value of x for which g(x) is maximum.

To make this concrete, we consider a very simple MDP — the frozen-lake
problem. The game is one of many that are part of the Open AI Gym — a
group of computer games with uniform APIs convenient for reinforcement
learning experimentation. We have a 4 ∗ 4 grid (the lake) shown in Figure
6.2. The goal of the game is to get from the start position (state 0 at the
upper left) to the goal (lower right) without falling through a hole in the
ice. We get a reward of 1 whenever we take an action and end up in the
goal state. All other state-action-state triples have zero reward. If we end
up in a hole state (or the goal state) the game stops and if we play again
we go back to the start state. Otherwise we go left (l), down (d), right (r),
or up (u) (the numbers zero to three, respectively) with some probability
of “slipping” and not going in the intended direction. In fact, the way the
Open AI Gym game is programmed an action, e.g., right, takes us with
equal probability to any of the immediately adjacent states except the exact
opposite (e.g., left), so it is very slippery. If an action would make us move
off the lake, it instead leaves us in the state from which we started.

116 CHAPTER 6. DEEP REINFORCEMENT LEARNING

0 0 0 0

0 0 0 0

0 0 0 0

0 0 .33 0

0 0 0 0

0 0 0 0

0 0 .1 0

0 .1 .46 0

Figure 6.3: State values after the first and second iterations of value iteration

To compute V and Q for the frozen lake we repeatedly go through all
states s and recompute V (s). Consider state 1. This requires computing
Q(1, a) for all four actions and then setting V (1) to the maximum of the four
Q values. OK, let’s start by computing what happens if we choose to move
left, Q(1, l). To do this we need to sum over all s′ — all the game states.
There are 16 states in the game, but starting in state 1 we can only reach
three of them with nonzero probability, states 0, 5, and 1 itself (by trying
to move up, being blocked by the lake boundary, and thus not moving at
all). So, looking only at end states s′ that have nonzero T (1, l, s′) values, we
compute the following sum:

Q(1, l) = .33 · (0 + .9 · 0) + ..33 · (0 + .9 · 0) + .33 · (0 + .9 · 0) (6.2)

= 0 + 0 + 0 (6.3)

= 0 (6.4)

The first of the summands says that when attempting to move left, with
probability .33 we end up in state 0. We get zero reward for doing so, and
our estimated future reward is .9 · 0. This value is zero, as will be the case if
instead of going left, we slipped down (and ended up in state 5) or remained
in state 1. So Q(1, l) = 0. Because the V values for the three states we can
reach from state 1 are all 0, Q(1, d), and Q(1, u) are both 0 as well, and line
2(a)ii sets V (1) = 0.

In fact, on the first iteration V continues to be zero until we get to state
14, where we finally get nonzero values for Q(14, d), Q(14, r), and Q(14, u):

Q(14, d) = .33 · (0 + .9 · 0) + .33 · (0 + .9 · 0) + .33 · (1 + .9 · 0) = .33

Q(14, r) = .33 · (0 + .9 · 0) + .33 · (0 + .9 · 0) + .33 · (1 + .9 · 0) = .33

Q(14, u) = .33 · (0 + .9 · 0) + .33 · (0 + .9 · 0) + .33 · (1 + .9 · 0) = .33

and V (14) = .33.
The left half of Figure 6.3 shows the table of V values after the first

iteration. Value iteration is one of several algorithms that work toward an

6.2. Q-LEARNING 117

0 import gym

1 game = gym.make(’FrozenLake-v0’)

2 for i in range(1000):

3 st = game.reset()

4 for stps in range(99):

5 act=np.random.randint(0,4)

6 nst,rwd,dn,_=game.step(act)

7 # update T and R

9 if dn: break

Figure 6.4: Collecting statistics for an Open AI Gym game

optimum policy by keeping tables of the best estimates of function values.
Hence the name tabular methods.

On iteration two, again most values stay 0, but this time states 10 and
13 also get nonzero Q and V entries because from them we can go to state
14 and, as just observed, now V (14) = .33. The V values after the second
go-round of value iteration are shown on the right-hand side of Figure 6.3.

Another way to think about value iteration is that every change to V
(and Q) incorporates exact information about what is going to happen one
move into the future (we get reward R) but then falls back to the initially
inaccurate information already incorporated into these functions. Eventu-
ally the functions include more and more information about states we have
not yet reached.

6.2 Q-learning

Value iteration assumes the learner has access to the complete details of
the model environment. We now consider the opposite case — model-free
learning. The agent can explore the environment by making a move, and it
gets back information about the reward and the next state, but it does not
know the actual movement probabilities or reward function T,R.

Assuming that our environment is a Markov decision process, the most
obvious way to plan in a model-free environment is to wander around the
environment randomly, collect statistics on T,R, and then create a policy
based upon the Q table as described in the last section. Figure 6.4 shows
the highlights of a program for doing this. Line 1 creates the frozen-lake

118 CHAPTER 6. DEEP REINFORCEMENT LEARNING

game. To start a game (from the initial state) we call reset(). A single
run of the frozen-lake game ends when we either fall in a hole or reach the
goal state. So the outer loop (line 2) specifies that we are going to run the
game 1000 times. The inner loop (line 4) says that for any one game we cut
off the game at 99 steps. (In practice this never happens — we fall into a
hole or reach the goal long before then.) Line 5 says that at each step we
first randomly generate the next action. (There are four possible actions,
left, down, right, and up: the numbers 0 to 3 respectively.) Line 6 is the
critical step. The function step(act) takes one argument (the action to be
taken) and returns four values. The first is the state in which the action
has left the game (in FL an integer from 0 to 15) and the second is the
value of the reward we receive (in FL typically 0, occasionally 1). The third
state, named dn in the figure, is a true-false indicator whether the run of
the game is terminated (i.e. we fell into a hole or reached the goal). The
last argument is information about the true transition probabilities, which
we ignore if we are doing model-free learning.

If you think about it, wandering at random in the game is a pretty bad
way to collect our statistics. Mostly what happens is that we wander into
a hole and go back to the start and keep collecting statistics about what
happens at the states near the start state. A much better idea is to learn
and wander at the same time, and allow the learning to influence where we
go. If we do, in fact, glean useful information in the process, then as we
progress we get further and further into the game, thus learning more about
more different states. In this section we do this by choosing according to the
probability ε either to (a) choose a move at random, or (with probability
(1− ε)) (b) base our decision on the knowledge we have gleaned so far. If ε
is fixed this is called an epsilon-greedy strategy.

It is also common to have ε decrease over time (an epsilon-decreasing
strategy). One simple way to do this is to have an associated hyperparameter
E and set ε = E

i+E , where i is the number of times we have played the
game. (So E is the number of games in which we go from mostly random to
mostly learned.) As you might expect, how we choose whether to explore
or base our choice on our current understanding of the game can have a
big effect on how fast we learn the game, and has its own name — the
exploration-exploitation tradeoff (when we use game knowledge we are said
to be exploiting the knowledge we have already picked up).

Another popular way to combine exploration and exploitation is always
to use the values given by the Q function but turn them into a probability
distribution and then pick an action according to that distribution, rather
than always picking the action with the highest value. (The latter is called

6.3. BASIC DEEP-Q LEARNING 119

the greedy algorithm.) So if we had three actions and their Q values were
[4, 1, 1], we would pick the first two-thirds of the time, etc.

Q-learning is one of the first and most popular algorithm for model-free
learning combining exploration and exploitation. The basic idea is not to
learn R and T but to learn the Q and V tables directly. Now in Figure 6.4
we need to modify lines 5 (we no longer act completely randomly) and line
7, where we we modify Q and V ,not R and T .

We have already explained what to do at line 5, so we turn to line 7.
Our Q-learning update equations are

Q(s, a) = (1− α)Q(s, a) + α(R(s, a, n) + γV (n)) (6.5)

V (s) = max
a′

Q(s, a′), (6.6)

where s is the state we were occupying, a is the action we took, and a′ is
the state we now occupy, having just taken a step in the game in line 6 of
Figure 6.4.

The new value of Q(s, a) is a mixture controlled by α of its old value
and the new information — so α is sort of a learning rate. Typically α
is small. To make it clear why it is needed, it is useful to contrast these
equations with lines 2(a)i and 2(a)ii from the value iteration algorithm in
Figure 6.1. There, since the algorithm was given R and T , we could sum
over all possible outcomes of the action we took. In Q-learning we cannot to
this. All we have is the last outcome of taking a step. The new information
is based upon just one move in our exploration of the environment. Suppose
we are state 14 of Figure 6.2 but unbeknownst to us there is a very small
probability (.0001) that if we move down from that state we get a “reward”
of –10. The odds are this is not going to happen, but if it does it will throw
things very badly out of whack. The moral is that the algorithm should not
put too much emphasis on a single move. In value iteration we know both
T and R, and between the two of them the algorithm factors in both the
possibility of a negative reward and the low probability of its happening.

6.3 Basic Deep-Q Learning

With tabular Q learning under our belt we are now in position to understand
deep-Q learning. As in the tabular version, we start with the schema of
Figure 6.4. The big change this time is that we represent the Q function
not as a table but using a NN model.

In Chapter 1 we briefly mentioned that machine learning can be charac-
terized as a function-approximation problem— finding a function that closely

120 CHAPTER 6. DEEP REINFORCEMENT LEARNING

matches some target functions; e.g., the target function might map from
pixels to one of ten integers, where the pixels are from an image of the cor-
responding digit. We are given the value of the function for some inputs and
the goal is to create a function that closely matches its output for all those
values, and by doing so to fill in the values of the function at places where
we were not given its value. In the case of deep-Q learning the function-
approximation analogy is completely apt — we are going to approximate our
(unknown) Q function using NNs by wandering around the Markov decision
process, learning along the way.

We should emphasize that the change from tabular to deep-learning mod-
els is not motivated by the frozen-lake example, which is exactly the sort of
problem for which tabular Q learning is suited. Deep-Q learning is needed
when there are too many states to create a table for them.

One of the events in the reemergence of NNs was the creation of a single
NN model that could apply deep-Q learning to many Atari games. This
program was created by DeepMind, a startup in 2014 purchased by Google.
DeepMind was able to get a single program to learn a bunch of different
games by representing the games in terms of the pixels in the images that
the games generate. Each pixel combination is a state. Offhand I do not
remember the image size they used, but even if it were as small as the 28∗28
images we used for Mnist, and each pixel was either on or off, that would
be 2784 possible pixel value combinations — so in principle that number of
states would be needed in the Q table. At any rate, it’s way too many for a
tabular scheme to cover. (I looked it up: an Atari game window is 210 ∗ 160
RGB, and the DeepMind program reduced this to 84 ∗ 84 black and white.)
We return later to discuss cases more complicated than frozen-lake.

Replacing the Q table by a NN function boils down to this: to get a
movement recommendation, rather than look in the Q table, we in effect
call the Q table by feeding the state into a one-layer NN, as shown in Figure
6.5. The TF code for creating just the Q-function model parameters is given
in Figure 6.6. We feed in the current state (the scalar inptSt), which we
turn into the one-hot vector oneH that is transformed by a single layer of
linear units Q. Q has the shape 16 ∗ 4 where 16 is the size of the one-hot
vector of states and 4 is the number of possible actions. The output qVals

are the entries in Q(s), and outAct, the maximum of the Q table entries, is
the policy recommendation.

Implicit in Figure 6.6 is the assumption we are playing only one game
at a time, and thus when we feed in an input state (and get out a policy
recommendation) there is only one of them. From our normal handling of
NNs, this corresponds to a batch size of one. For example, the input state,

6.3. BASIC DEEP-Q LEARNING 121

Figure 6.5: Frozen-lake deep-Q-learning NN

inptSt = tf.placeholder(dtype=tf.int32)

oneH=tf.one_hot(inptSt,16)

Q= tf.Variable(tf.random_uniform([16,4],0,0.01))

qVals= tf.matmul([oneH],Q)

outAct= tf.argmax(qVals,1)

Figure 6.6: TF model parameters for the Q learning function

inptSt, is a scalar — the number of the state in which the actor finds itself.
From this it follows that oneH is a vector. Then, since matmul expects two
matrices, we call it with [oneH]. This in turn means that qVals is going
to be a matrix of shape [1, 4], i.e., it will only have the Q values for one
action (up, down, etc.). Last, then, outAct is of shape [1], so the action
recommendation is outAct[0]. (You should see why we go into this much
detail when we present the rest of the code for deep-Q learning in Figure
6.7.)

As in tabular Q learning, the algorithm chooses an action either at ran-
dom (at the beginning of the learning process) or on the basis of the Q-table
recommendation (near the end). In deep-Q learning we get the Q-table rec-
ommendation by feeding the current state s into the NN of Figure 6.5 and
choosing an action u, d, r, or l, according to which of the four is the highest.
Once we have the action, we call step to get the result and then learn from
it. Naturally, to do this in deep learning we need a loss function.

