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Chest Cancer Detection Using Deep Learning on Chest CT-Scan Images 

This project focuses on building a deep learning model for the early detection of lung 

cancer using chest CT-Scan images. Lung cancer is one of the leading causes of cancer-related 

deaths worldwide, and early detection significantly increases survival rates. The goal of this 

project is to develop a Convolutional Neural Network (CNN) model capable of accurately 

classifying CT-Scan images into cancerous and non-cancerous categories. The dataset includes 

images labeled as either normal (non-cancerous) or representing different types of lung cancer, 

such as adenocarcinoma, large cell carcinoma, and squamous cell carcinoma. 

Project Scope: 

I. Data Acquisition and Exploration: The dataset is comprised of labeled chest CT-Scan 

images, divided into training, validation, and test sets. Initial exploration will focus on 

understanding image distributions and class labels, ensuring data quality and 

completeness. 

II. Data Preprocessing: Key steps include resizing, normalization, and augmentation of the 

images to standardize the input format and enhance the dataset for model training. A 

class imbalance strategy will be addressed if necessary. 

III. Model Development: A CNN model will be implemented to classify images into 

cancerous or non-cancerous categories. Transfer learning with pre-trained models may 

be employed to improve performance. 

IV. Model Evaluation: The model will be evaluated using metrics such as accuracy, 

precision, recall, F1-score, and AUC-ROC, with a focus on minimizing false negatives. 



 

 

Scope of the Project 

This project focuses on developing a deep learning model to detect lung cancer using 

chest CT-Scan images. The primary objective is to classify images into cancerous and non-

cancerous categories by leveraging Convolutional Neural Networks (CNNs). The scope includes 

data acquisition, preprocessing, model development, followed by evaluation and optimization of 

the model to achieve high accuracy in distinguishing different types of lung cancer, such as 

adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Additionally, transfer 

learning will be explored to enhance the model's performance; by addressing challenges such as 

imbalanced class distributions and complex image variability, this project aims to build a robust, 

scalable solution for lung cancer detection. 

Project Importance 

This project is important because lung cancer is the leading cause of cancer-related 

deaths globally, with low survival rates when detected at advanced stages. Early detection 

significantly improves outcomes, but manual analysis of CT-Scan images is prone to error and 

time-consuming. Developing an automated detection model has the potential to assist 

radiologists in early diagnosis, providing faster, more accurate results. This not only reduces the 

workload for healthcare professionals but also offers life-saving potential by detecting lung 

cancer early, when it is more treatable. The project's use of deep learning to classify complex 

medical images represents a significant advancement in the integration of artificial intelligence 

(AI) in healthcare, with the potential to benefit both clinicians and patients. 

Background of the Problem Being Analyzed 



 

 

Lung cancer detection remains challenging due to the subtle and diverse appearances of 

tumors in CT-Scan images. Even experienced radiologists can miss early signs of cancer, leading 

to delayed treatment. According to Giger (2018), AI-based diagnostic tools can enhance 

detection by providing an automated second opinion, significantly reducing the potential for 

human error. Deep learning techniques, especially CNNs, have demonstrated success in 

detecting patterns in medical images that are difficult for humans to identify (Litjens et al., 

2017). These tools are particularly valuable in screening tasks were analyzing large volumes of 

images quickly is essential for early diagnosis. This project builds upon this foundation by 

applying CNN models to distinguish between various lung cancer types and normal CT-Scans. 

Dataset Description 

The dataset consists of chest CT-Scan images labeled according to cancer type 

adenocarcinoma, large cell carcinoma, squamous cell carcinoma and normal cases. The images 

are divided into training, validation, and test sets, providing a structure for model development 

and evaluation. Each image has been standardized in terms of size and resolution, making it 

ready for deep learning model input. The dataset reflects real-world challenges, such as 

imbalanced class distribution (more normal images than cancerous ones) and the complexity of 

detecting small lesions within the lungs. Augmentation techniques will be applied to enhance 

dataset diversity and improve the generalization capabilities of the model. This dataset forms the 

foundation of the project, offering a robust set of images that represent common diagnostic 

challenges faced by radiologists. 
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                       Project Scope 

Problem Description 

Lung cancer is the leading cause of cancer-related deaths globally, accounting for 

millions of deaths each year. Early detection significantly increases the chances of successful 

treatment, but diagnosing lung cancer through traditional means, such as chest X-rays or CT-

Scans, can be challenging, time-consuming, and prone to human error. Radiologists are often 

required to examine hundreds of images to detect signs of cancer, leading to a high potential for 

misdiagnosis, especially in the early stages when symptoms are less obvious. 

This project aims to address the problem of automating lung cancer detection using 

advanced machine learning techniques, specifically deep learning models. By leveraging a 

dataset of labeled chest CT-Scan images, the project seeks to develop a reliable Convolutional 

Neural Network (CNN) that can classify CT-Scans as either cancerous or non-cancerous. This 

will not only speed up the diagnosis process but also potentially reduce human error, providing a 

more consistent and accurate approach to identifying lung cancer at its earliest stages. 

The problem lies in the ability to differentiate between various types of lung cancer 

adenocarcinoma, large cell carcinoma, squamous cell carcinoma and normal lung scans. The 

variability in tumor appearance, size, and location across different patients makes accurate 

classification challenging. This project addresses the need for an automated tool that can assist 

healthcare professionals by improving the speed and accuracy of cancer detection, ultimately 

leading to earlier interventions and better patient outcomes. 



 

 

Importance of the Problem 

Lung cancer remains the leading cause of cancer-related deaths worldwide, with millions 

of new cases diagnosed each year. The survival rate for lung cancer is significantly higher when 

detected early, but unfortunately, most cases are diagnosed at advanced stages when treatment 

options are limited, and the prognosis is poor. Early detection is critical, as it can dramatically 

increase the likelihood of successful treatment and extend patient survival. 

However, identifying lung cancer in its early stages is particularly challenging. 

Radiologists must meticulously analyze chest CT-Scan images to detect subtle signs of cancer, 

which can vary widely depending on the type of cancer and its location in the lungs. This process 

is time-consuming and susceptible to human error due to the sheer volume of images that must 

be reviewed. Misdiagnoses or delays in diagnosis can lead to worse patient outcomes, with 

advanced cancers being more difficult to treat effectively. 

Given these challenges, automating lung cancer detection using deep learning models 

holds significant promise. A reliable Convolutional Neural Network (CNN) can help alleviate 

the burden on radiologists by providing faster, more accurate preliminary screenings, enabling 

medical professionals to focus on more complex cases. By developing an automated tool that 

consistently identifies cancerous CT-Scans with high accuracy, the model can potentially save 

lives through earlier diagnosis and more timely interventions. 

This problem is vital because it addresses the need for scalable, efficient, and accurate 

diagnostic tools in a healthcare system that faces increasing demands, especially in the context of 

cancer detection and treatment. 



 

 

The data analytics problem that I am analyzing is the development of an automated 

system for detecting lung cancer from chest CT-Scan images using deep learning techniques. 

Specifically, the challenge involves building a model that can accurately classify images as either 

cancerous or non-cancerous, with the goal of identifying different types of lung cancer early and 

reliably. By leveraging data analytics and machine learning, this solution aims to improve 

diagnostic accuracy, reduce the workload on medical professionals, and facilitate timely 

treatment for patients, ultimately improving survival rates and healthcare outcomes. 

Project Importance 

This project was selected due to the critical need for early and accurate lung cancer 

detection, which can dramatically improve patient survival rates. Lung cancer is the leading 

cause of cancer-related deaths worldwide, with a 5-year survival rate of only 19% across all 

stages. However, early-stage detection increases the survival rate to nearly 60% (American 

Cancer Society, 2023). Traditional diagnostic methods, such as manual analysis of CT-Scan 

images, are time-intensive and prone to human error, especially given the volume of scans that 

radiologists must process daily. By using machine learning, specifically deep learning models 

like Convolutional Neural Networks (CNNs), this project aims to automate and improve the 

detection process, helping to catch cancer earlier when treatment is most effective. Automated 

tools powered by artificial intelligence (AI) can assist radiologists by acting as a second opinion, 

reducing diagnostic errors and speeding up the diagnostic process (Giger, 2018). 

The importance of this project extends beyond improving individual patient outcomes. It 

addresses a broader healthcare challenge by introducing a scalable and efficient solution that can 

benefit healthcare systems globally, particularly in regions with a shortage of trained 



 

 

radiologists. The beneficiaries of this project include not only patients, who will receive faster 

and more accurate diagnoses, but also healthcare professionals, who will have access to 

advanced tools that reduce their workload and improve their diagnostic capabilities. 

Furthermore, this technology can aid in medical research by providing large-scale, automated 

analysis of imaging data, potentially uncovering new insights into the patterns of lung cancer. As 

the field of AI in healthcare continues to evolve, this project contributes to the growing body of 

work demonstrating how AI-driven diagnostics can revolutionize medical practice and patient 

care (Hosny, Parmar, Quackenbush, Schwartz, & Aerts, 2018). 

Background 

Lung cancer is one of the deadliest cancers globally, accounting for approximately 18% 

of all cancer-related deaths (World Health Organization, 2020). Early detection through imaging, 

particularly using chest CT-Scans, has become one of the primary methods for identifying lung 

cancer in its early stages, significantly improving patient outcomes (National Lung Screening 

Trial Research Team, 2011). However, the manual interpretation of CT-Scans by radiologists is 

both labor-intensive and prone to diagnostic errors, particularly when dealing with large volumes 

of scans in busy clinical environments. Studies show that even experienced radiologists can miss 

early-stage lung cancer lesions due to their small size or subtle appearance (Balata et al., 2021). 

To address these limitations, artificial intelligence (AI) and machine learning have emerged as 

valuable tools for assisting radiologists in detecting cancer more accurately and efficiently. By 

developing deep learning models that can automatically analyze medical images, healthcare 

providers can reduce the burden on radiologists while simultaneously improving diagnostic 

precision. 



 

 

In recent years, Convolutional Neural Networks (CNNs), a class of deep learning 

algorithms, have demonstrated remarkable success in medical imaging tasks, including cancer 

detection (Litjens et al., 2017). CNNs excel at identifying spatial hierarchies in images, making 

them ideal for analyzing complex medical images such as CT-Scans, where identifying small, 

irregular patterns is crucial for early cancer detection. Moreover, studies have shown that CNN-

based models can achieve similar or even better accuracy than human experts in specific 

diagnostic tasks (Ardila et al., 2019). The integration of CNN models in lung cancer screening 

can help bridge the gap between early detection and treatment, providing a more scalable 

solution to screening large populations. This project builds upon these advancements in deep 

learning by developing a CNN model specifically tailored to classify chest CT-Scan images as 

either cancerous or non-cancerous, with the potential to improve both the speed and accuracy of 

lung cancer diagnosis. 

Data Set Description 

The dataset for this project consists of labeled chest CT-Scan images, which are 

organized into separate categories based on the presence and type of lung cancer. The dataset 

includes images from patients diagnosed with various types of lung cancer, such as 

adenocarcinoma, large cell carcinoma, and squamous cell carcinoma, as well as images from 

healthy individuals labeled as “normal.” The images are divided into three main subsets: 

training, validation, and testing, ensuring that the model is trained, fine-tuned, and evaluated on 

different samples to prevent overfitting. Each subset contains a balanced representation of 

cancerous and non-cancerous cases to ensure that the model is exposed to a wide variety of 

examples. The dataset also includes metadata, such as the cancer stage and location (e.g., 



 

 

"adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib"), which may be useful for further analysis or 

model extension. The CT-Scan images have been pre-processed to a uniform size and resolution, 

allowing them to be fed directly into a Convolutional Neural Network (CNN) for classification. 