But now that we mention it, what is the loss function of deep-Q learning?
This is the key question because, as has been evident all along, as we make
moves, particularly in the early learning stages, we do not know whether

122 CHAPTER 6. DEEP REINFORCEMENT LEARNING

they are good or bad! However, we do know the following: on average

R(s, a) + γmax
a′

Q(s′, a′) (6.7)

(where as before, s′ is the state we end up in after a in s) is a more accurate
estimate of Q(s, a) than the current value, because we are looking one move
ahead. So we make the loss

(Q(s, a)− (R(s, a) + γmax
a′

Q(s′, a′)))2, (6.8)

the square of the difference between what just happened (when we took the
step) and predicted values (from the Q table/function). This is called the
squared-error loss or quadratic loss. The difference between the Q calculated
by the network (the first term) and the value we can compute by observing
the actual reward for the next action plus the Q value one step in the future
(the second term) is called the temporal difference error, or TD(0). If we
looked two steps into the future it would be TD(1).

Figure 6.7 gives the rest of the TF code (following on from that in Figure
6.6). The first five lines build the remainder of the TF graph. Now skim
the rest of the code with emphasis on lines 7, 11, 13, 14, 19, and 25. They
implement the basic AI Gym “wandering.” That is, they correspond to all
of Figure 6.4. We create the game (line 7) and play 2000 individual games
(line 11), each one starting with game.reset() (line 13). Each episode has
a maximum of 99 moves (line 14). The actual move is made in line 19. The
game is over as indicated by the flag we named dn (line 25).

This leaves two gaps, lines 15–17 (choose next action) and 20–22. Line
15 is the forward pass in which we give the NN the current state and get
back a vector of length 1 (which the next line turns into a scalar — the
number of the action). We also always give the program a small probability
of taking a random action (line 18). This ensures that eventually we explore
all the game space. Lines 20–22 are concerned with computing the loss and
performing the backward pass to update the model parameters. This is also
the point of lines 1–5, which create the TF graph for loss computation and
updating.

The performance of this program is not as good as that of tabular Q
learning but, as we said, tabular methods are quite suitable for the frozen-
lake MDP.

6.3. BASIC DEEP-Q LEARNING 123

1 nextQ = tf.placeholder(shape=[1,4],dtype=tf.float32)

2 loss = tf.reduce_sum(tf.square(nextQ - qVals))

3 trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)

4 updateMod = trainer.minimize(loss)

5 init = tf.global_variables_initializer()

6 gamma = .99

7 game=gym.make(’FrozenLake-v0’)

8 rTot=0

9 with tf.Session() as sess:

10 sess.run(init)

11 for i in range(2000):

12 e = 50.0/(i + 50)

13 s=game.reset()

14 for j in range(99):

15 nActs,nxtQ=sess.run([outAct,qVals],feed_dict={inptSt: s})

16 nAct=nActs[0]

17 if np.random.rand(1)<e: nAct= game.action_space.sample()

19 s1,rwd,dn,_ = game.step(nAct)

20 Q1 = sess.run(qVals,feed_dict={inptSt: s1})

21 nxtQ[0,nAct] = rwd + gamma*(np.max(Q1))

22 sess.run(updateMod,feed_dict={inptSt:s, nextQ:nxtQ})

23 rTot+=rwd

24 if dn: break

25 s = s1

26 print "Percent games succesful: ", rTot/2000

Figure 6.7: Remainder of deep-Q-learning code

124 CHAPTER 6. DEEP REINFORCEMENT LEARNING

Figure 6.8: A cart pole

6.4 Policy Gradient Methods

We now turn to an Open AI Gym problem that cannot be handled by stan-
dard tabular methods, cart pole, and a new-deep RL method, policy gradi-
ents. A “cart pole,” as shown in Figure 6.8, is a cart on a one-dimensional
track. It has a pole attached to it by a sticky joint so that when the cart is
propelled in one direction or another the top of the pole moves left or right
according to the dictates of Newton’s laws. A state consists of four values
— the postion of the cart and the angle of the pole after the previous and
current move. We give values at consecutive times to enable the program
to figure out the direction of motion. There are two actions the player can
make: propel the cart to the right or to the left. The impulse always has the
same magnitude. Should the cart move too far to the right or left, or should
the top of the pole move too far from perpendicular, step signals that the
current game is over, and we need to reset to start a new one. We get one
unit of reward for every move we make before failing. Naturally, the goal is
to keep the cart and pole well positioned for as long as possible. Since the
state corresponds to a four-tuple of real numbers, the number of possible
states is infinite, so tabular methods are ruled out.

So far we have used our NN models to approximate the Q function for our
MDP. In this section we show a method in which the NN models the policy
function directly. Again we are concerned with model-free learning, and
again we adopt the paradigm of wandering around the game environment,
initially choosing actions mostly at random but moving over to using the NN
recommendation. As pretty much everywhere in this chapter, the burning
problem is finding an appropriate loss function, since we do not know the
correct actions we ought to be taking.

6.4. POLICY GRADIENT METHODS 125

In deep-Q learning we make one move at a time, and we depend on the
fact that, having made the move, received a reward, and ended up in a new
state, our knowledge of the current local environment has improved. Our
loss was the difference between what was predicted (e.g., the Q function) on
the basis of the old knowledge and what, in fact, happened.

Here we try something different. Suppose we play an entire iteration
of a game without making any modification to our network — e.g., we
make 20 moves (directions to the cart) before the pole tips over. This
time we handle exploration/exploitation by choosing actions according to a
probability distribution derived from the Q function, rather than taking the
Q function maximum.

Under this scenario we can compute the discounted reward for the first
state (D0(s,a))) when it is followed by all the states and actions we just
tried out:

D0(s,a) =
n−1∑
t=0

γtR(st, at, st+1) (6.9)

If we took n steps we can compute the future discounted reward for any of
the state-action combinations si, ai from the recurrence relation

Dn(s,a) = 0 (6.10)

Di(s,a) = R(si, ai, si+1) + γDi+1(s,a) (6.11)

That is, the discounted future reward for, e.g., the fourth state in the se-
quence of states we move through (when taking action a) is D4. Again,
note we have gained information here. For example, before we tried the
first random sequence of moves we had no idea what a possible reward was.
Afterward we know that, say, 10 is possible (and indeed reasonable for a
random action sequence). Or then again, we now know if we fell over on
move 10, then Q(s9, a9) = 0.

A good loss function that captures these facts and many others is:

L(s,a) =

n−1∑
t=0

Dt(s,a)(− log Pr(at | s))) (6.12)

To unpack this, first note that the rightmost term is the cross-entropy loss,
and by itself has the effect of encouraging the net to respond with action
at when it is in state st. Of course, by itself this is pretty useless since,
particularly at the beginning of learning, we chose the actions randomly.

Next consider how the Dt values affect this. In particular, suppose a0

was a bad reaction to s0. For example, suppose the cart is centered, and

126 CHAPTER 6. DEEP REINFORCEMENT LEARNING

Figure 6.9: Deep learning architecture for REINFORCE

the pole is learning to the right at the start, and we chose to go left, making
the pole lean still further to the right. The reader should see that, all else
equal, the value of D0 is smaller in this case than it would have been if we
had chosen to move right — the reason being that (all else equal) if the first
move is good, the pole and cart should remain in bounds longer (n is larger)
and the D values are larger. So Equation 6.12 gives a higher loss to a bad
a0 than a good one, thus training the NN to prefer the good one.

This architecture/loss-function combination is known as REINFORCE.
Figure 6.9 shows the basic architecture. The important thing to notice is
that the NN here is used in two different ways. First, looking at the left-
hand side, we give the NN a single state which, as mentioned earlier, is a
four-tuple of reals indicating the position and velocity of the cart and the
pole-head. In this mode we get out probabilities for taking the two possible
actions, as indicated in the middle-right of the figure. When in this mode
we do not provide the placeholder for the rewards or actions with values
since (a) we don’t know them, and (b) we don’t need them since we are not
computing the loss at this point. After we have made all the moves for an
entire game, we use the NN in the other mode. This time we give it the
sequence of actions and the rewards, and this time we ask it to compute
the loss and perform back propagation. In training mode we are, in a sense,
computing actions in two different ways. First, we give the NN the states
we go through, and for each state, the policy computation layers compute
the action probabilities. Second, we directly feed in the actions taken as
a placeholder. This is because when deciding on actions in game-playing

6.4. POLICY GRADIENT METHODS 127

state= tf.placeholder(shape=[None,4],dtype=tf.float32)

W =tf.Variable(tf.random_uniform([4,8],dtype=tf.float32))

hidden= tf.nn.relu(tf.matmul(state,W))

O= tf.Variable(tf.random_uniform([8,2],dtype=tf.float32))

output= tf.nn.softmax(tf.matmul(hidden,O))

rewards = tf.placeholder(shape=[None],dtype=tf.float32)

actions = tf.placeholder(shape=[None],dtype=tf.int32)

indices = tf.range(0, tf.shape(output)[0]) * 2 + actions

actProbs = tf.gather(tf.reshape(output, [-1]), indices)

aloss = -tf.reduce_mean(tf.log(actProbs)*rewards)

trainOp= tf.train.AdamOptimizer(.01).minimize(aloss)

Figure 6.10: TF graph instructions for cart-pole policy gradient NN

mode we do not necessarily pick the action with the highest probability, but
rather choose randomly based upon the action probabilities. To compute
the loss according to Equation 6.12 we need both.

Figure 6.10 gives TF code for creating the policy gradient NN using the
loss function in Equation 6.12, and Figure 6.11 gives pseudocode for using
the NN to learn a policy and act in the game environment. First consider
the pseudocode. Note that the outermost loop (line 2) has us playing 3001
sessions of the game. The inner loop (line 2b) has us playing the game
session until step tells us we are done (line D) or until we have moved 999
times. We choose a random action according to probabilities derived from
our NN (lines i, ii) and then execute the action in the game. We save the
results in the list hist so we have a record of what happened. If the action
leads to a final state we then update the model parameters.

We see from Figure 6.10 that output is computed by taking the current-
state values state and running them through a two-layer NN with linear
units W and O naturally separated by a tf.relu, and then fed into a softmax

to turn the logits into probabilities. As should be familiar from previous uses
of multilayer NNs, the first layer has dimensions [input-size, hidden-size],
and the second [hidden-size, output-size] where hidden-size is a hyperpa-
rameter (we chose 8).

Because we have designed a new loss function here and not used a stan-
dard one from the TF library, the loss computation had to be built up from
more basic TF functions (second half of Figure 6.10). For example, in all
our previous NNs the forward and backward pass were inextricably linked

128 CHAPTER 6. DEEP REINFORCEMENT LEARNING

1. totRs=[]

2. for i in range(3001):

(a) st=reset game

(b) for j in range(999):

i. actDist = sess.run(output, feed dict=state:[st])

ii. select act randomly according to actDist

iii. st1,r,dn, =game.step(act)

iv. collect st,a,r in hist

v. st=st1

vi. if dn:

A. disRs = [Di(states, actions from hst) | i = 0 to j - 1]

B. create feed dict with state=st, actions, from hist and re-
wards=disRs.

C. sess.run(trainOp,feed dict=feed dict)

D. add j to end of totRs

E. break

vii. if i%100=0: print out average of last 100 entries in totRs

Figure 6.11: Pseudocode for a policy-gradient-training NN for cart pole

6.4. POLICY GRADIENT METHODS 129

Pr(l | s1) Pr(r | s1)
Pr(l | s2) Pr(r | s2)

Pr(l | sn) Pr(r | sn)

→

Pr(a1 | s1)
Pr(a2 | s2)

Pr(an | sn)

Figure 6.12: Extracting action probabilities from the tensor of all probabil-
ities

insofar as no computations from outside TF were involved. Here we are
getting the values of reward from the outside — reward is a placeholder,
fed in according to lines A, B, and C in Figure 6.11. Similarly, actions is
a placeholder.

In the last three lines of Figure 6.10 things look more familiar. loss is
just computing the quantities from Equation 6.12. For optimizer we have
used the Adam optimizer. We could have used our familiar gradient-descent
optimizer by just substituting it in and doubling the learning rate, and we
would have achieved almost as good performance, but not quite. The Adam
optimizer is slightly more complicated and generally considered superior. It
differs from gradient descent in several ways, the most fundamental being the
use of momentum. As the name suggests, an optimizer that uses momentum
tends to keep moving a parameter value up/down if it has been moving
up/down recently — more so than gradient descent would do.

This leaves the middle two lines of Figure 6.10, the ones setting indices

and actProbs. First, ignore how they work, and concentrate on what they
need to do. What is needed is the transformation shown in Figure 6.12.
On the left we see the output of a forward pass computing the probability
that each of the possible actions r and l is the best one to take. If this
were Chapter 1 and we had full supervision, we would multiply this by a
batch-size tensor of one-hot vectors to get the probabilities of the actions
we should take according to the supervision. This is, in fact, what we show
on the right of Figure 6.12.

To enact this transformation we depend on gather, which takes two
arguments,

tf.gather(tensor, indices)

and pulls out the elements of the tensor specified by the numeric indices
and puts them together in a new tensor. For example, if tensor is ((1,3),
(4,6), (2,1), (3,3)), and indices is (3,1,3), then the output is ((3,3), (4,6),
(3,3)). In our case we turn the action probability matrix on the left of Figure

130 CHAPTER 6. DEEP REINFORCEMENT LEARNING

6.12 into a vector of probabilities, and depend on the previous line to set
indicies to the correct list, so tf.gather collects the probabilities of just
the actions specified by the vector actions. Showing that indices is set
correctly is left as an exercise for the reader (Exercise 6.5).