In terms of quantity, the dataset includes thousands of images across the various 

categories, providing sufficient data for training a robust deep learning model. Data 

augmentation techniques, such as rotation, flipping, and zooming, can also be applied to 

artificially increase the size of the dataset, which is important for improving model 

generalization. The images are grayscale, as color is not relevant in this context, and the focus is 

on the structure and patterns within the lungs. This dataset provides a solid foundation for the 

project, as it reflects real-world diagnostic challenges that radiologists face in detecting cancer 

from medical imaging. Given the complexity of medical images and the variability of cancer 

appearances, the dataset's diversity in terms of patient cases, cancer types, and stages is essential 

for building a model that generalizes well to unseen data. The goal is to use this data to train a 

model capable of distinguishing between cancerous and non-cancerous lung CT-Scans, aiding in 

early cancer detection and diagnosis. 

Data Analytics Tools 

For this project, several data analytics and machine learning tools will be utilized to 

process, analyze, and model the chest CT-Scan images. Python will be the primary programming 

language due to its extensive libraries for data science and machine learning. Specifically, 

TensorFlow and Keras will be used to build and train the Convolutional Neural Network (CNN) 

model, as these libraries offer powerful functionalities for developing deep learning models with 

a high level of abstraction. TensorFlow provides the flexibility to work with large datasets and 



 

 

GPU acceleration for faster training. NumPy and Pandas will be used for data manipulation and 

preprocessing, particularly for handling any accompanying metadata and organizing the dataset 

into train, validation, and test splits. Additionally, Matplotlib and Seaborn will be used for 

visualizing the data distribution, model performance metrics, and training results, providing 

valuable insights throughout the project. 

To further enhance model performance, OpenCV and Pillow (PIL) will be used for image 

preprocessing tasks, such as resizing, normalization, and augmentation. These libraries will help 

standardize the input images before they are fed into CNN. For model evaluation, Scikit-learn 

will be employed to generate performance metrics like accuracy, precision, recall, F1-score, and 

the confusion matrix, helping to assess how well the model distinguishes between cancerous and 

non-cancerous images. Additionally, KerasTuner may be used to optimize hyperparameters like 

learning rate, batch size, and number of layers in the CNN, ensuring the model achieves optimal 

performance.  

Project Milestones 

Dataset Exploration and Preprocessing  

The project begins with acquiring and understanding the dataset. This involves loading 

the chest CT-Scan images and performing exploratory data analysis (EDA) to understand the 

distribution of classes (cancerous vs. non-cancerous) and the overall structure of the dataset. 

Preprocessing tasks include resizing images, normalizing pixel values, and ensuring labels are in 

the correct format. Additionally, data augmentation techniques such as rotation, flipping, and 

zooming will be applied to increase the diversity of the training set and prevent overfitting. 



 

 

Model Development: Basic CNN Architecture  

 During this milestone, a basic Convolutional Neural Network (CNN) will be designed 

and implemented to classify the CT-Scan images. The model will include essential layers such as 

Conv2D, MaxPooling, Flatten, and Dense layers to extract features from the images and perform 

classification. The CNN model will be trained on the preprocessed dataset, using metrics such as 

accuracy and loss to monitor its performance. The model's performance on the validation set will 

also be observed to detect potential overfitting. 

Model Optimization and Transfer Learning  

To improve model performance, hyperparameter tuning will be performed, adjusting 

parameters such as learning rate, batch size, and number of layers. Additionally, transfer learning 

will be explored by leveraging pre-trained models like VGG16 or ResNet50 to enhance the 

CNN's performance on medical images. Fine-tuning of these models will be conducted to adapt 

them to the specific chest CT-Scan dataset. The optimized model will then be evaluated using 

performance metrics such as precision, recall, F1-score, and AUC-ROC. 

Model Evaluation and Testing  

 In this milestone, the final model will be tested on the test dataset to evaluate its ability 

to generalize to unseen data. This step includes generating a confusion matrix, ROC curve, and 

classification report to thoroughly assess the model's performance in classifying cancerous and 

non-cancerous images. Special attention will be paid to minimizing false negatives, as early 



 

 

cancer detection is crucial in clinical settings. Any misclassifications will be analyzed to further 

understand model limitations and areas for improvement. 

These milestones ensure a structured approach, taking the project from data preparation 

and model development to practical application. Each phase builds upon the last to create a fully 

functional lung cancer detection system. 

 

  



 

 

 

Stage 1  Stage 1 focused on defining the project’s scope and objectives, centering on 

the classification of chest CT scans to aid in lung cancer detection. This 

involved a detailed review of the dataset to identify potential challenges, such 

as variations in image quality and potential class imbalances that could impact 

model accuracy. By understanding the characteristics and limitations of the 

data early on, I could establish a clear plan for data handling and model 

development, setting a strong foundation for the rest of the project. 

 I concentrated on data profiling and preparation, ensuring the dataset 

was in optimal condition for training. This stage required resizing the images 

for consistency, normalizing pixel values, and implementing data 

augmentation to introduce variability. These steps were critical for enhancing 

the dataset’s quality and helping the model generalize better to unseen data. 

Addressing these preprocessing tasks provided a stable and reliable dataset, 

allowing the models to achieve more accurate and meaningful results. 

 

Stage 2 Stage 2 I focused on exploring and understanding the chest CT scan 

dataset through various visualization techniques. I created class distribution 

bar charts to identify imbalances in the dataset, which highlighted the need for 

augmentation to address overrepresentation of certain categories. I also 

generated pixel intensity histograms to analyze the brightness and contrast 



 

 

levels of the images, which helped me make informed preprocessing decisions 

such as normalization to ensure consistent data quality. 

Additionally, I created sample image grids of both the original and 

augmented images to visually inspect the dataset’s quality and the 

effectiveness of the augmentation techniques I applied. These grids helped me 

confirm that transformations like flipping, rotation, and zooming maintained 

the critical features necessary for classification. Through these visualizations, I 

gained a clearer understanding of the dataset’s structure, which was essential 

for preparing the data for modeling and addressing challenges such as class 

imbalance and variability. 

 

Stage 3 At stage 3, the project was data modeling, where two machine learning 

models were implemented, a Basic CNN and a Transfer Learning model using 

VGG16. The models were trained on the prepared dataset, leveraging 

preprocessing and data augmentation to enhance their generalization 

capabilities. The performance of each model was evaluated using validation 

metrics like accuracy, precision, and recall, which helped identify their 

strengths and limitations. Together, these stages offered a deeper 

understanding of the dataset and the effectiveness of various modeling 

approaches for medical image classification, while also setting the stage for 

further improvements 



 

 

The project explored advanced architectures like ResNet and 

EfficientNet to improve classification performance on the chest CT scan 

dataset. These models were selected for their ability to handle complex image 

classification tasks and their proven effectiveness in medical imaging 

applications. The focus was on evaluating how well these models could 

address challenges identified in earlier stages, such as subtle feature detection 

and class imbalance. 

The implementation involved fine-tuning pre-trained versions of these 

models using transfer learning techniques, like VGG16. Key steps included 

freezing initial layers to retain pre-trained feature extraction capabilities while 

fine-tuning deeper layers to adapt to the specific characteristics of the CT scan 

dataset. Performance metrics like accuracy, precision, recall, and F1-score 

were analyzed to assess the effectiveness of these models in improving 

classification outcomes. Additionally, strategies such as hyperparameter tuning 

and further data augmentation were applied to enhance the models’ 

generalization capabilities. These efforts provided critical insights into the 

strengths and limitations of advanced architecture, guiding recommendations 

for selecting a champion model for the task. 

 

Stage 4 In the data modeling phase of the project, I worked on designing, 

implementing, and evaluating machine learning models to classify chest CT 

scan images into four categories: normal, adenocarcinoma, squamous cell 

carcinoma, and large cell carcinoma. Two primary approaches were utilized: a 



 

 

Basic Convolutional Neural Network (CNN) and a VGG16 Transfer Learning 

model. The CNN model was built from scratch to identify features within the 

dataset, while the VGG16 model leveraged pre-trained weights from the 

ImageNet dataset to adapt knowledge for this specific medical application. 

The modeling process involved rigorous experimentation with 

hyperparameters, architecture modifications, and fine-tuning of the pre-trained 

model to improve classification accuracy. The evaluation of the models was 

carried out using metrics such as accuracy, precision, recall, and F1-score, 

alongside confusion matrices for detailed performance analysis. While both 

models showed moderate accuracy, 63.93% for the Basic CNN and 64.75% for 

the VGG16 model, the results highlighted areas where further refinement is 

needed. 

In terms of results, the findings demonstrated the effectiveness of 

transfer learning in improving performance compared to a model trained from 

scratch. However, challenges such as class imbalance and variability in image 

quality were identified as limiting factors in achieving higher accuracy. These 

insights were critical in shaping the recommendations for future work, 

including exploring advanced architectures like ResNet or Inception and 

addressing dataset-related issues through augmentation or expansion. Overall, 

the data modeling phase provided valuable experience in applying AI to 



 

 

medical imaging while highlighting the potential and challenges of such 

approaches. 

 

 

 

Stage  1 During the first stage of the project, which focused on dataset 

exploration and initial understanding, several key insights were gained. First 

and foremost, I learned the importance of properly understanding the structure 

of the dataset, especially in the context of medical imaging, where each image 

represents vital diagnostic information. The dataset's organization into 

training, validation, and test sets, along with distinct labels for different types 

of lung cancer (adenocarcinoma, large cell carcinoma, squamous cell 

carcinoma) and normal cases, emphasized the need for clear labeling and 

class balance. I also realized that before diving into model building, taking 

time to explore the images themselves is crucial to ensuring that the data is 

clean, well-distributed, and suitable for training a model. 

Stage 2 Data Profiling and Preparation, I learned the importance of thoroughly 

inspecting and cleaning the dataset to ensure high-quality inputs for the 

model. This included resizing images for uniformity, normalizing pixel values 

for consistent processing, and addressing class imbalances that could impact 

model performance. I also applied data augmentation techniques like rotation 

and flipping to increase data diversity and help the model generalize better. 



 

 

Overall, this stage taught me how essential data preparation is in building 

reliable machine learning models. 

Stage 3 As part of the data visualization of the assignment, I learned the 

importance of visually exploring the dataset to gain a deeper understanding of 

its structure and quality. I discovered how crucial class distribution 

visualizations are in identifying imbalances that could significantly affect 

model training and evaluation. By creating pixel intensity histograms, I 

understood how variations in brightness and contrast within the images could 

influence the ability of models to learn distinguishing features, emphasizing 

the need for normalization and preprocessing. 

Additionally, I learned how sample image grids provide a 

straightforward yet powerful way to validate the effectiveness of data 

augmentation strategies. These grids allowed me to visually assess whether 

transformations such as flipping, rotation, and zooming preserved the key 

features necessary for classification tasks. I also realized how visualizing the 

data can reveal hidden issues, such as mislabeled or corrupted images, that 

could otherwise compromise the model's performance.  

Stage 4 The data modeling stage of the assignment, I learned the intricacies of 

selecting and implementing machine learning models for medical image 

classification. I gained a deeper understanding of how different architectures, 

such as a Basic CNN and a Transfer Learning model using VGG16, can 

impact performance depending on the complexity of the dataset. I realized the 



 

 

importance of tailoring models to the specific needs of the task, such as 

freezing pre-trained layers in VGG16 to leverage existing knowledge while 

fine-tuning deeper layers for domain-specific learning. 

Through this process, I also learned how critical it is to evaluate 

models using metrics like accuracy, precision, recall, and F1-score to 

understand their strengths and limitations. For example, I observed how class 

imbalance in the dataset could affect the models' ability to generalize, 

highlighting the need for augmentation and other techniques to address this 

issue. I also understood how hyperparameter tuning, such as adjusting 

learning rates and batch sizes, plays a vital role in improving model 

performance. Finally, this stage taught me that achieving high performance in 

medical imaging tasks requires a careful balance between leveraging pre-

trained models and adapting them to the nuances of the dataset, as well as 

addressing challenges like class imbalance and subtle feature distinctions. 

 

Stage 5 Through this project, I gained a deeper understanding of the 

complexities involved in applying machine learning and deep learning to 

medical imaging, particularly in the context of classifying chest CT scans for 

cancer detection. I learned the importance of data preparation and the critical 

role it plays in model performance, from image resizing and normalization to 

addressing class imbalances. These steps reinforced the idea that high-quality 

data is the foundation of any successful AI project. 



 

 

I also developed a greater appreciation for the strengths and 

limitations of different modeling approaches. Working with a Basic CNN 

model taught me how to build architectures from scratch, while 

experimenting with the VGG16 Transfer Learning model highlighted the 

benefits of leveraging pre-trained networks for specialized tasks. 

Additionally, the challenges of achieving high accuracy underscored the 

importance of hyperparameter tuning, data augmentation, and fine-tuning pre-

trained layers to adapt models to specific domains. 

Beyond technical skills, I learned the value of critically analyzing 

results and identifying areas for improvement. For example, understanding 

the impact of biases in the dataset and recognizing limitations in model 

generalization provided insights into designing fairer and more robust AI 

systems. Moreover, this project emphasized the importance of ethical 

considerations, especially when dealing with sensitive medical data, and the 

need to align AI applications with trust and transparency principles. 

 

 

  



 

 

Data Profiling and Preparation 

Data Summary 

The dataset used for this project consists of chest CT-Scan images categorized into 

cancerous and non-cancerous cases, with further differentiation among different lung cancer 

types, such as adenocarcinoma, large cell carcinoma, and squamous cell carcinoma. The dataset 

is divided into three main subsets: training, validation, and test sets, allowing for efficient model 

development, fine-tuning, and final evaluation. Each subset contains thousands of images that 

have been standardized in terms of size and format, ensuring that all images are ready for input 

into the machine learning model. Accompanying the images are labels that identify whether each 

scan corresponds to a cancerous or normal case, and in the case of cancerous images, the specific 

type of lung cancer is provided. This labeling provides the foundation for a multi-class 

classification task, where the goal is to distinguish between cancerous and non-cancerous cases 

and identify the specific type of cancer when present. 

In addition to the images themselves, there may be metadata related to patient 

demographics or the stage of cancer, though this information is secondary to the image analysis 

and may not be used in the initial stages of model development. The dataset displays a class 

imbalance, with non-cancerous (normal) cases often outnumbering the cancerous cases. This 

imbalance is common in medical datasets and presents challenges during model training, as the 

model could be biased toward the majority class (normal). Techniques such as oversampling, 

undersampling, or synthetic data generation (e.g., SMOTE) may be used to address this issue 

during data preparation. Finally, data augmentation techniques like rotation, scaling, and flipping 



 

 

will be applied to expand the dataset further, enhancing the model’s ability to generalize across 

unseen data. This initial profiling indicates that the dataset is suitable for training a robust deep 

learning model, but careful attention must be given to handling the class imbalance and ensuring 

effective model generalization. 

The importance of the data set 

The dataset is critical to the success of this project because it provides the foundation for 

training and evaluating the deep learning model that will be used for lung cancer detection. 

Medical imaging data, particularly CT-Scans, offers a rich source of information about the 

structure and conditions of the lungs, allowing the model to learn from real-world diagnostic 

cases. By analyzing these images, the model can potentially identify subtle patterns and 

anomalies that may be missed by human eyes, particularly in the early stages of lung cancer 

when signs are not always obvious. The ability to automatically classify images as cancerous or 

non-cancerous with high accuracy can lead to significant improvements in early cancer 

detection, which is crucial for increasing survival rates. 

The dataset’s importance also lies in its representation of various types of lung cancer, 

such as adenocarcinoma, large cell carcinoma, and squamous cell carcinoma, alongside normal, 

non-cancerous cases. This variety enables the model to not only detect cancer but to differentiate 

between the types of cancer, which is essential for personalized treatment plans and patient care. 

Additionally, the dataset’s use in training a deep learning model for cancer detection has broader 

implications for the healthcare industry. If models trained on this dataset can be deployed 

effectively, they could support radiologists by providing faster, more accurate preliminary 

diagnoses, alleviating the burden of manual image analysis, and helping improve clinical 



 

 

decision-making. The dataset serves as the cornerstone for developing such an AI-powered tool, 

making it a crucial asset in advancing automated healthcare diagnostics. 

Source of the Dataset 

I. Dataset Name: Chest CT-Scan Images Dataset 

II. Dataset Provider: Mohamed Hany on Kaggle 

a. Kaggle Dataset Link 

III. License: The dataset is licensed under the Open Database License (ODbL) v1.0, as provided by 

the Open Data Commons. 

a. ODbL License Details 

Attribution and Usage Rules 

According to the Open Database License (ODbL) v1.0, any use, redistribution, or 

modification of this dataset must: 

I. Attribute the original source by crediting both the dataset provider (Mohamed Hany) and 

the Kaggle platform. 

II. State any modifications if the dataset is altered, transformed, or built upon. 

III. Share under the same license if redistributed, ensuring that the same open data license 

applies. 

Any use of the "Chest CT-Scan Images" dataset should clearly credit Mohamed Hany 

on Kaggle as the original source, and any modified versions should also be shared under the 

ODbL license. 

https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images
https://opendatacommons.org/licenses/odbl/1-0/


 

 

 

 

The dataset is organized into three main subsets: train, validation, and test, with each 

subset containing images grouped into the following four categories: 

 

I. Adenocarcinoma: adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib 

II. Large Cell Carcinoma: large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa 

III. Squamous Cell Carcinoma: squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa 

IV. Normal: normal 

Class distribution in the training set: 



 

 

I. Adenocarcinoma (left lower lobe): 195 images 

II. Large Cell Carcinoma (left hilum): 115 images 

III. Squamous Cell Carcinoma (left hilum): 155 images 

IV. Normal (non-cancerous): 148 images 

This gives a total of 613 images in the training set. Since this is an image dataset, it 

doesn’t have traditional rows and columns like tabular data. Instead, each image can be 

considered as one data point (row). 

Training Set: 

613 Images belong to 4 classes. 

These 4 classes are: 

I. Adenocarcinoma: 195 images 

II. Large Cell Carcinoma: 115 images 

III. Squamous Cell Carcinoma: 155 images 

IV. Normal (non-cancerous): 148 images 

This result indicates that the training set is composed of 613 labeled chest CT-Scan 

images, divided across these four categories. These images are used by the model to learn and 

adjust its weights through repeated exposure to patterns present in each class. 

Validation Set: 

I. 72 images belonging to 4 classes. 



 

 

II. These images are held back during training and used to validate the model's 

performance after each epoch. 

The 72 images in the validation set are also split across the same four classes 

(adenocarcinoma, large cell carcinoma, squamous cell carcinoma, and normal). This set is 

important for ensuring that the model generalizes well and isn't simply memorizing the training 

data. 

Key Points: 

I. Class Distribution: The distribution of images across the four classes in both the training and 

validation sets seems relatively balanced, though some classes (e.g., large cell carcinoma) have 

fewer samples than others (e.g., adenocarcinoma). 

II. Training Set Size: With 613 images, this training set size is on the smaller side for training deep 

learning models, especially for a complex problem like cancer detection. However, the use of 

data augmentation (e.g., rotation, zooming, flipping) helps by artificially increasing the variety 

of images, allowing the model to learn more effectively from this limited data. 

III. Validation Set: The 72 images in the validation set are used for evaluating model performance 

during training, providing an unbiased evaluation of how well the model is learning to classify 

images without influencing the training process. The size is smaller compared to the training set, 

but it serves as a snapshot of how well the model generalizes to unseen data. 

1. Training Dataset 

The training dataset is used to teach the model. The model looks at the input data (in this 

case, CT-Scan images) and their corresponding labels (cancerous vs. non-cancerous). It uses 

these labels to learn the patterns and features of the data to differentiate between cancerous and 



 

 

non-cancerous cases, as well as between different cancer types (adenocarcinoma, large cell 

carcinoma, and squamous cell carcinoma). 

Size: The training set consists of 613 images, distributed across four classes: 

I. Adenocarcinoma: 195 images 

II. Large Cell Carcinoma: 115 images 

III. Squamous Cell Carcinoma: 155 images 

IV. Normal (non-cancerous): 148 images 

Purpose: 

 The model learns from this data, adjusting its internal weights to minimize the error in 

predicting the correct class for each image. During the training process, the model 

repeatedly goes over the training data (epochs), refining itself to become better at 

distinguishing between the categories. 

2. Validation Dataset 

The validation dataset is used during training to evaluate the model’s performance 

without directly influencing the training process. It helps to check whether the model is 

overfitting (learning too much from the training data and failing to generalize to new data) or 

underfitting (failing to learn enough from the training data). 

Size: Typically, a validation set is smaller than the training set. It is a subset of the entire dataset, 

held back during training. 



 

 

Purpose:  

The model’s performance is assessed on this data after each epoch or after every few epochs. 

The goal is to monitor metrics such as accuracy, loss, precision, and recall. This dataset helps in 

tuning hyperparameters (e.g., learning rate, number of layers) and ensures that the model 

performs well on unseen data. 

No Training Influence: The validation set does not directly update the model's weights but 

provides an objective measure of how well the model is likely to perform on new data. 

Why Both Sets Are Needed: 

I. Training Dataset: Essential for learning the underlying patterns in the data. Without this, 

the model would not know how to classify new images. 

II. Validation Dataset: Critical for assessing how well the model generalizes to unseen data 

and prevents the model from being overfit to the training data. 

Data Definition/Data Profile 

 

Field/Variabl

e 

    Definition  Data Type    Outliers Frequency of 

Nulls 

Potential Quality Issues 

Image Files Chest CT-Scan images 

of patients' lungs, 

categorized into 

cancerous and non-

cancerous. Each image 

corresponds to one 

class. 

Image Unlikely None Variability in image size, 

quality, resolution. Images 

may be noisy or blurry. 



 

 

Labels/Classe

s 

Label indicating 

whether the image 

belongs to 

adenocarcinoma, large 

cell carcinoma, 

squamous cell 

carcinoma, or normal. 

Categorical 

No outliers 

expected 

(fixed 

categories) None 

Class imbalance between 

different types of cancer 

(e.g., fewer large cell 

carcinoma images). 

Image 

Dimensions 

Dimensions of each 

image (256x256 

pixels). 

Integer Potential for 

images of 

varying sizes 

None Inconsistent image sizes 

could affect model training 

unless resized uniformly. 

Pixel Values Grayscale pixel values 

for each image 

(ranging from 0 to 255 

before normalization). 

Integer Unlikely None 
Pixel values need 

normalization (scaling 

between 0-1) for training. 

Training Set 

Size 

Number of images in 

the training set: 613 

images across 4 

classes. 

Integer N/A None Smaller dataset size may 

affect model generalization. 

Data augmentation is 

necessary. 

Validation 

Set Size 

Number of images in 

the validation set: 72 

images across 4 

classes. 

Integer N/A None Small validation set size may 

not capture all variations, 

affecting performance 

evaluation. 

      

Data Preparation 

Data Preparation Process and Tools 

In this project, the goal is to build a deep learning model using chest CT-Scan images to 

classify between normal cases and different types of lung cancer. Preparing the data is a critical 

step to ensure the model can effectively learn from the dataset and generalize well to new data. 

Process for Data Preparation: 

1. Data Extraction: 



 

 

I. Process: The first step is to extract the dataset from the ZIP file into a working 

directory. 

II. Tools: We will use Python's Zip file module to extract the data into directories for 

training, validation, and testing. 

2. Data Exploration: 

I. Process: Once the data is extracted, we will explore the directory structure and 

check the distribution of images across the different classes (normal, 

adenocarcinoma, squamous cell carcinoma, and large cell carcinoma). 

II. Tools: We will use OS (for navigating the file system) and print statements to 

inspect the number of images per class and ensure everything is correctly 

structured. 

3. Data Cleaning: 

I. Process: This involves checking the data for any corrupted or missing images, 

inconsistent file names, or improper labels. We may also ensure that the images 

are correctly categorized. 