It is useful to go back and look more carefully at how Q-learning and
REINFORCE are related. First, they differ in how they collect environment
information to inform the NN. Q-learning moves one step, and then looks to
see if the NN prediction of the outcome is close to what actually occurred.
Looking back at Equation 6.8, the Q-learning loss function, we see that if
the prediction and outcome are the same, then there is nothing to update.
With REINFORCE, on the other hand, we play an entire episode before
changing any NN parameters, where an episode is a complete run of game,
from the initial state until the game signals that it is done. Notice that
we could have done something like Q learning but used the REINFORCE
parameter modification schedule. This slows down the learning insofar as
we make parameter changes much less often, but in compensation we make
better changes because we are computing the actual discounted reward.

6.5 Actor-Critic Methods

Having just looked at the differences between Q learning and REINFORCE,
we now concentrate on the similarities. In both the NN is computing either
a policy or, in Q-learning, a function that can be trivially used to create
a policy (for any state s always take the action a that maximizes Q(s, a)).
Thus in both cases our NN is approximating a single function, one that tells
us how to act. We call such RL programs actor methods. In this section
we consider programs that have two NN subcomponents, each with its own
loss functions: one as before is an actor program, and the second a critic
program. As you might guess, we call this type of RL actor-critic methods.
In particular, in this section we cover the advantage actor-critic method, or
a2c. It is a good choice for us because (a) it works quite well and (b) we
can approach it incrementally starting from from REINFORCE. We call the
first version (increment) a2c–. We again apply it to the cart-pole game.

The method is called advantage actor-critic because it uses the notion of
“advantage.” The advantage of a state-action pair is the difference between
the state-action Q value and the state’s value:

A(s, a) = Q(s, a)− V (s) (6.13)

Intuitively we expect the advantage to be a negative number because in, say,

6.5. ACTOR-CRITIC METHODS 131

value iteration, V (s) is computed by doing an arg maxa over the possible
actions. However, for good actions, A is large as negative numbers go, so A
measures how good an action is in a particular state compared to the state
overall.

Next we define the loss a2c incurs from exploring a sequence of actions
from a start state to the end of a game as follows:

LA(s,a) =
n−1∑
t=0

A(st, at)(− log Pr(at | st))) (6.14)

This is very close to the REINFORCE loss of Equation 6.12 but we have
replaced Dt(s, a), the discounted reward, by At(s, a). We have called this
loss LA to differentiate it from the total loss for a2c, which, as we see below,
encompasses a second loss LC having to do with the critic.

We remember that REINFORCE’s loss is meant to encourage actions
that lead to larger reward. Now we are encouraging actions that are bet-
ter than alternative actions from the same state. While this is somewhat
reasonable, why should it be better than encouraging high-reward actions
directly?

The answer has to do with the variance of A(s, a). As noted in Section
2.4.3, the variance of a function is the expectation of the square of the
difference between the function’s value and its mean value. Intuitively, this
means that functions that vary a lot have high variance, and compared to
Q, A should have much lower variance. Look at cart pole. Assuming the
game gives us reasonable response in terms of moving left or right compared
to how fast the pole moves, the difference between a move right and a move
left will be small, and thus A is small in virtually all parts of the state space.
Contrast this with Q. A cart-pole game after learning from 100 games is
averaging about 20 moves before failing, whereas an even moderately good
policy gives us 200 or more.

Add now a second fact — all else equal, it is easier to approximate a
function with low variance than one with high. A constant function with
zero variance is the easiest of all. So if A is much easier to estimate, that
could overcome the disadvantage incurred by maximizing A rather than Q
directly. This seems to be the case. Of course, we don’t know how to
compute A at this point. So that is next on our agenda.

As you remember, in REINFORCE we follow a path based upon our
current policy to the end of a game, and use the discounted reward Dt(s.a)
from Equation 6.11 to estimate Q(s, a). We now put this to double duty
as our estimate of Q when computing A (Equation 6.13). As for V (s), we

132 CHAPTER 6. DEEP REINFORCEMENT LEARNING

V1 =tf.Variable(tf.random_normal([4,8],dtype=tf.float32,stddev=.1))

v1Out= tf.nn.relu(tf.matmul(state,V1))

V2 =tf.Variable(tf.random_normal([8,1],dtype=tf.float32,stddev=.1))

v2Out= tf.matmul(v1Out,V2)

advantage = rewards-v2Out

aLoss = -tr.reduce_mean(tf.log(actProbs) * advantage)

cLoss=tf.reduce_mean(tf.square(rewards-vOut))

loss=aLoss + cLoss

Figure 6.13: TF code added to Figures 6.10 and 6.11 for a2c

build into our NN a subnetwork just to compute it.

Figure 6.13 gives the extra TF network building code beyond that re-
quired for REINFORCE (Figure 6.10). We have created a two-layer fully
connected NN, v1Out and v2Out to compute V , the value function — the
critic. It is trained to produce good estimates of V by using a quadratic
loss on the disparity between the actual rewards found and the output of
the NN approximation (cLoss). The actor loss here is from Equation 6.14
and so uses the advantage function. These relatively small changes turn our
REINFORCE into a2c–.

Moving beyond a2c–, actual a2c incorporates two further improvements.
One problem with REINFORCE (inherited by a2c–) is that it needs to play
an entire game before any learning takes place. At the beginning of cart-
pole, with a game only lasting 10–20 moves, this is not much of a limitation.
But REINFORCE games end up one or two hundred moves long, and a2c–
games are longer still. A2c can improve on this by updating the model’s
parameters much earlier, and more often.

The trick is to pause game execution every, say, 50 (a hyperparameter)
actions to update the model parameters. We could not do this in REIN-
FORCE. After all, the point of following an entire game’s worth of actions
was to get a good estimate of Q values for the actions we performed. But
a2c allows us to make an estimate by simply adding together (a) the actual
rewards we accumulated over the last 50 moves and (b) the V value of the
state we end up in. We then zero out hist and restart it from scratch with
the 51st move, only to repeat it again 50 moves later. (Taken to an extreme,
this can also relieve a2c of REINFORCE’s requirement that it be used only
on games with explicit game restarts.)

A second improvement in full a2c is the use of multiple environments.
We noted early on that running a batch of training examples is advantageous
insofar as it allows better use of fast matrix-multiplication abilities. Playing

6.6. EXPERIENCE REPLAY 133

a single game at a time does not permit this when computing the next game
action. Playing multiple games is equivalent of batching examples in this
regard.

6.6 Experience Replay

We mentioned early on that a major catalyst in the rebirth of NNs was
DeepMind’s success with a program that could play multiple Atari games
at an expert level. The NN technology used there is known as DQN (Deep
Q Network). This particular RL scheme has been largely replaced by actor-
critic methods, but the program also introduced several improvements that
are orthogonal to use of actor vs. actor-critic methods. One in particular is
experience replay.

As you might expect, RL is a big component of the current push toward
self-driving cars. One big problem in the application of RL to this domain
is the acquisition of training data. Current RL requires a lot of it, and com-
pared to computers the real world, and in particular streets and highways,
move very slowly. Actually, if you start timing Open AI Gym games, even
computer simulations can be slow — a large fraction of the time spent in
RL is in the execution of the game. If we could speed up the world we could
learn even faster, but we can’t.

In experience replay we use the same training data multiple times. This
is simplest to explain in the context of Open AI Gym. Going back to RE-
INFORCE, as we played the game we used a variable hist to record the
history of a play of the game — each state we occupied, the action we took,
the state we ended up in, and the reward received. We needed this at the
end of the game play to compute the Dts, but having computed them we
threw the history away. With experience replay, for each time t we save
< st, at, st+1, Dt >. With these numbers we can do another forward and
backward pass on our data and get more “juice” out of it. And there is a
second benefit as well: we can play, and then replay, each time step in a
random order. You may remember the iid assumption mentioned in Section
1.6 where we noted how RL could be particularly problematic as the train-
ing examples were correlated from the get-go. Taking random actions from
several different game plays reduces this problem significantly.

Of course, we pay a price. An old training example is not as informative
as a new one. Furthermore, the data can sort of go stale. Suppose we
have data from early in our training before we knew not to, say, move left
when the pole is leaning far to the right. And suppose since then we have

134 CHAPTER 6. DEEP REINFORCEMENT LEARNING

learned better. This means that we are uselessly relearning from the old data
what to do in state sold when, in fact, our current policy never allows us to
arrive at that state. So instead we do something like this: keep a buffer of 50
game plays corresponding to, say, 5000 state-action-state-reward four-tuples
(we are averaging 100 moves before failing). We now pick, e.g., 400 states
at random to train from. We then replace the oldest game in the buffer
with a new game played using the new policy based upon the up-to-date
parameters.

6.7 References and Further Readings

Reinforcement learning had a rich body of theory and practice long before
the advent of deep learning, and deep learning has not supplanted it. After
all, the major problem in RL is how to learn when you have only indirect
information about which moves are good vs. bad, and deep learning only
moves that issue to the question how to define the loss function. It does not
say much, if anything, about the nature of the solution. The classic text on
RL is that by Richard Sutton and Andrew Barto [SB98]. I myself largely
made do with an early tutorial paper by Kaelbling et al. [KLM96] for the
pre-deep-learning material herein.

For post-deep learning, early in my reinforcement-learning education I
came across Arthur Juliani’s blog on the topic. If you go to his blog, particu-
larly parts 0 [Jul16a] and 2 [Jul16b], you will observe that my presentations
of cart-pole and REINFORCE are significantly influenced by his, and his
code was a starting point for mine. Which reminds me, the original paper
on REINFORCE is by Ronald Williams [Wil92].

The a2c reinforcement learning algorithm was proposed as a variant of
the Asynchronous Advantage Actor-Critic (a3c) algorithm. We noted on
page 132 that a2c allows multiple environments to make better use of matrix
multiplication software and hardware. In a3c these environments are eval-
uated asynchronously, presumably to better mix up the state-action com-
binations that the learner may observe [MBM+16]. This same paper also
proposed the a2c algorithm as a subcomponent of a3c. Eventually it was
shown to work just as well, and it is much simpler.

6.8 Written Exercises

Exercise 6.1: Show that the V table shown on the right-hand side of Figure
6.3 gives the correct values (to two significant digits) for the state values after

6.8. WRITTEN EXERCISES 135

the second pass of value iteration.

Exercise 6.2: Equation 6.5 has a parameter α, but our TF implementation
in Figures 6.6 and 6.7 seemingly makes no mention of α. Explain where it
it “hiding” and what value we gave it.

Exercise 6.3: Suppose that in the training phase of the cart-pole REIN-
FORCE algorithm it only took three actions (l,l,r) to reach termination, and
Pr(l | s1) = .2, Pr(l | s2) = .3, Pr(r | s3) = .9. Show the values of output,
actions, indices, and actProbs.

Exercise 6.4: In REINFORCE we first select actions that take us from
the beginning of a cart-pole game until (typically) the pole tips over or the
cart goes out of bounds. We do this without updating parameters. We save
those actions and, in effect, go through the entire scenario all over again, this
time computing loss and updating parameters. Note that if we had saved
the actions and their softmax probabilities then we could compute the loss
without doing all the computation that feeds into the loss function a second
time. Explain why this nevertheless does not work — why REINFORCE
would not learn anything if we did this without the duplicated computation.

Exercise 6.5: The TF function tf.range when given two arguments

tf.range(start, limit)

creates a vector of integers starting at start and going up to (but not
including) limit. Unless the named variable delta is set, the integers differ
by one. Thus its use in Figure 6.10 produces a list of integers in the range
0 to batch-size. Explain how they combined with the next line of TF to
accomplish the transformation in Figure 6.12.

Chapter 7

Unsupervised
Neural-Network Models

This book has followed a mostly unacknowledged path from supervised learn-
ing problems such as Mnist to weakly supervised learning problems, such as
seq2seq learning and reinforcement learning. Our digit-recognition problem
is said to be fully supervised because each training example comes along
with the correct answer. In our reinforcement learning examples the train-
ing examples are unlabeled. Instead, we get a weak form of labeling insofar
as the rewards we get from Open AI Gym guide the learning process. In this
chapter we consider unsupervised learning, where we get no labels or other
forms of supervision. We want to learn the structure of our data from only
the data itself. In particular, we look at autoencoders (abbreviated AEs)
and generative adversarial networks (or GANs).

7.1 Basic Autoencoding

An autoencoder is a function whose output is, if working correctly, almost
identical to the input. For us this function is a neural net. To make this
nontrivial, we place obstacles in its way, the most common method being
dimensionality reduction. Figure 7.1 shows a simple two-layer AE. The input
(say a 28*28-pixel Mnist image) is passed though a layer of linear units and is
transformed into the intermediate vector, which is significantly smaller than
the original input — e.g., 256 compared to the original 784. This vector is
then itself put through a second layer, and the goal is for the output of the
second layer to be identical to the input of the first. The reasoning goes that
to the degree we can reduce the dimensions of the middle layer compared

137

138 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

Figure 7.1: A simple two-layer AE

to the input, the NN has encoded information in the middle layer about the
structure of Mnist images. To put this at a greater level of abstraction, we
have:

input → encoder → hidden → decoder → input

where the encoder looks like a task-oriented NN and the decoder looks like
the encoder in reverse. The encoding process is also called downsampling
(as it reduces image size) and the decoder process upsampling.

We care about AEs for several reasons. One is simply theoretical, and
perhaps psychological. Except in school, people get little by way of super-
vision for learning, and by the time we enter school we have already learned
the most important of our skills: vision, spoken language, motor tasks,
and at its most basic, planning. Presumably this is possible only through
unsupervised learning.

A more practical reason is the use of pre-training or co-training. Labeled
training data is usually in short supply, and our models almost always work
better the more parameters they have to manipulate. Pre-training is the
technique of training some of the parameters first on a related task, then
starting the main training cycles not with our now standard random initial-
ization, but rather from values reached when trained on the related task.
Co-training works much the same way, except we do the training and “pre-
training” at the same time. That is, the NN model has two loss functions
that are summed to get the total loss. One is the “real” loss that minimizes
the number of errors in the problem we really want to solve. The other is
for a related problem, which could just be reproducing some or all the data
we are using — an autoencoding problem.

A third reason for studying autoencoding is a variant called variational

7.1. BASIC AUTOENCODING 139

7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 3 14 15 1 0 0 0 0 0 0 0 0 0 0
7 187 221 205 151 74 11 1 0 0 2 8 23 55 69
8 237 249 251 250 249 239 221 225 197 214 216 236 237 228
9 92 194 232 219 217 225 245 251 251 249 241 237 249 250
10 1 8 7 17 31 49 100 126 106 45 37 81 242 251
11 0 0 0 0 1 9 13 7 2 0 1 43 239 247
12 0 0 0 0 0 2 2 0 0 0 2 151 247 215
13 0 0 0 0 0 0 0 0 0 1 61 246 248 57
14 0 0 0 0 0 0 0 0 1 32 207 253 185 10
15 0 0 0 0 0 0 0 0 9 176 251 237 31 1
16 0 0 0 0 0 0 0 0 47 237 252 67 2 0
17 0 0 0 0 1 0 1 9 171 249 237 9 0 0
18 0 0 2 7 1 1 5 100 243 251 138 1 0 0
19 0 0 0 2 1 0 19 217 253 222 19 0 0 0
20 0 0 0 0 0 2 107 246 241 44 1 0 0 0
21 0 0 0 0 1 48 220 247 168 4 0 0 0 0
22 0 0 0 0 18 196 251 233 42 0 0 0 0 0
23 0 0 0 1 98 249 250 140 2 0 0 0 0 0
24 0 0 0 14 237 254 242 40 0 0 0 0 0 0
25 0 0 5 116 252 254 205 8 0 0 0 0 0 0
26 0 0 16 158 253 249 56 4 2 0 1 0 0 0
27 0 0 0 0 2 1 0 0 0 0 0 0 0 0

Figure 7.2: Reconstruction of Mnist test example in Figure 1.1

autoencoders. They are like standard ones, except they are designed to
return random images in the style of those on which the AE was trained.
A video-game designer may have the action of the game take place in a
city, but would rather not spend the time separately designing, say, a few
hundred buildings in which to set the action. Good variational autoencoders
these days can be entrusted with this task. In the long run we may hope for
much better ones that might produce new novels that read like Hemingway
or your favorite detective series.

We start with basic autoencoding where we are simply reconstructing
the input — Minist digits. Figure 7.2 shows the output of a four-layer AE
when the input is the image of a 7 at the very start of Chapter 1. The
autoencoder can be expressed as:

h = S(S(xE1 + e1)E2 + e2) (7.1)

o = S(hD1 + d1)D2 + d2 (7.2)

L =

n∑
i=1

(xi − oi)2 (7.3)

We have two fully connected encoding layers, the first with weights E1, e1,
the second with E2, e2. In the creation of the reconstructed 7 in Figure 7.2
the first layer has shape [784, 256] and the second [256,128], so the final

140 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

image size has 128 “pixels,” i.e., it is sort of like an image of height and
width equal to

√
128. Equation 7.3 states that we are using squared-error

loss, which makes sense in that we are trying to predict pixel values, not
class membership. We use S, the sigmoid function, for our nonlinearity.

You might wonder why we used a sigmoid activation function rather than
our almost standard relu. The reason is that so far we have not been much
concerned with the actual values that get passed through the network: at
the end they are all passed through the softmax function and mostly all that
remains are their relative values. An AE, in contrast, compares the absolute
values of the input against those of the output. As you may remember when
we discussed the data normalization of our Mnist images (19), we divided
the raw pixel values by 255 to normalize their values from 0 to 1. As we saw
in Figure 2.7, the sigmoid function ranges from 0 at the low end to 1 at the
top. Since this exactly matches the range of pixel values, it means that the
NN does not have to learn to put values in this range — rather the range
is “built in.” Naturally this makes learning to produce these values easier
than with relu, which has the lower constraint but not the upper.

Since autoencoders have multiple fairly similar layers (in this case they
are all fully connected), the layers module discussed in Section 2.4.4 is par-
ticularly useful here. In particular, note that the model outlined in Equa-
tions 7.1–7.3 can be succinctly coded as:

E1=layers.fully connected(img,256,tf.sigmoid)

E2=layers.fully connected(E1,128,tf.sigmoid)

D2=layers.fully connected(E2,256,tf.sigmoid)

D1=layers.fully connected(D2,784,tf.softmax)

where we assume that our image, img, comes in as a flat 784 vector.
Another way to prevent an autoencoder from simply copying the input

to the output is the addition of noise. Here we use “noise” in the technical
sense of random events that corrupt the original image, which in this context
would be called the signal. In a de-noising autoencoder we add noise to the
image in the form of randomly zeroed pixels. Typically about 50% of the
pixels might be degraded in this way. The AE loss function is again the
squared-error loss, this time between the pixels in the uncorrupted image
and the output decoder image.

7.2 Convolutional Autoencoding

The last section built up an AE for Mnist digits using an encoder to reduce
the initial image of 784 pixels first to 256 and then to 128. Having done this,

7.2. CONVOLUTIONAL AUTOENCODING 141

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

→

0 0 0 0 0 0 0 0
0 1 0 2 0 3 0 4
0 0 0 0 0 0 0 0
0 4 0 3 0 2 0 1
0 0 0 0 0 0 0 0
0 2 0 1 0 4 0 3
0 0 0 0 0 0 0 0
0 3 0 4 0 1 0 2

Figure 7.3: Padding an image for decoding in a convolutional AE

the decoder reversed the process, in the sense that starting with 128 “pixels”,
we build the image first back to 256, and then 784. All this was done with
fully connected layers. The first had a weight matrix of shape [784, 256],
the second [256, 128], and then, for the decoder, [128, 256] followed by [256,
784]. However, as we learned from our earlier exploration of deep learning
in computer vision, best results come from the use of convolution. In this
section we build an AE using convolutional methods.

The convolutional encoder to reduce image dimensions is unproblematic.
In Chapter 3 we noted how, say, horizontal and vertical strides of two reduce
the image size by a factor of two in each dimension. In Chapter 3 we were not
concerned with compressing the image, so counting in the channel size (how
many filters we applied to each image patch), we actually ended up with
more numbers describing the image at the end of the convolution process
than at the start (the 7 by 7 image times 32 different filters gives 1568). Here
we definitely want the encoded intermediate layer to have many fewer values
than the original image, so we might, say do three layers of convolution, the
first layer taking us to 14 ∗ 14 ∗ 10, the second to 7 ∗ 7 ∗ 10, and the third
4 ∗ 4 ∗ 10 (the exact numbers, are, of course, hyperparameters).

Decoding with convolution is much less obvious. Convolution never in-
creases image size, so it is not obvious how upsampling might work. The
solution is quite literally to expand the input image before we convolve it
with a bank of filters. In Figure 7.3 we consider the case where the hidden
layer of the AE is a 4 ∗ 4 image and we want to expand it to an 8 ∗ 8 image.
We do so by surrounding each “real” pixel with enough zeros to create an
8 ∗ 8. (The real pixel values are for illustration only.) This requires adding
to each real pixel value zeros to the left, diagonal left, and up. As you might
expect, by adding enough zeros we can expand the image to whatever size
we want. Then, if we convolve this new image with conv2d, a stride of one,
and Same padding, we end up with a new 8 ∗ 8 image.

142 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

mnist = input_data.read_data_sets("MNIST_data")

orgI = tf.placeholder(tf.float32, shape=[None, 784])

I = tf.reshape(orgI, [-1,28,28,1])

smallI = tf.nn.max_pool(I,[1,2,2,1],[1,2,2,1],"SAME")

smallerI = tf.nn.max_pool(smallI,[1,2,2,1],[1,2,2,1],"SAME")

feat = tf.Variable(tf.random_normal([2,2,1,1],stddev=.1))

recon = tf.nn.conv2d_transpose(smallerI, feat,[100,14,14,1],

[1,2,2,1],"SAME")

loss = tf.reduce_sum(tf.square(recon-smallI))

trainop = tf.train.AdamOptimizer(.0003).minimize(loss)

sess = tf.Session()

sess.run(tf.global_variables_initializer())

for i in range(8001):

batch = mnist.train.next_batch(100)

fd={orgI:batch[0]}

oo,ls,ii,_ =sess.run([smallI,loss,recon,trainop],fd)

Figure 7.4: Transpose convolution on a Mnist digit

So we get an appropriately sized image, but does it have appropriate
values? To see how it might Figure 7.4 gives TF code to illustrate upsam-
pling with convolution. There we first downsample an Mnist image and then
upsample using convolution. The downsample is done in two steps:

smallI=tf.nn.max pool(I,[1,2,2,1],[1,2,2,1],"SAME")

smallerI=tf.nn.max pool(smallI,[1,2,2,1],[1,2,2,1],"SAME")

The first command creates a 14 ∗ 14 version of the image with each original
separate 2 ∗ 2 patch represented by the highest pixel value in that patch.
See the left-hand image in Figure 7.5 for an example of a 14 ∗ 14 image of a
“7.” The second command creates a still smaller 7∗7 version. The next two
lines of Figure 7.4 (feat, recon) create recon, an upsampled reconstruction
of the 7 ∗ 7 image back to 14 ∗ 14, as illustrated in the right-hand image of
Figure 7.5. Figure 7.4 does not illustrate how we normally use convolutional
upsampling, which is meant to follow convolutional downsampling. Rather
we wanted to start with an understandable image, so we could better see
what happened to it. From Figure 7.5 we see that while the reconstruction
is hardly perfect, it basically worked. (We replaced zeros by blanks in the
figure to make the 7’s outline clearer.)

7.2. CONVOLUTIONAL AUTOENCODING 143

9 9 4 5 9 9
9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 7
8 8 9 9 9

9 9 5
6 9 9
8 9 9
9 9 7

1 9 9 1
4 9 9
1 9 4

6 6 2 2 5 5 6 6
5 6 2 2 5 5 5 6

6 6 6 6 6 6 6 6 6 6
5 6 5 6 5 6 5 6 5 6
5 5 5 5 6 6 6 6
5 5 5 5 5 6 5 6

6 6 6 6
5 6 5 6

1 1 6 6 4 4
1 1 5 6 4 4
2 2 6 6
2 2 5 6

Figure 7.5: 14 ∗ 14 Minst 7, and version reconstructed from 7 ∗ 7 version

The key line in Figure 7.4 is the call to conv2d transpose. As we just
mentioned, the common case is the use of conv2d transpose to “undo” a
use of standard conv2d, as in:

tf.nn.conv2d(img,feat,[1,2,2,1],"SAME")

This call would downsample the image that the conv2d transpose can up-
sample. If we ignore the third argument to the transpose version, the ar-
guments to the two functions are exactly the same. However they do not
all have the same import. Yes, in both cases the first argument is the 4D
tensor to manipulate, and the second is the bank of convolutional filters to
use. But conv2d transpose, no matter what the stride and padding argu-
ments say, is going to use stride one and Same padding. The purpose of
these arguments is rather to determine how to add all the extra zeros, as in
Figure 7.3 — e.g., to undo the contraction due to a stride of two we would
generally want to pad every real pixel with three extra zero pixels, as in
Figure 7.3.

Unfortunately, it is not possible completely to determine the output
image size of conv2d transpose just from this information. Thus the third
argument to conv2d transpose is the size of the desired output image.
In Figure 7.4 this is [100, 14, 14, 1]: 100 is the batch size, we want a
14 ∗ 14 output image, and only one channel. The situation that causes the
ambiguity comes from strides greater than one with Same padding. For
example, consider two images, one 7 ∗ 7 and one 8 ∗ 8. In both cases, if we
convolve with a stride of two and Same padding, we end up with an image
of size 4. Thus, going the other way, conv2d transpose with stride two and

144 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

0 0 0 0 1 –1 1 –1 1 –1
0 0 0 0 –1 0 –1 0 –1 0
0 –1 1 –1 1 –1 0 –1 0 0
–1 0 –1 0 –1 0 –1 0 0 0
0 0 1 –1 1 –1 1 –1 0 –1
0 0 –1 0 –1 0 –1 0 –1 0
0 –1 0 –1 0 0 1 –1 1 –1
–1 0 –1 0 0 0 –1 0 –1 0
1 –1 1 –1 1 –1 1 –1 0 0
–1 0 –1 0 –1 0 –1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Figure 7.6: Upsampled small Mnist digit from zeroth training example

Same padding cannot know which of these output images the user intends.