II. Tools: Python and libraries such as PIL (Python Imaging Library) can be used to 

open and verify the integrity of image files. 

4. Image Resizing and Normalization: 

a. Process: We need to resize all images to a consistent shape (e.g., 128x128 or 

256x256 pixels) because deep learning models typically require fixed-size inputs. 



 

 

We will also normalize the pixel values to a range of [0, 1] (from the original [0, 

255]) for better model performance. 

b. Tools: 

i. Keras ImageDataGenerator: This is part of the TensorFlow/Keras 

framework and is used to resize and rescale images. 

ii. PIL or OpenCV can also be used for image preprocessing. 

5. Data Augmentation: 

a. Process: To increase the diversity of the training data, we apply data 

augmentation techniques such as random rotations, flips, zooms, and translations. 

This helps prevent overfitting, especially with smaller datasets. 

b. Tools: 

i. Keras ImageDataGenerator: This allows for on-the-fly data 

augmentation such as rotation, zooming, flipping, and shifting. 

ii. Other libraries like Albumentations can also be used for more advanced 

augmentations. 

6. Splitting Data into Training, Validation, and Test Sets: 

I. Process: If the dataset is not already split into training, validation, and test sets, we 

will split it ourselves. The training set is used to train the model, the validation set to 

tune hyperparameters and prevent overfitting, and the test set to evaluate the final 

performance. 



 

 

II. Tools: We can either manually split the dataset using Python (OS library) or use 

utilities in Keras ImageDataGenerator to load and split the data automatically. 

7. Handling Class Imbalance: 

a. Process: In medical datasets, it's common to have an imbalance between different 

classes (e.g., more normal cases than cancer cases). We will handle this imbalance 

by either: 

i. Oversampling the minority class (creating more instances of 

underrepresented classes). 

ii. Using data augmentation techniques for the minority class. 

b. Tools: Data augmentation via ImageDataGenerator or SMOTE (Synthetic 

Minority Over-sampling Technique) for oversampling. 

 

Tools for Data Preparation: 

I. Python: 

a. Python is the main language for data handling, extraction, and processing. 

II. TensorFlow/Keras: 

a. Keras ImageDataGenerator: This tool allows for on-the-fly preprocessing 

and augmentation of images. It can be used to resize, normalize, and augment 

the images during training. 

PIL (Python Imaging Library) or OpenCV: 



 

 

• These libraries can be used for image processing tasks like resizing and 

converting image formats. They are also helpful for checking image integrity and correcting 

issues with images. 

OS Library: 

• This Python library helps in navigating directories and managing files. It will be 

used to list directories, count images in each class, and create or move files during dataset splits. 

SMOTE (Optional, for Class Imbalance): 

• If data augmentation is not sufficient to address class imbalance, SMOTE can be 

used to generate synthetic samples of the minority class. This tool creates new samples by 

interpolating between existing samples. 

The combination of TensorFlow/Keras, ImageDataGenerator, PIL/OpenCV, and Python's 

os library will be used to clean, preprocess, and augment the dataset, making it ready for training 

the deep learning model. Addressing class imbalance through augmentation and careful splitting 

into training, validation, and test sets will ensure that the model learns effectively and generalizes 

well. 

Data Cleansing Process and Tools 

In this project, where we are working with chest CT-Scan images to classify different 

lung cancer types and normal cases, data cleansing is an important step to ensure that the dataset 

is free from errors, inconsistencies, and issues that could negatively affect model performance. 



 

 

Since we're dealing with image data, data cleansing focuses on image-specific tasks such as file 

integrity, resizing, normalization, and ensuring consistent labels. 

Process for Data Cleansing: 

I. Verify Image Integrity: 

a. Process: The first step is to ensure that all images in the dataset are valid and 

not corrupted. This includes verifying that each image can be opened and 

processed, and there are no missing or unreadable images. 

b. Tools: 

i. PIL (Python Imaging Library) or OpenCV can be used to open each 

image and check for any issues. 

ii. If an image is corrupted or unreadable, it will be flagged and removed 

from the dataset. 

Handle Missing Data (Files): 

I. Process: If any image files are missing from the dataset, we need to identify these 

gaps and determine whether to replace, remove, or generate synthetic data (using 

augmentation techniques) to ensure that the dataset remains balanced. 

II. Tools: 

a. Python’s os library to iterate through directories and verify the number of 

images in each class. 

b. Data Augmentation (via Keras or Albumentations) to generate new samples 

in case of missing or insufficient data. 



 

 

Uniform Image Resizing: 

I. Process: Images in the dataset may vary in size and resolution, which can pose 

challenges when training deep learning models. All images will be resized to a 

uniform shape (e.g., 128x128 or 256x256 pixels). 

II. Tools: 

a. PIL or OpenCV to resize images uniformly across the dataset. 

b. Keras ImageDataGenerator can also handle resizing during data loading. 

Normalize Pixel Values: 

I. Process: Normalization is critical in image processing because raw pixel values range 

from 0 to 255 and scaling them to a range between 0 and 1 improves model 

performance. This makes it easier for the model to learn and converge during training. 

II. Tools: 

a. Keras ImageDataGenerator will rescale pixel values during data loading. 

b. Alternatively, NumPy can be used to manually normalize the images. 

Ensure Consistent and Correct Labels: 

I. Process: The dataset is structured into folders corresponding to each class (e.g., 

adenocarcinoma, large cell carcinoma, squamous cell carcinoma, and normal). We 

need to ensure that all images are placed in the correct folder and that there are no 

misclassified or mislabeled images. 

II. Tools: 



 

 

a. Python’s os library to inspect the folder structure and ensure labels match the 

contents. 

b. If manual inspection is required, we can look at random samples from each 

class. 

Remove Duplicates: 

I. Process: Duplicate images can affect model training by skewing the model's ability to 

generalize. We will identify and remove duplicate images. 

II. Tools: 

a. ImageHashing (via libraries like imagehash) or manual inspection to detect 

and remove duplicate images. 

I. Augment Data to Handle Class Imbalance: 

II. Process: If there is class imbalance (e.g., significantly fewer images for one type 

of cancer than others), we can use data augmentation to create additional samples 

for the minority classes. This will ensure that the model does not become biased 

toward the majority class. 

III. Tools: 

a. Keras ImageDataGenerator to apply augmentations such as rotations, 

zooms, flips, etc. 

Tools for Data Cleansing: 

I. PIL (Python Imaging Library): 

a. Used to open, resize, verify, and manipulate images. 



 

 

II. OpenCV: 

a. Another library for handling image-related tasks such as resizing, image 

transformations, and file integrity checks. 

III. Keras ImageDataGenerator: 

a. Used to normalize, augment, and preprocess images during data loading 

and model training. 

IV. os Library: 

a. Essential for navigating directories, counting files, and managing file 

structures. 

V. imagehash: 

a. A library that can be used to detect and remove duplicate images by 

computing hash values for each image. 

By following these steps and using the mentioned tools, we will cleanse the dataset to 

ensure it is of high quality for training the deep learning model. This includes verifying image 

integrity, ensuring correct labels, resizing images, normalizing pixel values, removing duplicates, 

and addressing class imbalance through data augmentation. Clean, consistent data will help 

ensure the model learns efficiently and generalizes well to new data. 

 

Data Visualizations 

 

 



 

 

 

 

 

 

 



 

 

 

What insights do they provide?   

         This visualization shows the number of images per class: adenocarcinoma, large cell 

carcinoma, squamous cell carcinoma, and normal. The chart helps identify class imbalances in 

the dataset. For instance, there are fewer images for Large Cell Carcinoma than for other classes, 

which could lead to biased model predictions if not addressed. 

What did you discover that alters the scope of expected results of the project? What additional 

ones could be useful? 

 

Impact on the Project: 

I. Class Imbalance: The imbalance observed here suggests that the model might have 

difficulty learning equally from all classes. Therefore, techniques like data augmentation 

or oversampling of the minority classes (e.g., large cell carcinoma) may be necessary. 



 

 

II. Scope of Expected Results: This imbalance could alter the expected performance of the 

model, particularly for minority classes, and might lead to lower sensitivity for certain 

cancer types unless mitigation strategies are applied. 

Data Augmentation 

          This visualization shows the effect of data augmentation techniques (rotation, zoom, 

translation, and flipping) applied to a sample image from the adenocarcinoma class. 

Augmentation artificially increases the diversity of the training set, helping prevent overfitting 

and improving the model’s ability to generalize to unseen data. 

 

Impact on the Project: 



 

 

I. Data Augmentation: This step is crucial given the relatively small size of the dataset. By 

applying transformations, we effectively expand the dataset, improving the model’s 

ability to learn features across different orientations, scales, and lighting conditions. 

II. Scope of Expected Results: The use of augmentation should improve the model’s 

robustness, reducing the risk of overfitting. However, aggressive augmentation may 

introduce artifacts that could confuse the model, so it's important to balance augmentation 

intensity. 

Potential Additional Visualizations: 

I. Comparison of Original and Augmented Data: Showing side-by-side comparisons of 

original and augmented images to verify that the transformations retain important 

features relevant for classification. 

II. Impact of Augmentation on Model Performance: Track how augmentation improves 

or changes the model’s performance on the validation set. 

Insights and Discoveries 

I. Class Imbalance: The visualization of class distribution clearly shows that there is an 

imbalance, especially with fewer samples in certain cancer types like Large Cell 

Carcinoma. This requires us to address it with techniques like oversampling, 

undersampling, or weighted loss functions during model training. 

II. Data Augmentation: The augmentation visualization demonstrates the benefit of 

augmenting the dataset. It will allow the model to generalize better, especially given the 

relatively small size of the training set. Augmentation will play a key role in improving 



 

 

model robustness and reducing overfitting, but care must be taken not to apply 

augmentations that distort critical diagnostic features. 

Scope Alterations Based on Discoveries 

I. Handling Imbalanced Classes: Due to the observed class imbalance, the original 

expectation of training a balanced model must be adjusted. The focus will shift toward 

mitigating class imbalance and ensuring the model performs well on minority classes. 

II. Impact of Augmentation: While augmentation helps improve generalization, the 

augmented data may alter the way the model perceives subtle features in the images. We 

need to carefully balance augmentation to avoid overfitting while preserving critical 

diagnostic features in the images. 

Additional Visualizations That Could Be Useful: 

I. Confusion Matrix: After training the model, a confusion matrix would help identify 

which classes the model struggles with, especially for imbalanced classes like Large Cell 

Carcinoma. 

II. Model Learning Curves: Plotting the training and validation accuracy/loss over time 

will help identify overfitting and inform decisions regarding early stopping or additional 

regularization. 

III. AUC-ROC Curves for Each Class: This will help in evaluating how well the model 

differentiates between each class and provide insights into the sensitivity and specificity 

for each cancer type. 



 

 

Descriptive Statistics 

The Chest-CT dataset involves image data rather than traditional tabular data, the "fields" 

or "variables" (like columns in a table). In the case of image datasets, the primary variables we 

focus on pixel values, and we typically analyze statistics such as the mean, standard deviation, 

and pixel intensity distributions to better understand the data. 

1. Pixel Values: 

For image datasets, pixel values are the core variable. Images are composed of pixel 

grids, where each pixel has an intensity value that typically ranges from 0 to 255 for grayscale or 

3 values for RGB images (one for each of the red, green, and blue channels). 

2. Image Dimensions: 

Images can vary in size (width and height), and understanding the distribution of image 

dimensions can be useful for resizing the images before training. 

3. Class Distributions: 

Understanding how the data is distributed across different classes (e.g., normal, 

adenocarcinoma, squamous cell carcinoma, large cell carcinoma) is important for calculate the 

following statistics for image dataset: 

I. Mean and standard deviation of pixel values. 

II. Quantiles of pixel intensities. 

III. Image dimension distributions. 



 

 

IV. Class distribution. 

Assessing class balance and potential bias in the dataset. 

I. Mean Pixel Value: The average brightness of the images. If it is too low or high, 

it could indicate that images are mostly dark or overly bright, respectively. 