To this point in talking about transpose convolution we have concen-
trated on making sure to pad the input in such a way as to get the desired
upsampling effect. We have not concerned ourselves with how the filters
manage this task. Indeed, at the start of training they do not. Figure 7.6
shows the upsampled image at the zeroth training example. The predomi-
nant visible effect in the figure is the alternations of 0 and –1, which is no
doubt an artifact arising from the alternation of zero padding values and
nonzero real pixel values in the image fed into conv2d transpose. There
is a mathematical theory of how transpose convolution can find the correct
kernel values, but for our purposes we only need to know that variable kernel
values and back propagation do it for us.

As for using conv2d transpose for autoencoding, it is exactly analo-
gous to fully connected autoencoding. We have one or more layers of down-
sampling using conv2d, possibly using max pool or avg pool, followed by
typically an equal number of upsampling layers using conv2d transpose.

7.3 Variational Autoencoding

A variational autoencoder (we say VAE for short) is a variant of AEs in
which the goal is not to reproduce exactly the image we started with, but
rather to create a new image that is a member of the same class of images
but recognizably new. It gets its name from variational methods, a topic in
Bayesian machine learning. Again, we fall back on our friendly Mnist data
set. Our initial goal for our VAE is to input an Mnist digit image and get

7.3. VARIATIONAL AUTOENCODING 145

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0

Figure 7.7: An original image and two “reconstructions”

out a new image that is both recognizably similar and different.

If we do not care that the new one is recognizably different, then standard
autoencoding would pretty much solve the problem. After all, look again
at Figure 7.2, our AE reconstruction of the ‘7’ from the beginning of the
book (Figure 1.1). At the time we were proud of how similar they are,
but of course they are not identical. However, they are so close that had we
printed this later version in gray scale it would very hard to distinguish from
Figure 1.2. Furthermore, some thought should indicate that a standard AE
with squared-error loss is not really what we want. Consider the three 7 ∗ 7
images in Figure 7.7. The top is intended to be a small image of a 1, and
the other two are supposed to be reconstructions of the first. The first of
these looks similar to the original, but because the digit is shifted over by
two pixels there are no overlapping values, and its mean squared error when
compared to the top image in Figure 7.7 is 10. Furthermore, the bottom
right image is actually more similar according to our loss function as it only
differs in two pixels. So standard autoencoding and squared error loss are
not really suitable for our task. However, put this objection to the side for
the moment in order to concentrate on how VAE works. We come back to
this issue later and show how VAEs solve the problem.

Looking a little way under the hood, our program is going to input an
image and then conjure up a vector of random numbers, and it is these
random numbers that control the difference between the original and the

146 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

new images — put in the same image/random-numbers pair and we get the
exactly the same variant of the input image. Later we see that we can omit
the image, in which case we get out not a variation on a particular image,
but rather a completely new image in the overall style of all the images.
This will typically look like one of the possible digits, but depending on how
well the VAE is doing its job it might not. If you skip ahead to Figure 7.10
you can see some examples.

A diagram of the VAE architecture is shown in Figure 7.8. An image
comes in at the bottom of the diagram and we can trace the computation up
through the encoder. The encoded information is then used to create not a
single image embedding, but rather two vectors of reals, σ and µ. We then
construct a new image embedding by generating a vector of random numbers
r, and computing µ+σr. Here µ can be thought of as the original embedded
version of the image, and we perturb it with σr to get a different embedding
which is near, but not too near, the original. This revised embedding then
goes though a standard decoder to produce a new image. If we are using the
program (as opposed to training it) this new image is output to the user.
If we are training, the new image is fed into the “image loss” layer. The
image loss is just the squared loss of the difference in pixel values between
the original and new images. So the source of output image variation in
a VAE is r. If we input the same image and the same vector of random
numbers, we get the same image out.

To say this again in slightly different words, µ is the basic encoded
version of the input image, just as always this chapter, while σ specifies
the legal bounds on how much we can vary the input image and still have it
a “recognizable” version. Remember, both σ and µ are real-number vectors
of size, say, 10. If µ[0] = 1.12 it means that the encoded image should have
as its first real a number more or less close to 1.12, with the variation around
1.12 controlled by σ[0]. If σ[0] is large (and our NN is working properly) it
means that it is possible to vary the first dimension of the encoded image
quite a bit without making the output version unrecognizable. If σ[0] is
small, then it is not.

But there is a big problem here. We have assumed that somehow the
σs and µs we get from the encoder will be numbers such that µ+ r ∗ σ is a
reasonable image encoding. If the loss is just the squared-error loss we do
not get the result we want.

This is where VAEs veer into deep math, but we are going to ask the
reader instead to accept some semi-plausible changes to our loss function.
VAEs have two losses that are added together to give the total loss. One we
have already seen, the squared-error loss between the original image pixels

7.3. VARIATIONAL AUTOENCODING 147

Figure 7.8: Structural model of a variational autoencoder

148 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

and those of the reconstruction. We call this the image loss.

The second of the losses is the variational loss:

Lv(µ, σ) = −
∑
i

1

2
(1 + 2σ[i]− µ[i]2 − e2σ[i]) (7.4)

This is for an single example, and it is a pointwise computation over σ and
µ. (Remember, they are both vectors.) To make this more comprehensible,
consider what happens if we set first σ then µ to zero:

Lv(µ, 0) = µ2 (7.5)

Lv(0, σ) = −1

2
− σ +

e2σ

2
(7.6)

From the first of these equations we see that the NN is being pushed to keep
the mean values µ = 0. Of course the image loss is going to counteract this
push quite a bit, but everything else equal, Lv wants µ ≈ 0.

The second of the above equations is going to keep σ sort of near 1. When
σ is less than 1 the second term of Lv(0, σ) dominates and we decrease the
loss by increasing σ, whereas when σ is larger than 1 the third term begins
to get large quite fast.

That this looks like a standard normal distribution is not a coincidence.
If we had gone through the math we would have understood (a) why it is
a good idea to encourage the image encoding to look more like a standard
normal and (b) why the minimal variation loss is not exactly at σ = 1.
Instead, we ask the reader to accept that adding this second loss function
to our overall calculation give us what we want: an NN that, given a mul-
tidimensional σ and µ computed by our NNs on the basis of a real Mnist
image, produces the encoding of a new, slightly different image I ′ from:

I ′ = µ+ rσ (7.7)

where r is a vector of random numbers themselves produced from a standard
normal distribution. Once we have this assurance, we have our VAE.

Let us return to the issue we raised earlier (page 145) to the effect that a
standard AE with squared loss does not really fit the goal we set for VAEs:
to produce noticeably different versions of an image that are, at the same
time, noticeably similar. Our example of the problem in Figure 7.7 was two
imaginary reconstructions of a 1, one translated two pixels horizontally,
one missing two pixels in the middle of the vertical stroke. According to
squared-error loss the second was more similar, but the first would be a good

7.3. VARIATIONAL AUTOENCODING 149

Figure 7.9: An original image and a VAE reconstruction

VAE reconstruction while the second would not. The claim is that, working
properly, VAEs overcome this difficulty.

First, note that yes, when training VAEs we do use squared-error loss,
but by their very nature VAEs have to accept a larger squared loss because
they can only reconstruct the original image up to some deliberately engi-
neered randomness. Next note that this randomness is situated in the image
encoding in the middle of the VAE architecture. The claim is that this is
the best place for it if VAEs are to work properly.

Mostly implicit but sometimes explicit in our discussion of AEs is the
observation that they achieve dimensionality reduction by noting commonal-
ities between inputs. They tailor embedding to assume the common features,
only “mentioning” the differences. Suppose, as is reasonable, Mnist digits
differ slightly in their position on the page. Then one way to exploit this fact
to make the encoding small is to have, say, one of the real numbers in the
encoding specify the overall horizontal position of the digit. (Or perhaps,
with only twenty reals in which to encode the mean for a number 1, we
cannot afford to devote a real to this job, and our AE “decides” some other
variation is more important for a good reconstruction of our image. This is
only an illustration.) The point is, if there is a real that encodes the overall
horizontal position, then the lower-left image of Figure 7.7 is, in fact, very
close to the upper original — it differs only at one encoding position.

At any rate, VAEs do work. Figure 7.9 shows an original Mnist 4 and a
new version. Even a few seconds’ study is sufficient to convince you that they
are different. Furthermore, they are different in a way quite typical for VAEs
(or at least for less than great VAEs)— the right image, the reconstruction,

150 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

Figure 7.10: VAE Mnist digits generated from scratch

is less distinctive. It is a blander 4, if you will. Most noticeably, the left-
hand 4 (the original) has an uptick on the bottom of the major vertical
stroke that is completely missing on the right.

So far we have considered the problem of generating an image that is
similar to, but recognizably different from, an input image. However, we
earlier noted that VAEs can also work more freely — given a general class
of images, produce another member of that class. This is a much harder
problem to do well, but the VAE hardly changes at all. Training, in fact,
is exactly the same. The only difference is how we use the VAE. To pro-
duce a new image not based upon an existing one, the VAE generates a
random number (again from a standard normal) but this time inserts it (via
feed dict) to be used as the entire image encoding. Figure 7.10 shows
some examples of the results from the same program that generated the
examples in Figure 7.9, but this time no image was given to emulate. Four
of the images are recognizably Mnist-like digits, but the bottom-right image
seems to be a “3-8” and the one just before it is a mighty poor excuse for
an 8. A stronger model, a lot more training epochs, and more attention to
hyperparameters would produce a much better result.

Before leaving VAEs, a few words for those who would like to better
understand the variational loss of Equation 7.4. In our original formulation,
we generate a new image I ′ upon an original I. To do this we use a con-

7.3. VARIATIONAL AUTOENCODING 151

volutional encoder C to produce a reduced representation z = C(I). Here
we concentrate on two probability distributions, Pr(z | I) and Pr(z). In
particular, we first assume that both are normal distributions.

If you just passed placidly from the last sentence to this one, you are ei-
ther not thinking too hard about what I am saying or you are much smarter
than I. How can we simply assume that a distribution for something as com-
plicated as real-world images, or even MNIST digits, is as simple as a normal
distribution? Admittedly, this will be an n-dimensional normal, where n is
the dimension of the image representation produced by the convolutional
encoder C, but even n-dimensional normals are pretty simple things — a
2D normal is bell shaped.

The key idea to keep in mind is that Pr(z) is a probability distribution
based not on the original image, but on the representation C(I). You may
remember that earlier we might have an element of the representation cap-
ture how far the center of a digit was away from the center of the image, so
that the digit ‘1’ at the top of Figure 7.7 has a representation very similar to
the bottom-right version. Suppose we are able to carry this program to its
logical end so that every parameter in the representation vector is a number
like this, some specification of the fundamental ways one image of a number
can differ from another. Other examples might be “major downstroke loca-
tion” or “diameter of topmost circle” (for 8s), etc. As you might imagine
the diameter of the top circle in an 8 might typically be, say, 12 pixels, but
it could be significantly higher or lower. In such a case it would make a lot
of sense to describe the variation in this parameter as a normal with mean
12 and standard deviation, say, 3. As for Pr(z | I), being normal, simi-
lar reasoning applies. Given an image, we want the VAE to produce many
different similar but different images. The probability of any one of them
could reasonably be a normal distribution on key factors such as diameters
of circles in 8s.

There are still many steps before we get to the variational loss of Equa-
tion 7.4, but we are just going to take one or two of them. We further assume
that Pr(z) is a standard normal — a normal distribution with µ = 0 and
σ = 1 — written N(0, 1). On the other hand, we assume that the output
of the encoder is a normal distribution whose mean and standard deviation
are dependent on the image itself, e.g., N(µ(I), σ(I)). This explains (a) why
we have the encoder of Figure 7.8 lead to two values labeled µ and σ, and
(b) why, in order to get random variation, we picked numbers according to
a standard normal.

We take one last step. The assumptions that one of the normals is stan-
dard and the other not cannot be in general satisfied. Rather we just try to

152 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

minimize the discrepancy. We can model a particular image more closely if
we are free to pick appropriate µs and σs and we are pushed in this direc-
tion by the image loss. On the other hand, we want those values to be as
otherwise close to 0 and 1 as possible, and this is where the variational loss
comes in.

To put this another way, we want to minimize the difference between two
probability distributions N(0, 1) and N(µ(I), σ(I)). A standard measure of
the difference between two distributions is the Kullback-Leibler divergence:

DKL(P || Q) =
∑
i

P (i) log
P (i)

Q(i)
(7.8)

For example, if P (i) = Q(i) for all i then the ratio of the two is always 1,
and log 1 = 0. So we can now characterize the goal of a VAE as minimizing
image loss while simultaneously minimizing DKL(N(µ(I), σ(I)) || N(0, 1)).
Fortunately there is a closed-form solution to minimizing the latter, and with
some more algebra (and a clever idea or two) this leads to the variational
loss function presented above.

7.4 Generative Adversarial Networks

Generative adversarial networks, or GANs for short, are unsupervised NN
models that work by setting two NN models in competition with each other.
In the Mnist setting the first network (called the generator) would generate a
Mnist digit from scratch. The second, the discriminator, is given the output
of the generator or an example of a real Mnist digit. Its output is its estimate
of the probability that the input it was given is from the real example, not
the one generated by the generator. The discriminator’s decision then acts
as the error signal to both models but in “opposite directions,” in the sense
that if it is certain of a correct decision that means a large error to the
generator (for not fooling this discriminator), while if the discriminator is
badly fooled, that is a large loss for the discriminator.

As with AEs in general, a GAN can be used for learning the structure
of the input data without labels. Also, as with VAEs in particular, GANs
can generate new variants of a class, prototypically a class of images but in
principle almost anything. GANs are a hot topic in deep learning because
in some sense they are a universal loss function. Any set of pictures, text,
planning decisions, etc., for which we have data can be used for unsupervised
GAN learning with the same basic loss.

The basic architecture of a GAN is shown in Figure 7.11. To understand
how it works, we take a trivial example: the discriminator is given two

7.4. GENERATIVE ADVERSARIAL NETWORKS 153

Figure 7.11: The structure of a generative adversarial network

numbers, one at a time. One, the “real” data, is generated by a normal
distribution with, e.g., mean 5 and standard deviation 1, so the numbers it
produces are mostly between 3 and 7. The “fake” number is generated by
the generator, which is a one-layer NN. (For this section only the opposite
of a “real” number is a fake number, not a complex one.) The generator
is given a random number, equally likely to be anywhere between –8 and
+8. In order to fool the discriminator it must learn to modify the random
number, presumably to make it come out between 3 and 7. Initially the
generator NN has parameters close to zero, so, in fact, it mostly produces
numbers close to zero as its output.

GANs exercise several aspects of TF we have not covered so far, and
we give the complete code for the simple GAN in Figure 7.12. We have
numbered each small section of the code for reference.

First, look at section 7 where we train the GAN. Pick out the main
training loop, which we have set for 5001 iterations. The first thing we do
is to generate some real data — a random number near 5 — and a random
number between –8 and 8 to feed the generator. We then update, separately,
first the discriminator then the generator. Finally, every 500 iterations we
print out tracking data.

We come back to this code section in a bit, but first we consider at a
high level how things should work. We want the discriminator to output a
single number (o) that is intended to be the probability that the number
it has just seen is from the real distribution. Look briefly at section 3
of the code. When we execute the function discriminator it sets up a
four-layer fully connected feed-forward NN. The first three layers have relu

154 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

bSz, hSz, numStps, logEvery, genRange = 8, 4, 5000, 500, 8

1 def log(x): return tf.log(tf.maximum(x, 1e-5))

2 with tf.variable_scope(’GEN’):

gIn = tf.placeholder(tf.float32, shape=(bSz, 1))

g0=layers.fully_connected(gIn, hSz, tf.nn.softplus)

G=layers.fully_connected(g0,1,None)

gParams =tf.trainable_variables()

3 def discriminator(input):

h0 = layers.fully_connected(input, hSz*2,tf.nn.relu)

h1=layers.fully_connected(h0,hSz*2, tf.nn.relu)

h2=layers.fully_connected(h1,hSz*2, tf.nn.relu)

h3=layers.fully_connected(h2,1, tf.sigmoid)

return h3

4 dIn = tf.placeholder(tf.float32, shape=(bSz, 1))

with tf.variable_scope(’DIS’):

D1 = discriminator(dIn)

with tf.variable_scope(’DIS’, reuse=True):

D2 = discriminator(G)

dParams = [v for v in tf.trainable_variables()

if v.name.startswith(’DIS’)]

5 gLoss=tf.reduce_mean(-log(D2))

dLoss=0.5*tf.reduce_mean(-log(D1) -log(1-D2))

gTrain=tf.train.AdamOptimizer(.001).minimize(gLoss, var_list=gParams)

dTrain=tf.train.AdamOptimizer(.001).minimize(dLoss, var_list=dParams)

6 sess = tf.Session()

sess.run(tf.global_variables_initializer())

7 gmus,gstds=[],[]

for i in range(numStps+1):

real=np.random.normal(5, 0.5, (bSz,1))

fakeRnd= np.random.uniform(-genRange,genRange,(bSz,1))

#update discriminator

lossd,gout,_ = sess.run([dLoss,G,dTrain],{gIn:fakeRnd, dIn:real})

gmus.append(np.mean(gout))

gstds.append(np.std(gout))

update generator

fakeRnd= np.random.uniform(-genRange,genRange,(bSz,1))

lossg, _ = sess.run([gLoss, gTrain], {gIn:fakeRnd})

if i % logEvery == 0:

frm=np.max(i-5,0)

cmu=np.mean(gmus[frm:(i+1)])

cstd=np.mean(gstds[frm:(i+1)])

print(’{}:\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}’.

format(i, lossd, lossg, cmu, cstd))

Figure 7.12: GAN for learning mean of a normal distribution

7.4. GENERATIVE ADVERSARIAL NETWORKS 155

activation functions, and the last uses a sigmoid. Since sigmoids output
numbers between 0 and 1, as we noted earlier they are good for producing
numbers intended to be probabilities (the probability that the input is from
the real distribution). More specifically, the output is interpreted as the
probability that the input is a member of a class (the class of real inputs).
This determines our choice of loss function — we use cross-entropy loss.

When the discriminator is fed a number from the real normal, distri-
bution (nr), the loss is the negative log of the discriminator NN output
(or). When the discriminator is fed the generated fake number the loss is
ln 1− of . Be sure to see, in Figure 7.12 section 7, that in the training loop
we first create some real numbers, then some random numbers to give to the
generator. Just after the comment “update discriminator” we do just that
by giving the Adam optimizer both. The discriminator loss function Ld is
given by:

Ld =
1

2
(− ln (or)− ln (1− of)) (7.9)

If you look at section 5, where we lay out the loss and training code, you see
the discriminator loss defined as in Equation 7.9. Here or is the the degree
to which the discriminator believes the real input is indeed real. Conversely,
the loss also includes a term that penalizes the discriminator to the degree
it believes the fake (generated) number (of) is real.

So consider what might happen on the first training example. As we
already noted, the generator outputs something close to zero, say 0.01. The
real sample from our normal distribution might be 3.8. However, the dis-
criminator’s parameters are also initialized near zero so or and of are both
near zero. Initially Ld is going to be dominated by the −ln(or) term, which
goes negative infinity as or goes to zero, but the program quickly learns not
to assign any probabilities too close to zero.

More important is how the derivative of the loss affects the discrimina-
tor’s parameters. Looking back at the single-layer network of Chapter 1, we
see that the derivative of the weight parameters is proportional to the input
for the weight in question (Equation 1.22). If we go through the math we
find that when we give the discriminator the real sample the weight moves
upward proportionally to the sample value (e.g., 3.8). Conversely, the same
weight is moved downward when we train on the fake generator value, but
that is only 0.01, so the discriminator is moving slightly toward saying that
higher input values are the real ones.

Next we look at how the program should grade the performance of the
generator. Well, the generator wants to fool the discriminator in the sense
that when the latter is fed the output of the former, the generator wants

156 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

the discriminator to think that it has just seen the real, not fake, numbers.
So the the generator loss Lg should be:

Lg = −ln(of) (7.10)

The reader should verify that the first line of section 5 of the GAN code
defines the generator loss exactly this way.

So to summarize what we have said so far: section 7, the main train-
ing loop, first trains the discriminator by giving some real and some fake
numbers with a loss function that penalizes mistakes in both directions, real
judged as fake, and vice versa. Then it trains the generator with loss based
just on how well the discriminator correctly identifies the generator’s fakes.

Unfortunately, things are a bit more complicated. First, note that section
4 has two calls to the code to set up a discriminator. The reason is that in
TF you cannot feed a single network separately from two different sources
(as opposed to say, feeding a network with the concatenation of two tensors).
So we create, in some sense, two discriminators. One, D1, is fed from the
real distribution, whereas the second receives as its input the fake from the
generator D2.

Of course, we do not really want two separate networks, so to unify them
we insist that the two networks share the same parameters, thus computing
exactly the same function and not taking up much more space than a single
version. This is the purpose of the calls to tf.variable scope we see in
section 4. We first made use of this TF function in Chapter 5 (see page
99). There we needed two LSTM models and we needed to avoid naming
conflicts, so we defined one within a variable scope “enc” (encoder) and one
within “dec” (decoder). Within the first of these all the variables defined
would have “enc” prepended to their names, and in the second, “dec.” Here
we have the opposite concern. We want to avoid having two separate sets,
so we give both scopes the same names, and on the second call we explicitly
tell TF to reuse the same variables by adding reuse = True.

There is one last complication to deal with before moving on. Section 7
of Figure 7.12 shows us first training the discriminator, then the generator,
at each training step. Furthermore, to train the discriminator we feed TF
two random numbers, the real sample and a random number to feed to the
generator. We then run the generator to create a fake number, and the
probability that the discriminator assigns to this number as coming from
the true distribution of . The latter is part of the loss defined in Equation
7.9. However, in the absence of any special handling, on the backward pass
the generator parameters are also modified, and worse, are modified in a way

7.5. REFERENCES AND FURTHER READINGS 157

to make the discriminator’s loss smaller. As noted above, this is not what
we want. We want the generator’s parameters to move so as to make the
discriminator’s task more difficult. Thus, when we run back propagation
and change discriminator parameters in section 5 (see the line that sets
dTrain), we instruct TF only to change one of the two sets of parameters.
In particular, note the named argument to AdamOptimizer. This argument
tells the optimizer (on this particular call) to modify only the TF variables
in the list.

As for how the classes of parameters, gParams and dParams, are defined,
consult the ends of sections 2 and 4. The TF function trainable variables

returns a tensor of all the variables in the TF graph defined up to that point.

7.5 References and Further Readings

The origins of autoencoding in NNs may be lost in the mists of time.
The textbook by Goodfellow et al. [GBC16] cites Yann LeCun’s PhD the-
sis [LeC87] as its earliest reference on the subject.

Of the topics mentioned in this chapter, the first that seems to have
achieved a distinct identity within the NN community is variational autoen-
coders. The standard reference here is a paper by Diederik Kingma and
Max Welling [KW13]. I found the blog by Felix Mohr [Moh17] very useful,
and my code is based upon his. If you have the statistical prerequisites and
would like to get at the math behind VAEs, I found Carl Doersch’s VAE
tutorial a good reference [Doe16].

The history of GANs, however, is completely clear that the basic idea
emerged in pretty much its current form in a paper by Ian Goodfellow et
al. [GPAM+14]. I learned a lot from John Glover’s blog [Glo16]. My code
for the GAN for learning a normal distribution is based upon his, and he in
turn credits [Jan16].

The comment that GANs are “universal” loss functions (page 152) is
from a talk by Phillip Isola [Iso] that presents many interesting ways to
achieve unsupervised learning of visual processing, with particular emphasis
on using GANs.

7.6 Written Exercises

Exercise 7.1: Consider downsampling with fully connected layers. Mnist
digits always have rows of zeros around the edges. Given our comment to the
effect that AEs work by having the image encoding ignore commonalities,

158 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

what does this imply (all else equal) about the values of the trained first-level
weights?

Exercise 7.2: Same situation and question as in Exercise 7.1, but now
about the trained weights for the last layer before the output.

Exercise 7.3: Give a call to conv2d transpose that performs the trans-
position shown in Figure 7.3.

Exercise 7.4: Assuming that img is a 2 ∗ 2 pixel array of the numbers 1 to
4, show the padded version of the following call to conv2d transpose:

tf.nn.conv2d transpose(img,flts,[1,6,6,1],[1,3,3,1],"SAME")

You may ignore the first and last components of the shape.

Exercise 7.5: This is not important, but why did we set the GAN training
loop to 5001 iterations in Figure 7.12 rather than 5000?

Exercise 7.6: The GAN of Figure 7.12 prints out both an average mean
of the generated data, which we used to judge the accuracy of the GAN,
and the standard deviation of the generated data, which we ignored above.
In point of fact, despite the fact that we set the real numbers’ standard
deviation to 0.5 (point out where this is done!), the actual σ printed out
after each 500 iterations started out higher, quickly decreased below 0.5,
and seems to be headed lower still. Explain why this GAN model has no
pressure on it to learn the correct σ, and why it is reasonable that the actual
value it comes up with is lower than the real one.