II. Standard Deviation of Pixel Values: This shows how spread out the pixel values 

are. A low standard deviation means the pixel intensities are concentrated around 

the mean, while a high value indicates diverse brightness levels. 

III. Quantiles: These give insights into how pixel values are distributed across the 

range, helping us understand the pixel intensity spread. 

IV. Image Dimensions: Analyzing the average width and height ensures that image 

preprocessing (such as resizing) is properly considered for the model. 

 

 



 

 

 

 



 

 

 

 

                            Data Visualization Definitions 

1. Histogram 

Histograms allow us to understand the distribution of pixel values, image dimensions, 

and class distributions in the dataset. 

Use Cases: 

I. Pixel Intensity Distribution: A histogram of pixel intensities (ranging from 0 to 

255 for grayscale images) shows how brightness levels are distributed across the 



 

 

dataset. This can help identify overexposed or underexposed images, or other 

abnormalities in the data. 

II. Image Dimension Distribution: A histogram of image widths and heights 

provides an overview of the variability in image sizes, helping determine if 

resizing is necessary before training. 

III. Class Distribution: Histograms can also be used to show the number of images 

per class (e.g., normal, adenocarcinoma, large cell carcinoma, squamous cell 

carcinoma), helping identify any class imbalances. 

 

 



 

 

2. Bar Chart 

Bar charts are particularly useful for categorical data, such as the distribution of images 

across different classes. This helps in identifying class imbalances and guiding the 

implementation of techniques like oversampling, undersampling, or weighted loss 

functions. 

           Use Cases: 

I. Class Distribution: A bar chart showing the number of images in each class (e.g., 

normal vs cancerous classes) helps visualize class imbalances. 

II. Model Accuracy and Loss per Epoch: Bar charts can also visualize accuracy or loss 

across different epochs or for different models during evaluation. 



 

 

 

 

3. Line Plot 

Line plots are often used to track model performance over time, such as training and 

validation loss or accuracy per epoch. This is crucial for monitoring overfitting, 

underfitting, and overall model convergence. 

            Use Cases: 

I. Model Learning Curves: Line plots show the progression of training and 

validation accuracy/loss during model training. This helps detect issues like 



 

 

overfitting (when validation accuracy plateaus or drops while training accuracy 

increases). 

II. Training Time: Line plots can also be used to track how much time each epoch takes, 

giving insights into the efficiency of the training process. 

 

 

4. Confusion Matrix 

A confusion matrix is a powerful tool for evaluating classification model performance. It 

shows the counts of true positive, false positive, true negative, and false negative predictions for 

each class. This helps in identifying which classes the model is confusing with one another. 



 

 

Use Cases: 

I. Classification Performance: For multi-class classification, such as distinguishing 

between different types of lung cancer and normal cases, a confusion matrix 

shows where the model is making mistakes. 

II. Error Analysis: By visualizing the misclassifications, we can prioritize 

improvements, such as fine-tuning the model or improving data augmentation 

strategies. 

 

 



 

 

5. Sample Image Grid 

Displaying a grid of sample images from each class helps visually inspect the data. This 

is important for confirming image quality, variety, and ensuring that augmentations are being 

applied correctly. 

Use Cases: 

I. Visual Inspection of Augmentation: Showing augmented images allows you to 

confirm that the data augmentation strategies (e.g., rotation, flipping, zoom) are 

creating useful variations of the original data. 

II. Sample Image Display: Displaying a few images from each class helps in 

visually assessing the quality and content of the dataset. 

 

 



 

 

6. AUC-ROC Curve (Receiver Operating Characteristic) 

The ROC curve helps evaluate the performance of a classification model by plotting the 

true positive rate against the false positive rate. The Area Under the Curve (AUC) score 

quantifies how well the model distinguishes between classes. 

Use Cases: 

I. Model Performance Evaluation: For binary classification tasks like cancer 

detection (e.g., cancerous vs. non-cancerous), the ROC curve and AUC score 

provide insights into how well the model distinguishes between the two classes. 

II. Multi-class ROC Curves: We can also compute the AUC for each class in a 

multi-class classification problem. 



 

 

 

                           Visualization Technique 

Image Augmentation and Sample Image Grid 

Image augmentation plays a crucial role in enhancing the dataset by generating variations 

of the images to improve the model's ability to generalize (Shorten & Khoshgoftaar, 2019). 

Image augmentation applies transformations such as rotations, zooming, flipping, and shearing to 

create new, synthetic images that are slight modifications of the original ones (Wong et al., 

2016). This process helps prevent overfitting by allowing the model to learn from more varied 

data without the need for additional real images. By generating new variations from the original 



 

 

data, the model becomes more robust and can generalize better to unseen data (Perez & Wang, 

2017). The use of a sample image grid as a visualization technique allows us to visually inspect 

the augmented images and ensure that the transformations are being applied correctly. For 

example, the grid shows how an original image is rotated or shifted, ensuring that the augmented 

data maintains the key features of the original image while introducing variability. 

The sample image grid is not only useful for validating the augmentation process, but also for 

evaluating the overall quality and diversity of the dataset. By plotting a grid of randomly selected images 

from each class, we can verify that the dataset is well-balanced and contains sufficient visual variability 

within and between classes (Shorten & Khoshgoftaar, 2019). This is particularly important for tasks like 

cancer detection, where slight variations in image features can be significant (Zeiler & Fergus, 2014). The 

grid helps detect any potential quality issues, such as corrupted images or images with poor contrast, 

which could affect the model’s performance. Additionally, it provides a quick way to spot-check the 

consistency of labeling and data preparation, ensuring that each class (e.g., normal vs. cancerous) has 

been properly labeled and prepared for training. 



 

 

Data Visualization 1 

 

Pixel Intensity Distribution 

One of the most informative visualizations for understanding image data is the pixel 

intensity distribution. This type of histogram shows the distribution of pixel values across all the 

images in the dataset, providing insights into the overall brightness and contrast of the images. 

For grayscale images, pixel intensities typically range from 0 (black) to 255 (white). A histogram 

with a concentration of pixel values near 0 would indicate that the images are predominantly 

dark, whereas values clustered around 255 would suggest that the images are mostly bright. This 

visualization helps detect issues such as overexposed or underexposed images, which could 



 

 

affect model performance. By identifying and addressing these issues early on, we can make 

necessary adjustments like normalization, contrast enhancement, or data augmentation, ensuring 

the dataset is well-prepared for training. Additionally, comparing pixel intensity distributions 

across different classes (e.g., normal vs. cancerous) can reveal biases in how the images were 

captured or processed, which might influence the model’s learning process. 

Insights from the Pixel Intensity Distribution 

The pixel intensity distribution provides critical insights into the overall quality and 

characteristics of the image dataset (Shen et al., 2017). For example, if the pixel values are 

mostly concentrated at the lower end of the spectrum (closer to 0), it indicates that the images are 

predominantly dark. This could be problematic, as dark images may obscure important features 

that are necessary for cancer detection. On the other hand, if the pixel values are concentrated 

near the upper end (closer to 255), the images may be too bright, which can also affect the 

model's ability to detect fine details (Kang et al., 2018). Ideally, a well-balanced dataset will 

have a more uniform distribution of pixel values across the entire range, suggesting a good mix 

of brightness levels. This would provide the model with enough variability to learn the 

differences between classes, such as distinguishing between healthy and cancerous tissues in 

chest CT scans. 

Moreover, if the pixel intensity distribution varies significantly between classes, this can 

introduce bias into the model (Kang et al., 2018). For instance, if images in the "normal" class 

are generally brighter than those in the "cancerous" class, the model might learn to associate 

brightness with being "normal" rather than focusing on the actual medical features that 

distinguish the two. This kind of bias can lead to poor generalization and incorrect predictions 



 

 

when the model is applied to new, unseen data (Shen et al., 2017). Detecting such biases early 

through visualization allows for corrective measures such as equalizing the brightness across 

images, applying data augmentation, or normalizing the pixel intensities to a standard range. The 

pixel intensity distribution helps ensure that the images in the dataset are well-prepared for 

model training, balanced in terms of brightness, and free of potential biases that could skew the 

model's learning process. 

Data Visualization 2 

 

Class Distribution Bar Chart 



 

 

A class distribution bar chart is a fundamental visualization for understanding how 

balanced or imbalanced the dataset is across different categories or classes. In a multi-class 

classification problem, such as detecting different types of lung cancer (adenocarcinoma, 

squamous cell carcinoma, large cell carcinoma) and normal cases, this bar chart provides a clear 

view of how many images belong to each class. If the bar chart reveals that one class has 

significantly more samples than others, it indicates a class imbalance. For example, if the 

"normal" class has far more images than the cancerous classes, the model may become biased 

towards predicting "normal" simply because it sees more examples of it during training. This 

imbalance can negatively affect model performance, particularly for underrepresented classes. 

By visualizing the class distribution early in the process, you can take steps to address these 

imbalances, such as applying oversampling, undersampling, or weighted loss functions during 

training, ensuring that the model learns to classify all classes equally well. 

This bar chart also helps in planning the data augmentation strategies. If one of the 

cancerous classes has very few images compared to others, applying augmentation specifically to 

that class could help boost the model's ability to recognize it.  

Insights from the Class Distribution Bar Chart 

The class distribution bar chart provides valuable insights into the balance of the dataset 

and the potential challenges it might present during model training (Johnson & Khoshgoftaar, 

2019). If the chart shows a clear class imbalance, where one class has significantly more images 

than others, this raises a red flag. For example, in a cancer detection dataset, if the "normal" class 

dominates, the model may become biased towards predicting "normal" more frequently because 

it sees more examples of that class during training. This bias can lead to poor performance in 



 

 

detecting rarer cancer types, as the model may not learn enough distinctive features to identify 

them effectively (Buda et al., 2018). Detecting class imbalance through visualization early on 

enables us to address this issue before training, either through oversampling underrepresented 

classes or undersampling the overrepresented ones (Haixiang et al., 2017). By correcting the 

imbalance, the model has a better chance of learning to distinguish between all classes equally, 

thus improving its accuracy and generalization. 

Furthermore, the bar chart provides insights into potential overfitting risks associated 

with smaller classes (Johnson & Khoshgoftaar, 2019). If the chart reveals that a specific class has 

far fewer images, there’s a chance the model will memorize those images during training rather 

than learning general patterns that apply to new data. This overfitting would result in poor 

performance on unseen test images from that class. Additionally, a significant class imbalance 

can also affect evaluation metrics like accuracy, precision, and recall, since the model might 

have a high accuracy due to the overrepresented class but fail to perform well on minority classes 

(Buda et al., 2018). By visualizing class distribution, it becomes clear which classes might 

benefit from targeted data augmentation to artificially increase their diversity and representation 

in the dataset. Overall, this chart is a critical tool for ensuring that the dataset is well-structured 

and balanced, which is crucial for developing a robust and unbiased model. 

 

                      Data Modeling 

Results and Comparison of Two Predictive Models 



 

 

For the Chest-CT scan dataset developed and evaluated two predictive models for 

classifying images, a Basic CNN model and a VGG16 Transfer Learning model.  

Model 1: Basic CNN Model 

Architecture: 

I. 3 Convolutional layers: Each followed by a MaxPooling layer to reduce dimensionality 

and extract features. 

II. Dense layer: A fully connected layer before the output to combine the extracted features. 

III. Dropout layer: Added to prevent overfitting. 

IV. Output layer: SoftMax activation for multi-class classification (4 classes). 

Performance Metrics: 

• Training Accuracy: 63.93% 

• Validation Accuracy: 63.93% 

• Test Accuracy: 63.93% 

Key Insights: 

I. The Basic CNN model achieved a moderate accuracy of 63.93%. the training and 

validation accuracy are quite close, suggesting that the model does not suffer 

significantly from overfitting, but it is also not generalizing well enough to unseen data. 

II. While the model performs consistently on training and validation data, this suggests a 

limited ability to extract deep features from the chest CT scan images, which is necessary 

for accurately distinguishing between normal and cancerous cases. 