Appendix A

Answers to Selected
Exercises

A.1 Chapter 1

Exercise 1.1. If a is the digit value of the first training example, then after
training on that one example only the value ba should increase, and for all
digit values a′ 6= a, ba′ should decrease.
Exercise 1.2, (a) The forward-pass logits are .(0 ∗ .2) + (1 ∗ −.1) = −.1
and (0 ∗ −.3) + (1 ∗ .4 ∗ 1) = .4, respectively. To compute the probabilities
we first compute the softmax denominator e−.1 + e.4 = .90 + 1.50 = 2.40.
Then the probabilities are .9/2.4 = .38 and 1.5/2.4 = .62. (b) The loss is
− ln .62 = −1.9. From Equation 1.22 we see that ∆(0, 0) is going to be a
product of terms involving x0 = 0, so ∆(0, 0) = 0.
Exercise 1.5. Computing the matrix multiplication gives us(

4 7
8 15

)
. (A.1)

Then, adding the right-hand side vector to both rows, we get:(
8 12
12 19

)
(A.2)

Exercise 1.6. The derivative of the quadratic loss with respect to bj is
computed almost exactly as we showed for cross-entropy loss except

∂L

∂lj
=

∂

∂lj
(lj − tj)2 = 2(lj − tj) (A.3)

159

160 APPENDIX A. ANSWERS TO SELECTED EXERCISES

Since the derivative of lj as a function of bj is 1, it follows that

∂L

∂bj
= 2(lj − tj) (A.4)

A.2 Chapter 2

Exercise 2.1. If we do not specify a reduction index it is assumed to be
zero, in which case we add columns. This gives us [0, 3.2, 9].
Exercise 2.2 This new version is significantly slower than the original since
on every iteration of the main training loop it creates a new gradient-descent
optimizer rather than using the same one each time.
Exercise 2.4. You cannot take the tensordot because the dimensions
are not equal. If you could, the first tensor argument has shape [4, 3], and
the second [2, 4, 4]. If you just concatenate them you get [4, 3, 2, 4, 4]. Since
we are taking the dot product of the 0th component of the first tensor and
the 1st component of the second, they drop out, giving [3, 2, 4], the shape
of the result.

A.3 Chapter 3

Exercise 3.1. (a) One example would be

–2 1 1
–2 1 1
–2 1 1

As for part (b), the point is there are infinitely many such kernels. Multi-
plying the numbers in the above kernel by any positive number will be an
example.
Exercise 3.5. In terms of syntax the only difference is the stride of [1, 1,
1, 1] rather than the earlier [1, 2, 2, 1]. Thus we apply maxpool on every
2 ∗ 2 patch, rather than on every other one. When the stride of maxpool is
1, the shape of convOut is same as the input iimage, whereas with stride 2
it is approximately half the size in both height and width. Thus the answer
to the first question is “no.” It is also not the case that they have the same
set of values since, e.g., if we had two patches of small values right next to
each other but surrounded by larger values, the single-pixel-stride output
would include the larger of these two small values, while in the double-pixel-
stride these values would be “drowned out” by the neighboring pixel values.
Lastly, the third answer is “yes” in that every pool value in the first case is
repeated in the second case, but not vice versa.

A.4. CHAPTER 4 161

Exercise 3.6a Each kernel we create has shape [2, 2, 3], which implies 12
variables per kernel. Since we create 10 of them, 120 variables are created.
Since the number of times we apply a kernel has nothing to do with its
size/shape, neither the batch size (100) nor height/width (8/8) have any
effect on this answer.

A.4 Chapter 4

Exercise 4.2. The important difference between seting E to 0 (or to all
ones) is that the NN never sees the actual input, but only its embedding.
Thus setting all the embeddings to the same value has the effect of making
all words identical. Obviously this defeats any chance of learning anything.

Exercise 4.3 Actually computing the total loss when using L2 regulariza-
tion requires computing the sum of weight squares for all the weights in the
model. This quantity is not needed elsewhere in the computation graph.
For example, to compute the derivative of the total loss with respect to wi,j
only requires adding wi,j to the regular loss.

Exercise 4.5. First, yes, it can do better than picking from a uniform
distribution. It should learn to assign higher probability to more common
words (e.g., “the”). Note, however, that a unigram model has no “input”
and thus no need for embeddings or linear unit input weights. It does,
however, need biases, as it is by modifying these that it learns to assign
probabilities according to word frequency.

A.5 Chapter 5

Exercise 5.2 The more complicated attention mechanism uses the decoder
state after time t to decide on the attention used in decoding at time t+ 1.
But obviously we do not know this value until we have processed time t.
In back propagation through time we process a window of words all at the
same time. Except for the very first position in the decoder window, we do
not have the incoming state value we need for the computation. In essence,
then, we need to write a new back-propagation-through-time mechanism.

Exercise 5.4 (a) We want good machine translation. To the degree that the
other loss function affects things, it is presumably in moving the weights so
they perform less well at this task. Thus performance is degraded. (b) But
part (a) is true only for the training data. It says nothing about performance
on the other examples. Adding the second loss function should help the

162 APPENDIX A. ANSWERS TO SELECTED EXERCISES

program learn more about the structure of French. This should improve its
performance on new examples, which are the bulk of the test data.

A.6 Chapter 6

Exercise 6.3. In value iteration the only way a state can get a nonzero
value is if either (a) there is a way to get an immediate reward by an action
from that state (only state 14), or (b) one can take an action from that state
that leads to a state that already has a nonzero value (states 10, 13, and 14).
So all other states must retain their zero values. State 10 has a maximum Q
value for Q(14, l), Q(14, d), and Q(14, r). In each case the values are from
ending up in state 15, and are .33 · .9 · .33 = .1, so V (10) = .1. In exactly
the same way, V (14) = .1. Lastly, V (15) gets its value from Q(15, d) or
Q(15, r). In both cases the computation is .33 · .9 · .1 + .33 · .9 · .33 + .33∗1 =
.03 + .1 + .33 = .47.

Exercise 6.4. We stated that if, when we computed possible actions in
REINFORCE, we had saved their probabilities we would be able to compute
the loss on the second pass without starting from a state and then computing
the probabilities. However, if we did this and did NOT redo the computation
leading from the state to the action probabilities, then TF’s backward pass
would not be able to trace the computation back through the fully connected
layers that compute the actions from the state. Thus that layer (or layers)
would not have its values updated and the program would not learn to
compute better action recommendations for states.

A.7 Chapter 7

Exercise 7.1. To ignore the value of the border, the obvious thing to do is
to set the values that connect the pixels to the first layer to zero. Let x be
pixel values in the 1D version of the image 0 < x < 783. If i, j range over
pixels in the 28 ∗ 28 image, then for all x such that x = j + 28i, i < 2 or
i > 25, and j < 2 or j > 25, for all y, 0 ≤ y ≤ 256:

E1(x, y) = 0

Exercise 7.3.

tf.nn.conv2d_transpose(smallerI,feat,[1,8,8,1],[1,2,2,1],"SAME")

A.7. CHAPTER 7 163

Exercise 7,5 We wanted the tracking values to print out after the last
iteration. If we had set the range to 5000 the last iteration would have been
4999 and not printed.

Bibliography

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014.

[BCP+88] Peter Brown, John Cocke, S Della Pietra, V Della Pietra, Fred-
erick Jelinek, Robert Mercer, and Paul Roossin. A statistical
approach to language translation. In Proceedings of the 12th
conference on computational linguistics, pages 71–76. Associa-
tion for Computational Linguistics, 1988.

[BDVJ03] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Chris-
tian Jauvin. A neural probabilistic language model. Journal
of machine learning research, 3(Feb):1137–1155, 2003.

[Col15] Chris Colah. Understanding LSTM networks. http://colah
.github.io/posts/2015-08-Understanding-LSTMs/, August
2015.

[Doe16] Carl Doersch. Tutorial on variational autoencoders. ArXiv
e-prints, August 2016.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty
of training deep feedforward neural networks. In Proceedings of
the thirteenth international conference on artificial intelligence
and statistics, pages 249–256, 2010.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT Press, 2016.

[Gér17] Aurélien Géron. Hands-on machine learning with Scikit-Learn
and TensorFlow: concepts, tools, and techniques to build intel-
ligent systems. O’Reilly Media, 2017.

165

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

166 BIBLIOGRAPHY

[Glo16] John Glover. An introduction to generative adversarial
networks (with code in tensorflow). http://blog.aylien.com
/introduction-generative-adversarial-networks-code-
tensorflow/, 2016.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[Iso] Phillip Isola. Learning to see without a teacher. https://www
.youtube.com/watch?v=ck3 7tVuCRs.

[Jan16] Eric Jang. Generative adversarial nets in tensorflow (part i).
http://blog.evjang.com/2016/06/generative-adversarial-nets
-in.html, 2016.

[Jul16a] Arthur Juliani. Simple reinforcement learning with tensor-
flow part 0: Q-learning with tables and neural networks.
https://medium.com/emergent-future, 2016.

[Jul16b] Arthur Juliani. Simple reinforcement learning with tensorflow
part 2: Policy-based agents. https://medium.com/emergent-
future, 2016.

[KB13] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous
translation models. In EMNLP, volume 3, page 413, 2013.

[KH09] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers
of features from tiny images. Technical report, University of
Toronto, 2009.

[KLM96] Leslie Pack Kaelbling, Michael L Littman, and Andrew W
Moore. Reinforcement learning: a survey. Journal of artifi-
cial intelligence research, 4:237–285, 1996.

[Kri09] Alex Krizhevsky. The CIFAR-10 dataset. https://www.cs
.toronto.edu/]=-kriz/cifar.html, 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.

http://blog.aylien.com/introduction-generative-adversarial-networks-codetensorow/
http://blog.aylien.com/introduction-generative-adversarial-networks-codetensorow/
http://blog.aylien.com/introduction-generative-adversarial-networks-codetensorow/
https://www.youtube.com/watch?v=ck37tVuCRs
https://www.youtube.com/watch?v=ck37tVuCRs
http://blog.evjang.com/2016/06/generative-adversarial-nets-in.html
https://medium.com/emergent-future
https://medium.com/emergent-future
https://medium.com/emergent-future
https://www.cs.toronto.edu/]=-kriz/cifar.html
https://www.cs.toronto.edu/]=-kriz/cifar.html
http://blog.evjang.com/2016/06/generative-adversarial-nets-in.html

BIBLIOGRAPHY 167

In Advances in neural information processing systems, pages
1097–1105, 2012.

[Kur15] Andrey Kurenkov. A ‘brief’ history of neural nets and
deep learning, parts 1–4. http://www.andreykurenkov.com
/writing/, 2015.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional Bayes. arXiv preprint arXiv:1312.6114, 2013.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[LBD+90] Yann LeCun, Bernhard E Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne E Hubbard, and
Lawrence D Jackel. Handwritten digit recognition with a back-
propagation network. In Advances in neural information pro-
cessing systems, pages 396–404, 1990.

[LeC87] Yann LeCun. Modèles connexionnistes de l’apprentissage (con-
nectionist learning models). PhD thesis, University of Paris,
1987.

[MBM+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and
Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learn-
ing, pages 1928–1937, 2016.

[Mil15] Steven Miller. Mind: how to build a neural network (part
one). https://stevenmiller888.github.io/mind-how-to-build-a-
neural-network, 2015.

[Moh17] Felix Mohr. Teaching a variational autoencoder (VAE)
to draw Mnist characters. https://towardsdatascience.com
/@felixmohr, 2017.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the
ideas immanent in nervous activity. Bulletin of mathematical
biophysics, 5(4):115–133, 1943.

http://www.andreykurenkov.com/writing/
http://www.andreykurenkov.com/writing/
https://stevenmiller888.github.io/mind-how-to-build-aneural-network
https://stevenmiller888.github.io/mind-how-to-build-aneural-network
https://towardsdatascience.com/@felixmohr
https://towardsdatascience.com/@felixmohr

168 BIBLIOGRAPHY

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. Distributed representations of words and phrases
and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[Ram17] Suriyadeepan Ram. Scientia est potentia. http://suriya
deepan.github.io/2016-12-31-practical-seq2seq/, December
2017.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-propagating er-
rors. Nature, 323(6088):533, 1986.

[RMG+87] David E Rumelhart, James L McClelland, PDP Research
Group, et al. Parallel distributed processing, volume 1,2. MIT
Press, 1987.

[Ros58] Frank Rosenblatt. The perceptron: A probabilistic model for
information storage and organization in the brain. Psycholog-
ical review, 65(6):386, 1958.

[Rud16] Sebastian Ruder. On word embeddings — part 1. http://
ruder.io/word-embeddings-1/index.html#fnref:1, 2016.

[SB98] Richard S Sutton and Andrew G Barto. Reinforcement learn-
ing: An introduction, volume 1. MIT Press, 1998.

[Ten17a] Google Tensorflow. Convolutional neural networks. https://
www.tensorflow.org/tutorials/deep cnn, 2017.

[Ten17b] Google Tensorflow. A guide to TF layers: Building a neural
network. https://www.tensorflow.org/tutorials/layers, 2017.

[TL] Rui Zhao Thang Luong, Eugene Brevdo. Neural machine
translation (seq2seq) tutorial. https://www.tensorflow.org
/tutorials/seq2seq.

[Var17] Amey Varangaonkar. Top 10 deep learning frameworks.
https://datahub.packtpub.com/deep-learning/top-10-deep
-learning-frameworks/, May 2017.