Model 2: VGG16 Transfer Learning Model 

Architecture: 



 

 

The VGG16 Transfer Learning model uses the pre-trained VGG16 model on ImageNet, 

with the following modifications: 

I. The convolutional layers of VGG16 were used as the feature extractor. 

II. The last few convolutional layers were fine-tuned (unfrozen) to allow for better 

adaptation to the specific dataset of chest CT scans. 

III. Custom fully connected layers were added on top of the VGG16 base for classification. 

Performance Metrics: 

• Training Accuracy: 64.75% 

• Validation Accuracy: 64.75% 

• Test Accuracy: 64.75% 

Key Insights: 

I. The VGG16 model only slightly outperformed the basic CNN, with a test accuracy of 

64.75%, which is a modest increase over the basic CNN. 

II. Fine-tuning the VGG16 layers helped the model to extract more complex features from 

the dataset, but the improvement is marginal, indicating that the model is not leveraging 

the full potential of the pre-trained network. 

III. One possible reason for this limited performance boost could be insufficient data for 

transfer learning or issues related to class imbalance, which might prevent the model 

from fully learning the important features of each class. 



 

 

 



 

 

 

Comparison of Models 

Metric Basic CNN Model VGG16 Transfer Learning Model 

Training Accuracy   63.93%                64.75% 

Validation Accuracy   63.93%                64.75% 

Test Accuracy     63.93%                64.75% 

 



 

 

 

Analysis: 

I. Performance Similarity: The performance of both models is very similar, with the 

VGG16 model only slightly outperforming the Basic CNN. This raises questions about 

the ability of both models to adequately generalize from the dataset. 

II. Feature Extraction: While VGG16 is a pre-trained network known for its strong feature 

extraction capabilities, its slight performance boost may indicate that the dataset does not 

have enough diversity or size for the model to exploit. Both models seem to be limited in 

their ability to detect subtle features in the images. 

III. Potential Class Imbalance: Both models may be affected by a class imbalance, which 

can prevent them from learning the distinguishing features of minority classes effectively. 



 

 

IV. Overfitting: There is no clear sign of overfitting, as the training and validation accuracies 

are very close, but both models may be underfitting, as neither performs significantly 

well. 

Conclusion 

I. Model Performance: The VGG16 Transfer Learning model marginally outperforms the 

Basic CNN model, but the overall accuracy of both models remains low at around 64%. 

This suggests that neither model can fully capture the complexity of the task. 

II. Lack of Improvement with Transfer Learning: The minimal improvement of the 

VGG16 model over the Basic CNN suggests that either the transfer learning approach is 

not fully effective due to the specific characteristics of the dataset, or that additional 

techniques like better data augmentation, hyperparameter tuning, or further fine-tuning of 

the pre-trained layers are needed to improve performance. 

Next Steps: 

I. Data Augmentation: Introducing more aggressive data augmentation (e.g., 

adjusting brightness, contrast, rotation) may help both models learn better. 

II. Class Balancing: Investigate potential class imbalances and apply techniques 

such as oversampling the minority class or adjusting the class weights to make the 

models more sensitive to underrepresented categories. 

III. Advanced Architectures: Consider using more advanced architectures such as 

ResNet or Inception that may better capture the complexity of the dataset. 

IV. More Data: A larger and more diverse data set may be necessary for the models 

to learn effectively, particularly in cases where subtle differences are critical for 

classification. 



 

 

While the VGG16 Transfer Learning model slightly outperformed the Basic CNN model, 

the results suggest that both models struggle with generalization and feature extraction. Further 

tuning of hyperparameters, model architecture, and data preprocessing are needed to improve the 

classification performance for this chest CT scan task. 

Data Modeling Definitions 

Modeling Techniques Used 

For the chest CT scan classification project, two key modeling techniques were 

employed: a Basic Convolutional Neural Network (CNN) and Transfer Learning using a pre-

trained VGG16 Model. Both techniques are well-suited for image classification tasks, and each 

brings specific strengths and characteristics that are useful for handling the dataset. 

1. Basic Convolutional Neural Network (CNN) 

Definition: 

A Convolutional Neural Network (CNN) is a type of deep learning model specifically 

designed to handle grid-like data such as images. CNNs use multiple layers of convolutions, 

pooling, and fully connected layers to automatically extract hierarchical features from the input 

images and classify them. 

Key Components: 

I. Convolutional Layers: These layers apply filters to the input images to detect features 

such as edges, textures, and patterns. Each convolutional layer learns increasingly 

abstract features as we move deeper into the network. 



 

 

II. MaxPooling Layers: These layers reduce the spatial dimensions of the feature maps 

(down-sampling) while retaining the most important information, helping to make the 

network more computationally efficient. 

III. Fully Connected Layers: After several convolution and pooling layers, the output is 

flattened and passed through fully connected layers to produce the final class predictions. 

IV. Dropout: This regularization technique is used to prevent overfitting by randomly 

"dropping out" (deactivating) a portion of the neurons during training. 

Why Use CNN? 

CNNs are designed to automatically detect important features in images without the need 

for manual feature engineering. They are particularly effective in tasks such as medical image 

classification, where detecting patterns (like tumors or abnormalities) is crucial for accurate 

predictions. 

2. Transfer Learning with Pre-trained VGG16 Model 

Definition: 

Transfer Learning is a technique where a pre-trained model (VGG16) is used as the 

starting point for a new task. The pre-trained model has already learned to extract general 

features from a large dataset (ImageNet) and can be fine-tuned to perform well on a new, smaller 

dataset (chest CT scans). 

Key Components: 

I. VGG16 Architecture: VGG16 is a well-known deep CNN architecture with 16 layers 

(including convolutional and fully connected layers). It was originally trained on the 

ImageNet dataset, which contains millions of images from various categories. This makes 

VGG16 highly capable of extracting general image features. 



 

 

II. Feature Extraction: The convolutional layers of VGG16 are used as a feature extractor. 

These layers are kept frozen initially, meaning they do not update during training. 

III. Fine-tuning: In the later stages, some of the deeper convolutional layers are unfrozen and 

allowed to be trained on the new dataset. This helps the model adjust to the specific 

features present in chest CT scans, while still benefiting from the general features learned 

from ImageNet. 

IV. Custom Fully Connected Layers: New fully connected layers are added on top of the 

VGG16 base to tailor the model to the specific task of classifying chest CT images into 

multiple classes. 

Why Use Transfer Learning? 

Transfer Learning is useful when the available dataset is relatively small, as it allows the 

model to leverage the knowledge learned from a larger, more diverse dataset. This makes it 

easier for the model to converge faster and perform well with limited data. In medical imaging, 

where labeled data is often scarce, transfer learning can significantly boost model performance 

by allowing the model to focus on fine-tuning specific patterns related to the medical task. 

Summary of Techniques: 

Technique Definition Purpose 

Basic CNN 

A deep learning model using 

convolutional layers to extract 

features 

Automatically detects patterns and 

features in images for classification 



 

 

Technique Definition Purpose 

VGG16 

Transfer Learning 

Uses a pre-trained model to 

extract features and fine-tune for 

the task 

Leverages existing knowledge from 

large datasets to perform well on 

smaller datasets 

Both techniques are effective in image classification tasks. The Basic CNN serves as a 

straightforward, end-to-end learning model built from scratch, while Transfer Learning with 

VGG16 utilizes pre-existing knowledge to speed up learning and potentially improve accuracy in 

the context of medical image classification. 

Basic Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is a class of deep learning models specifically 

designed to work with image data by automatically detecting important features from input 

images. CNNs consist of multiple layers, including convolutional layers, pooling layers, and 

fully connected layers. The convolutional layers apply filters to the input images to detect basic 

features such as edges, textures, and patterns. As the network deepens, the filters become more 

complex, allowing the model to detect higher-level features, such as shapes or objects. The 

pooling layers reduce the dimensionality of the data, making the model more efficient while 

retaining essential information. Finally, fully connected layers combine the extracted features to 

make the final predictions. CNNs are effective in image classification tasks due to their ability to 

learn hierarchies of features from raw pixel data without the need for manual feature 

engineering. 

CNNs are particularly effective in medical image classification, such as analyzing chest 

CT scans, where recognizing specific patterns like tumors and lesions is vital. The subtle 

differences in medical images between healthy and diseased tissue necessitate a model capable 



 

 

of detecting fine, nuanced features, making CNNs an ideal choice. Their computational 

efficiency stems from parameter sharing within convolutional layers, reducing the total 

parameters needed for training. This efficiency has contributed to CNNs' popularity across 

academia and industry for various image-based tasks. Additionally, CNNs have demonstrated 

remarkable success in medical imaging applications, supported by significant scholarly research. 

As noted by Shen et al. (2017), CNNs have achieved notable advancements in image 

classification accuracy, surpassing traditional machine learning methods in complex medical 

tasks. 

Transfer Learning with VGG16 

Transfer learning is a machine learning technique that involves adapting a pre-trained 

model for a new task, minimizing the need for extensive training data. In this project, the 

VGG16 model, originally trained on the large ImageNet dataset, was employed as a feature 

extractor for chest CT scan classification. The early layers of VGG16, responsible for detecting 

basic image features like edges and textures, were kept frozen to retain their pre-learned 

capabilities. Meanwhile, the deeper layers were fine-tuned to recognize features specific to the 

medical imaging domain. This technique leverages the knowledge gained from the diverse 

ImageNet dataset and applies it to the more specialized dataset of chest CT scans. Transfer 

learning is particularly advantageous in medical imaging, where obtaining large datasets is often 

challenging and costly. 

The use of transfer learning with VGG16 has proven to enhance model performance 

significantly, especially in medical applications. VGG16’s deep architecture allows it to extract 

highly detailed features, which are crucial for distinguishing between medical conditions in CT 

scans. By fine-tuning the pre-trained layers, the model can adapt to the specific patterns and 



 

 

characteristics of chest CT scans, leading to improved classification accuracy. This approach also 

accelerates the training process, as the model starts from a generalized feature space instead of 

learning from scratch. According to Pan and Yang (2010), transfer learning reduces the risk of 

overfitting, particularly when dealing with small datasets, as it begins with a robust set of pre-

learned features. By incorporating VGG16 into this project, we effectively harness these 

benefits, enabling the model to more accurately classify cancerous and non-cancerous images in 

chest CT scans. 

Data Model 1 

Basic Convolutional Neural Network (CNN) 

The Basic Convolutional Neural Network (CNN) model used in Chest-CT scan dataset 

was tailored to classify chest CT scans into four categories: normal, adenocarcinoma, squamous 

cell carcinoma, and large cell carcinoma. The model architecture consisted of three convolutional 

layers with progressively increasing filter sizes (32, 64, and 128) to extract increasingly complex 

features from the images. Each convolutional layer was followed by a max-pooling layer, which 

reduced the dimensionality of the feature maps while retaining essential information. The 

flattened output from these layers was passed through a fully connected layer with 256 neurons, 

activated using the ReLU function to capture non-linear relationships in the data. To mitigate 

overfitting, a dropout layer with a dropout rate of 0.5 was introduced, randomly disabling 

neurons during training to enhance generalization. Finally, a SoftMax activation function in the 

output layer enabled classification into the four predefined categories, completing the model's 

architecture. 

The findings from the basic CNN model show that while it successfully extracted 

meaningful features from chest CT scans, its performance was limited. The model achieved an 



 

 

accuracy of 63.93% on the test dataset, indicating moderate success in distinguishing between 

different types of chest conditions. However, the relatively simple CNN architecture may have 

struggled to detect subtle differences between cancerous tissues, which often require more 

sophisticated feature extraction. The similarity in training and validation accuracy (63.93% for 

both) suggests that the model avoided overfitting, but it may have been underfitting, meaning it 

did not fully capture the patterns in the data. This performance indicates that a more complex 

model, such as a deeper CNN or one enhanced through transfer learning, could yield better 

results. Enhancing the model with additional layers, advanced architectures, or data 

augmentation could help to address these limitations and improve its classification accuracy. 

Findings and Analysis 

The Basic CNN model achieved moderate success in classifying chest CT scan images, 

but its accuracy suggests that it struggled with the complexity of the medical images in the 

dataset. While the architecture was effective for basic image classification, it may not have been 

deep enough to fully capture the nuanced differences between cancerous and non-cancerous 

tissues. The use of basic data augmentation techniques, while helpful, may not have provided 

sufficient variability to help the model generalize well to unseen data. The dropout layer played a 

role in preventing overfitting by reducing the likelihood of the model memorizing training data, 

ensuring some level of generalization. However, the model's performance indicates that 

additional fine-tuning or a more complex architecture is necessary to enhance its ability to detect 

cancerous tissues accurately. This demonstrates the need for a deeper and more specialized 

model to handle the intricacies of medical image classification effectively. 

The model's performance may also be attributed to the size and diversity of the dataset 

used in training. If the dataset was relatively small or lacked sufficient variety, the model might 



 

 

not have been exposed to enough distinct CT scan examples to learn robust and meaningful 

features. The Basic CNN, while capable of extracting low- and mid-level features, may not have 

captured the high-level features required to differentiate between various cancer types. These 

limitations suggest that enhancing the dataset, either by collecting more images or applying more 

advanced data augmentation, could improve the model’s training process. Using a deeper 

architecture or integrating transfer learning with pre-trained models could also help in extracting 

more complex and relevant features. Such improvements would likely enable the model to better 

generalize unseen data and achieve higher accuracy, making it more suitable for medical imaging 

tasks. 

Data Model 2 

VGG16 Transfer Learning Model 

For Data Model 2, utilized Transfer Learning with the pre-trained VGG16 model, a 

widely recognized convolutional neural network architecture. VGG16 was originally trained on 

the large-scale ImageNet dataset, which contains millions of images across thousands of 

categories. The convolutional layers of VGG16 were employed as a feature extractor for chest 

CT scan images, leveraging the pre-trained weights to identify basic and complex image 

features. In this model, the early layers of VGG16 were frozen, preserving the pre-trained 

weights to retain their generalized feature extraction capabilities. We fine-tuned the deeper layers 

of the network to adapt to the specific characteristics of the chest CT scan dataset. Additionally, 

custom fully connected layers were added to handle the multi-class classification task, allowing 

the model to differentiate between normal and cancerous cases. 

This approach is based on the principle that features learned from the diverse and 

extensive ImageNet dataset can be effectively transferred to smaller, domain-specific datasets 



 

 

like chest CT scans. Transfer learning reduces the need to train the model from scratch, enabling 

it to converge to a good solution more quickly, which is crucial for medical imaging tasks where 

data is often limited. By freezing the convolutional layers, the model retains its ability to extract 

general features, while the fine-tuned fully connected layers focus on task-specific learning. This 

combination allows the model to balance generalization and specialization, improving its 

classification performance. Consequently, the VGG16-based model demonstrated its potential 

for enhancing accuracy in chest cancer detection, highlighting the effectiveness of transfer 

learning in medical imaging applications. 

Findings and Insights: 

The VGG16 Transfer Learning model achieved a modest accuracy of 64.75%, slightly 

better than the Basic CNN model. The use of transfer learning allowed the model to leverage 

pre-trained features from the ImageNet dataset, which provided a head start in learning the chest 

CT scan data. The convolutional layers of VGG16, which were pre-trained on diverse images, 

were useful in extracting general visual features from medical images, while the fine-tuned 

layers helped the model adjust to the specific patterns seen in chest CT scans. However, the 

small improvement in accuracy suggests that the VGG16 model may have struggled to fully 

adapt to the dataset, potentially due to the limited size or complexity of the chest CT scan 

dataset. 

One important finding is that fine-tuning the last few layers of VGG16 helped the model 

learn domain-specific features, such as subtle tissue abnormalities present in cancerous lungs. 

However, the minimal accuracy improvement (compared to the Basic CNN model) implies that 

the transfer learning approach may not have been fully optimized, or that additional data or 

advanced augmentation techniques could be needed to improve performance. Despite the modest 



 

 

improvement, the transfer learning approach still shows promise, as it enables faster convergence 

and more efficient learning, especially in cases where data availability is limited, such as medical 

image datasets. Future improvements might include further fine-tuning, using more advanced 

architectures like ResNet, or experimenting with ensemble learning to boost model performance. 

 

                                  Data Models 

Review of Data Models 

In this project, two models were developed for classifying chest CT scan images: a Basic 

Convolutional Neural Network (CNN) and a VGG16 Transfer Learning Model. Both models 

were evaluated on their ability to classify the images into four categories: normal, 

adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Below is a review of each 

model’s performance and a discussion of whether either model qualifies as the Champion Model. 

Basic CNN Model 

The Basic CNN model achieved a test accuracy of 63.93%. The architecture of this 

model consisted of three convolutional layers with max-pooling operations, followed by fully 

connected layers. Despite being a simple model, it was able to extract some useful features from 

the chest CT scan images. However, the accuracy of 63.93% suggests that the model struggled to 

differentiate between the different cancer types and normal tissue. The relatively small gap 

between the training and validation accuracy indicates that the model did not overfit, but it may 

have underfitted, meaning it did not learn enough from the data to make highly accurate 

predictions. 

Key Findings: 



 

 

I. The Basic CNN model performed consistently, but with moderate success, reflecting its 

limited ability to capture complex patterns. 

II. The model likely struggled to detect subtle features, such as the differences between the 

three types of lung cancer, which are challenging even for advanced models. 

III. While this model is computationally efficient and straightforward, it does not achieve a 

high enough level of accuracy to be considered a Champion Model for this task. 

VGG16 Transfer Learning Model 

The VGG16 Transfer Learning model achieved a slightly better test accuracy of 64.75%. 

This model used a pre-trained VGG16 base, which allowed it to leverage powerful feature 

extraction capabilities learned from the ImageNet dataset. By freezing the early layers of VGG16 

and fine-tuning the deeper layers, the model was able to adapt to the chest CT scan data. The 

slight improvement in accuracy indicates that transfer learning provided some benefit, as the pre-

trained model could extract more general and specific features from the images. However, the 

improvement was minimal, which suggests that the dataset may not have been large or diverse 

enough to fully take advantage of transfer learning. 

Key Findings: 

I. The VGG16 model outperformed the Basic CNN, but with a small margin (64.75% vs. 

63.93%), indicating that the transfer learning strategy was not fully optimized. 

II. The model benefited from fine-tuning some layers, but it may not have been able to 

capture domain-specific features at the necessary granularity due to the size or 

complexity of the dataset. 

III. While this model shows potential, the limited improvement in performance means that it 

does not meet the standards of a Champion Model. 



 

 

Model Comparison 

 

Metric Basic CNN Model 

VGG16 Transfer 

Learning Model 

Training Accuracy      63.93% 64.75% 

Validation Accuracy     63.93% 64.75% 

Test Accuracy     63.93% 64.75% 

Both models achieved similar performance, with only a small improvement from the 

VGG16 Transfer Learning model. Despite the use of a pre-trained model, the overall accuracy of 

both models remains low, suggesting that neither model has fully captured the complexity of the 

chest CT scan data. 

Champion Model Determination 

A Champion Model is the model that consistently performs the best on the task at hand, 

demonstrating superior generalization to new data. While the VGG16 Transfer Learning model 

did slightly outperform the Basic CNN model, its accuracy of 64.75% is not a significant 

improvement and does not meet the typical threshold for a Champion Model in medical 

classification tasks, where high accuracy and precision are critical for decision-making. 

Moreover, the difference between the two models is marginal, indicating that neither model has 

reached the level of performance required for a Champion Model. 

Conclusion 

At this stage, neither the Basic CNN model nor the VGG16 Transfer Learning model 

qualifies as a Champion Model. Both models struggled to achieve high accuracy, and while the 



 

 

VGG16 model shows promise, further improvements are necessary to make it a strong candidate 

for champion status. Future efforts could focus on increasing dataset size, applying more 

advanced augmentation techniques, or experimenting with other architectures like ResNet or 

Inception to boost performance. Moreover, addressing potential class imbalances and optimizing 

hyperparameters could help improve model accuracy and generalization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                           

 

 



 

 

 

                          Results 

Findings 

Model Performance Overview 

In this project, developed two models: a Basic Convolutional Neural Network (CNN) and 

a VGG16 Transfer Learning model. Both models were tasked with classifying chest CT scan 

images into four categories: normal, adenocarcinoma, squamous cell carcinoma, and large cell 

carcinoma. The Basic CNN model achieved a test accuracy of 63.93%, while the VGG16 

Transfer Learning model achieved a slightly higher test accuracy of 64.75%. Although the 

VGG16 model performed marginally better, both models exhibited relatively low accuracy, 

which suggests that neither model was able to fully capture the complexity of the task. Given the 

importance of precise cancer detection, these results indicate that additional refinement and 

further optimization are required to improve model performance. 

The models were trained using a combination of convolutional and pooling layers, with 

the Basic CNN model trained from scratch and the VGG16 model leveraging pre-trained weights 

from the ImageNet dataset. While transfer learning provided some benefit, the modest 

improvement in accuracy suggests that the dataset may not have been sufficiently diverse or 

large enough to fully exploit the strengths of the pre-trained model. Additionally, neither model 



 

 

demonstrated a significant reduction in classification errors, which is crucial for a medical task 

like cancer detection. Therefore, the current models require enhancements to be used in real-

world medical applications. 

Confusion Matrix: Correct and incorrect predictions for each class. 

 

Model Overfitting and Underfitting 



 

 

The Basic CNN model demonstrated consistent training and validation accuracy, which 

suggests that it did not overfit the data. However, the similar training and validation accuracy 

values also indicate that the model may have been underfitting the data. Underfitting occurs 

when the model is too simplistic to capture the underlying patterns in the data, resulting in 

suboptimal performance. In this case, the Basic CNN model likely lacked sufficient depth to 

learn the complex features necessary for distinguishing between cancerous and non-cancerous 

tissues in chest CT scans. This is evidenced by the model's inability to surpass an accuracy of 

63.93%, despite the use of dropout layers to prevent overfitting. 

The VGG16 Transfer Learning model, on the other hand, also did not show significant 

overfitting, as evidenced by the close match between training and validation accuracy. However, 

despite using a deeper and more sophisticated architecture, the model only slightly outperformed 

the Basic CNN, with an accuracy of 64.75%. This suggests that while transfer learning provided 

some benefits, the model may not have been sufficiently fine-tuned or optimized for this specific 

dataset. Moreover, the limited accuracy improvement over the Basic CNN indicates that 

additional layers or more targeted data augmentation may be necessary to help the model learn 

more detailed patterns from the images. 

Accuracy/Loss Curves: How well the model learns over time, helping to identify issues like 

overfitting or underfitting. 



 

 

 

Model Comparison 

When comparing the two models, the VGG16 Transfer Learning model provided only a 

marginal improvement over the Basic CNN, raising questions about its efficacy for this task. 

Although the VGG16 model is a deeper and more sophisticated architecture, it achieved a test 

accuracy of 64.75%, only slightly better than the 63.93% recorded by the Basic CNN. This 

limited improvement indicates that the VGG16 model may not have fully leveraged the pre-

trained weights from the ImageNet dataset, which are typically useful for transfer learning. One 

plausible explanation is that the chest CT scan dataset was too small for effective fine-tuning of 

the VGG16 model’s pre-trained layers. Medical images often differ significantly from the natural 

images in ImageNet, requiring domain-specific features that the VGG16 architecture might not 

easily adapt to without substantial adjustments. Additionally, the subtle variations in chest CT 

scans, such as differences in cancer types or stages, likely demand highly specialized feature 

extraction, which the pre-trained model may have struggled to achieve in this context. 