[Wil92] Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

http://suriyadeepan.github.io/2016-12-31-practical-seq2seq/
http://suriyadeepan.github.io/2016-12-31-practical-seq2seq/
http://ruder.io/word-embeddings-1/index.html#fnref:1
http://ruder.io/word-embeddings-1/index.html#fnref:1
https://www.tensorow.org/tutorials/deep_cnn
https://www.tensorow.org/tutorials/deep_cnn
https://www.tensorow.org/tutorials/layers
https://www.tensorow.org/tutorials/seq2seq
https://www.tensorow.org/tutorials/seq2seq
https://datahub.packtpub.com/deep-learning/top-10-deep-learning-frameworks/
https://datahub.packtpub.com/deep-learning/top-10-deep-learning-frameworks/

Index

a2c, 130, 134

a3c, 134

activation functions, 39, 48, 89

actor, 130

actor-critic methods, 130

Adam optimizer, 129, 157

advantage, 130

advantage actor-critic, 130

AEs, 137

agent, 113

Alexa, 112

Alexnet, 67

aligned corpus, 95

Amazon, 112

apply a filter, 52

argmax, 36, 115

artificial intelligence, 1, 68

Asynchronous Advantage Actor-Critic,
134

Atari games, 120

attention, 102

autoencoders, 137

average per-word loss, 78

avg pool, 66

axis, in Tensorflow, 36

axon, 3

back propagation, 15, 25

back propagation through time, 84,
98, 111

backward pass, 15

Bahdanau, Dzmitry, 111

Barto, Andrew, 134

BasicRNNCell, 86, 96

batch size, 17, 23

Bayesian machine learning, 111, 144

Bengio, Yoshua, 26, 92

Berkeley, 49

bias, 5

biases, with kernels, 64

bigram model, 73

binary classification problem, 3

Blunsom, Phil, 111

broadcasting, 23, 65

Caffe, 49

Caffe2, 49

Canadian Hansard, 111

Canadian Hansard’s, 95

Canadian Institute for Advanced Re-
search, 67

cart pole, 124

cast, 37

ceiling function, 55

cell body, 3

cell state, 89

CFAIR 10 dataset, 67

chain rule, 15, 71

channels, 56

chatbots, 112

checkpointing, 42

classification problem, 3, 27

co-training, 138

Colah, Chris, 92

169

170 INDEX

column vectors, 31
communication theory, 98
component numbering, of tensors, 31
concat, 79
constant, 29
conv2D, 56
conv2d transpose, 143
convolutional filter, 52
convolutional kernel, 52
convolutional neural networks, 51
corpora, 6
Corrado, Greg, 48
cosine similarity, 75, 110
Courville, Aaron, 26
critic, 130
cross-correlation, 52
cross-entropy loss, 11, 98, 155

data normalization, 19, 140
de-noising autoencoder, 140
Dean, Jeff, 48
decode, 98
decoder, 138
decoding pass, 98
deep learning, 1
Deep Q Network, 133
deep reinforcement learning, 24, 113
deep-Q learning, 119
DeepMind, 120
dendrites, 3
development corpus, 18
development set, 6
dimensionality reduction, 137, 149
discount, 113
discounted future reward, 113
discretize, 1
discriminators, in GANs, 152
DistBelief, 48
Doersch, Carl, 157
dot product, 5

downsampling, 138
DQN, 133
dropout, 80
dropout, 81

early stopping, 80
element-wise operation, 90
embedding lookup, 76
embedding layer, 74
encode, 98
encoder, 138
encoding pass, 96
environment, 113
episode, 130
epoch, 8
epsilon-decreasing strategy, 118
epsilon-greedy strategy, 118
equal, 37
expectation, 114
expected value, 46
experience replay, 133
exploration-exploitation tradeoff, 118

Facebook, 49
features, 3
feed-forward neural networks, 10
feed dict, 31, 88
feed dict of course, 150
floor function, 86
forward pass, 14
frozen-lake problem, 115
fully connected layers, 48
fully connected neural nets, 51
fully supervised learning, 3
fully connected, 48
function approximation, 5, 119

GANs, 137, 152, 157
Gated Recurrent Unit, 96
gather, 129
Gaussian distribution, 32

INDEX 171

generative adversarial networks, 137,
152

generators, in GANs, 152

Géron, Aurélienn, 26

given new distinction, 102

global variable initializer, 32

Glover, John, 157

Goodfellow, Ian, 26, 157

Google, 29, 67, 120

Google Brain, 48

GPUs, 23

gradient descent, 10, 15, 17, 129

gradient operator, 22

GradientDescentOptimizer, 33

grammatical structure, 72

graphics processing units, 23

greedy algorithm, 119

GRU, 96

gym.make, 118

held-out set, 6

heuristics, 3

hidden size, 40

Hinton, Geoffrey, 25, 49, 68

Hochreiter, Sepp, 92

home assistants, 112

hyperbolic tangent, 90

hyperparameter, 6, 83, 84, 118

IBM, 111

iid assumption, 24, 79

ILSVRC, 67

image feature, 54

image loss, 148

Imagenet Large Scale Visual Recog-
nition Challenge, 67

independent identically distributed,
24

information theory, 13

instability, 24

Isola, Phillip, 157

Jelinek, Fred, 111

Kaelbling, Leslie, 134
Kalchbrenner, Nal, 111
Keras, 49
kernel function, 52
Kingma, Diederik, 157
Krizhevsky, Alex, 68
Kullback-Leibler divergence, 152
Kurenkov, Andrey, 25

L2 regularization, 80, 93
l2 loss, 81
labels, 3
language model, 71
language modeling, 95
layers, 9
layers, 47, 65, 140
leaky relu, 39
learning rate, 10, 17, 36, 40, 102
LeCun, Yann, 67, 157
LGU, 93
light intensity, 1
linear algebra, 21, 31
linear gated unit, 93
linear units, 5
log, in TF, 35
logits, 13, 22
long short-term memory, 88
loss functions, 10
LSTM, 88, 96, 156
Luong, Thad, 112

machine learning, 3
machine translation, 95
Markov assumption, 113
Markov decision process, 113, 120
matmul, 34, 35, 43, 121
matrix, 21

172 INDEX

matrix addition, 21
matrix multiplication, 21, 88
max pool, 142
maximum likelihood estimate, 72
max pool, 66
McCulloch, Warren B., 25
MDP, 113
Mikolov, Thomas, 92
Miller, Steven, 25
Mnist, 1, 120, 137
model-free learning, 117, 124
Mohr, Felix, 157
momentum, in optimization, 129
MT, 95
mu, mean of Normal, 32
multiclass decision problems, 8
multilevel perceptrons, 10
multiple environments, 132

National Institute of Standards, 1
natural log, 35
neural machine translation, 111
neural nets, 1
neuron, 3
Newton’s laws, 124
Ng, Andrew, 48
nist, 1
NN, 9
noise, 140
normal distribution, 32, 151, 153
normal, standard, 151
Numpy, 23

one-dimensional convolution, 56
one-hot vectors, 33, 77
onehot, 120
Open AI Gym, 115, 117, 137

padding, 54
pancakes, 112
parallel distributed processing, 25

parameterized class, 5

parameters, 5

PDP, 25

Penn Treebank Corpus, 72

perceptron, 3

perceptron algorithm, 5, 18

perceptrons, 25

perplexity, 78, 88

Pitts, Walter, 25

pixel values, 1, 19

placeholder, 30

placeholders, 88

policy, 114

policy gradients, 124

position-only attention, 102

pre-training, 138

probability distribution, 11, 71

PTB, 72

Python, 29

Pytorch, 49

Q function, 114

Q-learning, 119

quadratic loss, 27, 122, 132

Ram, Surlyadeepan, 112

randint, 117

random variables, 71

random normal, 32

range, 135

RBG color, 52, 56

rectified linear unit, 39

recurrent neural network, 82

reduce mean, 33

regularization, 80

REINFORCE, 126, 134

reinforcement learning, 113, 137

relu, 155

relu, 39, 48

reset in AI Gym, 118

INDEX 173

reshape, 88

reshape, 59

reshape, in Numpy, 59

reuse, 156

reward, 113

RL, 113

RNN, 82

rnn size, 86, 91

Rosenblatt, Frank, 25

row vectors, 31

Ruder, Sebastian, 92

Rumelhart, David, 25

Same padding, 54

save method in TF, 42

Saver, 42

saver objects, 42

Schmidhuber, Jürgen, 92

self-driving cars, 133

semi-supervised, 3

sentence embedding, 96

sentence padding, 73, 84

seq2seq, 95

seq2seq learning, 137

seq2seq loss, 100

sequence-to-sequence learning, 95

Session, 29

shape, of tensors, 31

sigma, 32

sigmoid function, 39, 46, 90, 140, 155

signal, 140

skip-gram model, 92

soft functions, 12, 90

softmax, 12, 102, 140

solving MDPs, 114

source language, 96

sparse matrix, 77

sparse softmax cross entropy, 77,
88

squared-error loss, 27, 122, 140, 145,
148

standard deviation, 32

standard normal distribution, 148

standard nornal, 151

step in AI Gym, 118

stochastic gradient descent, 15, 17

STOP padding, 110

stride, 54

supervised learning, 3, 137

Sutskever, Ilya, 68

Sutton, Richard, 134

tabular MDP methods, 114

tabular methods, 117

tanh activation function, 90

target language, 96

TD(0), 122

temporal difference error, 122

tensordot, 43, 88

Tensorflow, 23, 29

tensors, 31

test set, 6

TF, 29

three-dimensional convolution, 56

top-5 score, 68

Torch, 49

trainable variables, 157

training examples, 5

training set, 6

transpose, 106

transpose, of a matrix, 22

treebank, 72

trigram model, 78, 93

run, 29

underscore, in Python, 38

universal loss function, 152

University of California, 49

University of Toronto, 49

174 INDEX

unknown words, 72
unsupervised learning, 3, 137
upsampling, 138

VAE, 144
Valid padding, 54
validation set, 6
value function, V, 114
value iteration, 114, 131
vanishing gradient, 39
Variable, 32
variable initialization, 32
variable scope, 99, 156
variance, 46, 131
variational autoencoders, 139, 144, 157
variational loss, 148, 150
variational methods, 144
vocabulary, of English, 72

weakly supervised learning, 137
weight initialization, 18
weights, 5
Welling, Max, 157
Wikipedia, 16
Williams, Ronald, 25, 134
window size, 84, 98
word analogy problems, 92
word embedding, 92, 96
word-embedding size, 91
word2vec, 92

Xavier initialization, 46, 48

zero-one loss, 10

	Contents
	Preface��������������
	1. Feed-Forward Neural Nets
	1.1 Perceptrons����������������������
	1.2 Cross-entropy Loss Functions for Neural Nets���
	1.3 Derivatives and Stochastic Gradient Descent��
	1.4 Writing Our Program������������������������������
	1.5 Matrix Representation of Neural Nets���
	1.6 Data Independence����������������������������
	1.7 References and Further Readings��
	1.8 Written Exercises����������������������������

	2. Tensorflow
	2.1 Tensorflow Preliminaries
	2.2 A TF Program�����������������������
	2.3 Multilayered NNs���������������������������
	2.4 Other Pieces�����������������������
	2.4.1 Checkpointing��������������������������
	2.4.2 tensordot����������������������
	2.4.3 Initialization of TF Variables���
	2.4.4 Simplifying TF Graph Creation��

	2.5 References and Further Readings��
	2.6 Written Exercises����������������������������

	3. Convolutional Neural Networks
	3.1 Filters, Strides, and Padding��
	3.2 A Simple TF Convolution Example��
	3.3 Multilevel Convolution���������������������������������
	3.4 Convolution Details������������������������������
	3.4.1 Biases�������������������
	3.4.2 Layers with Convolution������������������������������������
	3.4.3 Pooling��������������������

	3.5 References and Further Readings��
	3.6 Written Exercises����������������������������

	4. Word Embeddings and Recurrent NNs
	4.1 Word Embeddings for Language Models��
	4.2 Building Feed-Forward Language Models��
	4.3 Improving Feed-Forward Language Models���
	4.4 Overfitting
	4.5 Recurrent Networks�����������������������������
	4.6 Long Short-Term Memory���������������������������������
	4.7 References and Further Readings��
	4.8 Written Exercises����������������������������

	5. Sequence-to-Sequence Learning
	5.1 The Seq2Seq Paradigm�������������������������������
	5.2 Writing a Seq2Seq MT program���������������������������������������
	5.3 Attention in Seq2seq�������������������������������
	5.4 Multilength Seq2Seq������������������������������
	5.5 Programming Exercise�������������������������������
	5.6 Written Exercises����������������������������
	5.7 References and Further Readings��

	6. Deep Reinforcement Learning
	6.1 Value Iteration��������������������������
	6.2 Q-learning���������������������
	6.3 Basic Deep-Q Learning��������������������������������
	6.4 Policy Gradient Methods����������������������������������
	6.5 Actor-Critic Methods�������������������������������
	6.6 Experience Replay����������������������������
	6.7 References and Further Readings��
	6.8 Written Exercises����������������������������

	7. Unsupervised Neural-Network Models
	7.1 Basic Autoencoding�����������������������������
	7.2 Convolutional Autoencoding�������������������������������������
	7.3 Variational Autoencoding�����������������������������������
	7.4 Generative Adversarial Networks��
	7.5 References and Further Readings��
	7.6 Written Exercises����������������������������

	A. Answers to Selected Exercises
	A.1 Chapter 1��������������������
	A.2 Chapter 2��������������������
	A.3 Chapter 3��������������������
	A.4 Chapter 4��������������������
	A.5 Chapter 5��������������������
	A.6 Chapter 6��������������������
	A.7 Chapter 7��������������������

	Bibliography�������������������
	Index������������

		2019-03-07T16:05:58+0000
	Preflight Ticket Signature