 

 

Another critical factor in comparing the two models is the computational cost of training 

and using them. The Basic CNN model, while less accurate, is much simpler and demands 

significantly fewer computational resources, making it a more practical choice for situations with 

limited hardware capabilities. On the other hand, the VGG16 model is computationally intensive, 

primarily due to its larger number of parameters and the need for fine-tuning its convolutional 

layers. While the slight improvement in accuracy may justify its use in some scenarios, the trade-

off between computational cost and performance is difficult to ignore. Without further 

optimization or significant accuracy gains, the additional computational resources required for 

VGG16 may outweigh its benefits. This comparison underscores the importance of considering 

both model complexity and practical constraints, such as available resources and the specific 

accuracy needs of the task, when selecting an appropriate model for medical image 

classification. 

Bar Chart for Class-Wise Performance: How the model performs on each class individually. 



 

 

 

Impact of Transfer Learning 

The VGG16 Transfer Learning model demonstrated the potential benefits of using pre-

trained models, offering a modest performance boost when applied to medical imaging tasks like 

chest CT scan classification. Transfer learning allows models to leverage general features 

learned from extensive datasets such as ImageNet, adapting them to specific tasks in new 

domains. This ability to reuse learned features can save significant training time and resources, 

particularly when working with smaller datasets. However, the relatively small improvement in 

accuracy observed in this project suggests that transfer learning alone may not fully address the 

complexities of chest CT scans. A major limitation of transfer learning is that the features 

learned from natural images, like those in ImageNet, often fail to align directly with the subtle, 

domain-specific patterns found in medical images. Medical datasets frequently involve unique 

challenges such as nuanced textures or differences in tissue appearance that require specialized 



 

 

feature extraction techniques. Consequently, the general features extracted by the VGG16 model 

may not have been sufficient to capture these intricate patterns effectively, leading to only 

moderate performance improvements. 

In this project, fine-tuning the last few layers of the VGG16 model allowed it to adjust 

partially to the unique characteristics of chest CT scans, but the results highlight areas for further 

enhancement. Fine-tuning involves retraining certain layers of the pre-trained model to make 

them more responsive to the specific dataset, and while this approach was beneficial, it may not 

have gone far enough. The addition of task-specific layers or more aggressive fine-tuning could 

help the model better adapt to the requirements of chest CT scan classification. Another 

significant factor affecting the model's performance is the size of the dataset. The limited number 

of images likely constrained the model's ability to fully leverage transfer learning, as pre-trained 

models often achieve their best results with larger datasets. Expanding the dataset or employing 

advanced data augmentation techniques, such as contrast adjustments or elastic transformations, 

could provide the variability needed for the model to learn more effectively. These enhancements 

would allow the model to generalize better across diverse cases, improving its ability to identify 

subtle differences between classes and ultimately achieving higher classification accuracy. 

 Potential Causes of Low Accuracy 

Several factors likely contributed to the relatively low accuracy observed in both the 

Basic CNN and VGG16 models. A key issue may have been the dataset’s size and balance, as 

small or imbalanced datasets can significantly limit a model's ability to learn and generalize 

effectively. When one class, such as normal images, dominates the dataset, the model may bias 

its predictions toward that class while neglecting underrepresented categories. This imbalance 



 

 

results in poor performance for rarer classes, such as specific types of cancer, which require the 

model to learn subtle, distinguishing features. Furthermore, the inherent complexity of CT scan 

images, where variations between cancerous and non-cancerous tissues are often subtle, poses a 

challenge. These nuances may have been beyond the feature extraction capabilities of the Basic 

CNN or insufficiently captured by the VGG16 model due to limited fine-tuning of its deeper 

layers. 

Another potential cause of low accuracy is related to the preprocessing and augmentation 

methods applied to the dataset. While basic augmentation techniques such as rotation and zoom 

were employed, more advanced strategies could have introduced greater variability in the 

training data, enhancing the model's ability to generalize. Methods like contrast adjustment, 

brightness variation, and elastic deformations could have helped the models recognize a broader 

range of features and conditions present in medical images. Similarly, better preprocessing 

approaches, such as normalizing pixel intensities or applying histogram equalization, could have 

improved the quality and consistency of input data. These refinements would have enabled the 

models to detect important patterns more effectively, potentially improving their performance. 

Addressing these issues could pave the way for more accurate and reliable models capable of 

performing robust medical image classification. 

 



 

 

 

Recommendations for Future Work 

To enhance the accuracy of the models and achieve superior performance in chest CT 

scan classification, several strategic steps can be implemented. One of the most impactful 

measures is increasing the size of the dataset by collecting additional images from diverse 

sources, which would provide the models with a broader range of features to learn from. This 

could be further complemented by employing advanced data augmentation techniques, such as 

applying transformations like rotation, flipping, and elastic deformations, to synthetically expand 

the dataset and improve the model’s ability to generalize. Addressing class imbalances is another 

crucial aspect that could enhance the model's predictive power. Techniques such as oversampling 

the minority classes, under-sampling the dominant class, or implementing class weighting during 

training can ensure the model does not disproportionately favor certain categories. Exploring 

pre-trained models like ResNet or Inception, which are designed to extract more complex 



 

 

features, could also significantly boost performance, as these architectures are better suited for 

intricate tasks like medical image classification. 

Additionally, hyperparameter optimization is a critical area of improvement that could 

enhance the models’ ability to converge effectively. Adjusting parameters such as the learning 

rate, batch size, number of epochs, and dropout rates could help fine-tune the model for optimal 

performance. Expanding the architecture by increasing the depth of the CNN or integrating 

ensemble learning methods, where multiple models contribute to predictions, might yield even 

better results by leveraging complementary strengths. Moreover, refining the preprocessing 

pipeline to include advanced normalization techniques and domain-specific feature engineering 

can improve the quality of input data and the subsequent learning process. Incorporating domain 

expertise, such as insights from radiologists, into model development could further enhance the 

model's ability to identify subtle patterns in chest CT scans. By implementing these strategies, it 

becomes possible not only to improve accuracy but also to develop a robust Champion Model 

capable of providing reliable assistance in lung cancer detection and diagnosis. 

Model Performance Comparison: 



 

 

 

Precision-Recall (ROC Curve): Model performance for imbalanced datasets. 



 

 

 

Review of Success (Completion) 

Review of Completion 

The execution of this project, which on classifying chest CT scan images using a Basic 

CNN model and a VGG16 Transfer Learning model, provided significant insights into the 

complexities of medical image classification. The project successfully achieved its objective of 

implementing and training two different models, allowing for a comparative analysis of their 

strengths and weaknesses. The Basic CNN reached an accuracy of 63.93%, while the VGG16 

model, leveraging pre-trained weights, slightly outperformed it with an accuracy of 64.75%. 

Despite these achievements, both models fell short of achieving the high levels of accuracy 

required for reliable medical diagnoses, highlighting the intricate nature of this task. This stage 

of the project demonstrated a strong understanding of deep learning concepts, such as designing 



 

 

model architectures, implementing transfer learning, and evaluating model performance. 

However, it also exposed critical areas for improvement, particularly in the dataset's quality and 

the need for further optimization techniques. 

The project's success is also evident in its comprehensive exploration of transfer learning, 

showcasing the benefits of using pre-trained models for medical datasets. Transfer learning 

enabled the models to leverage features from the ImageNet dataset, which is beneficial given the 

limited size of the CT scan dataset. However, the modest improvement in accuracy underscores 

the need for more advanced techniques in data preprocessing and model fine-tuning. The dataset 

emerged as a key challenge, with issues like class imbalance and limited variability restricting 

the models' ability to generalize effectively. Addressing these challenges through advanced 

augmentation, synthetic data generation, or even acquiring more diverse data could significantly 

enhance the models' performance. Moreover, hyperparameter optimization and more refined 

fine-tuning of the VGG16 model could lead to better outcomes. While the project succeeded in 

building and evaluating the models, it highlighted the necessity of iterative refinements to 

achieve the high precision required for clinical applications. This experience provides a strong 

foundation for future work in improving the accuracy and robustness of medical imaging models. 

Potential Data Privacy and Data Security Issues 

Potential Data Privacy and Data Security Issues 

The dataset used in this project, comprising medical chest CT scans, raises critical 

concerns about data privacy and security due to the sensitive nature of medical information. 

Medical data is governed by stringent privacy regulations, such as the Health Insurance 



 

 

Portability and Accountability Act (HIPAA) in the United States and the General Data Protection 

Regulation (GDPR) in the European Union, which mandate the secure handling of personal 

health information. A major area of concern is the anonymization of the dataset. If the images or 

their metadata include identifiable patient information, such as names, patient IDs, or other 

linked identifiers, this poses a significant risk of privacy violations. Failure to anonymize such 

data appropriately could lead to unauthorized disclosure, legal liabilities, and loss of trust among 

stakeholders. 

To address these concerns, it is imperative to ensure that all identifiable information is 

removed or masked in compliance with privacy regulations. This includes not only removing 

patient names or IDs but also ensuring that any residual metadata embedded in the image files is 

scrubbed clean. Moreover, the data must be securely stored and encrypted to prevent 

unauthorized access or breaches during data transmission or storage. Another dimension to 

consider is the ethical responsibility to respect patient autonomy and informed consent, ensuring 

that patients whose data is used for research purposes have been properly informed and have 

explicitly consented to such use. These measures not only protect patient privacy but also uphold 

the integrity of the project by aligning it with ethical and legal standards. 

Additionally, the potential for model misuse or unintended consequences must also be 

considered. If models trained on such datasets are deployed inappropriately or without rigorous 

testing, they could produce erroneous diagnoses or outcomes, affecting patient care. These 

challenges highlight the need for a robust data governance framework, including regular audits, 

encryption protocols, and secure data-sharing practices, to ensure both the privacy of the 

individuals involved and the reliability of the research findings. Addressing these privacy and 



 

 

security issues is crucial for maintaining compliance, safeguarding patient trust, and ensuring the 

ethical application of machine learning in medical contexts. In addition to privacy concerns, data 

security is also a critical issue. The dataset must be stored and processed in a secure environment 

to prevent unauthorized access, breaches, or misuse. Medical datasets are often targeted by 

cyberattacks due to the sensitive nature of the information they contain, and strict measures must 

be implemented to protect the data, including encryption, access control, and secure data 

transmission protocols. Moreover, the results of the models, particularly in a medical context, 

could be used for diagnostic purposes, which raises concerns about the accuracy and reliability 

of the predictions. If the models produce inaccurate or biased results, there is potential for harm 

to patients if these results are used for real-world decision-making without proper validation and 

oversight by medical professionals. Therefore, ensuring data security, privacy, and the ethical 

use of model predictions is essential for projects involving medical data. 

Recommendations for Future Analysis 

For future analysis, one of the most important recommendations is to increase the size 

and diversity of the dataset. Medical image classification tasks, such as chest CT scan 

classification, typically benefit from larger datasets that capture a wide range of cases, including 

various stages and types of cancer. A more diverse dataset would help the models learn better, 

generalize more effectively, and improve their ability to differentiate between subtle differences 

in tissue that indicate different cancer types. Additionally, collecting a larger and more balanced 

dataset could address potential issues of class imbalance, which can lead to biased predictions 

favoring the dominant class. Data augmentation techniques, such as adjusting brightness, 



 

 

contrast, and applying elastic deformations, could also be expanded to introduce more variability 

into the training data, further enhancing the model’s ability to generalize to new cases. 

Another recommendation is to explore more advanced deep learning architectures beyond 

the Basic CNN and VGG16 models. While the VGG16 model offered a slight improvement 

through transfer learning, more modern architectures such as ResNet, Inception, or EfficientNet 

are specifically designed to handle more complex image classification tasks. These models offer 

more advanced feature extraction techniques and improved performance, which could lead to 

significant gains in accuracy. Additionally, it is advisable to apply hyperparameter tuning using 

techniques such as grid search or random search to optimize parameters like learning rate, batch 

size, and the number of layers in the model. This would allow for a more refined model that is 

better suited to the specific characteristics of the dataset. Furthermore, incorporating ensemble 

learning methods, where multiple models are combined to make predictions, could further 

improve the robustness and accuracy of the classification task by leveraging the strengths of 

different models. 
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